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Focus of talk

Efficient submission of GPU workloads

Deferred command lists

Asynchronous compute

(Raul) AMD DevTech and collaboration
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Overall pipeline

● CPU/render/GPU work interleaved

● Submit early, submit often

● No render graph or a priori knowledge of frame 
layout

● Automatic resource transition tracking

● But with opt out (untracked)



Interesting frame numbers

● 50-60 submits 

● 200 transitions/100 barriers

● 3-6K draws

● 3-6M primitives

● (Some vendors) More time spent submitting 
than building immediate command lists



Render core

● Handles non-command list operations

● Resource creation:

●Buffers, pixel storages, textures, RTs, ...

● Render state/PSO

● Manages render contexts

● Graphics/compute/deferred/DMA



Render contexts

● DirectX® 11 like API for command list operations

● Resource binding based around enum’d slots

● Keeps internal cached state

● Each public context is paired with a worker thread + 
task queue

● Rendering is ”just” posting tasks to the appropriate 
task queue



Rendering objects

● Encapsulated into render queues 

● Templatified on sorting strategy

● Can do three things

● Prepare – sort and group instances 

● Flush – render objects

● Reset



Filling a render queue

● Culling outputs a 32-bit mask for where to 
draw each object

● Z-prepass, gbuffer, CSMs, ...

● Bitmask + object flags decide render queues

● We have 30+ render queues



Flushing a queue

● Setup render state for the entire queue 

● Upload per-instance (4 uints) data to GPU

● Single copy per render queue 

● For each instance group:

● Set PSO/buffers/VBs/IBs/...

● DrawIndexedInstanced



Updating buffers

● All transient data 

● Copy into upload buffers

● Then, copy into GPU-local buffer

● Shaders only read from GPU-local buffers!

Not faster, but more stable frame



Deferred command lists

● Handled by thread local deferred render 
contexts

● Recording done without transitions tracking

● Liberal use of asserts on 
transitions/barriers to trap misuse

● Buffer uploads goes straight to DMA without 
waiting for the execute 
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Immediate ctx

Deferred ctx

Deferred command list example

Record

ECL ∙∙∙∙∙∙ STALL

Not free!!!



Command list chaining

● Available on some consoles

● Allows executing a command list while it is 
being recorded

● Minimize risk of CPU stalling CPU and GPU

● Not available in DirectX® 12… 



Solution: Emulate!!!

● Enter Queue Manager

● Handles command list operations

● ExecuteCommandLists, Close, Reset

● Hides CPU cost of those operations

● Has its own worker thread and task queues

● In effect: a custom driver thread ☺
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Queue manager

● Queue manager submits what it can

● Atomics to track command list state

● Recording, open

● One queue per context

● Round-robins executes in priority order

● Compute, Graphics, DMA



Immediate ctx

Deferred ctx

Queue manager details

Reset Record Close Execute

Queue manager

Reset Record Close

When idle

Setup earlier 
in frame
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Queue manager

● Eliminates most CPU stalls

● Speculatively prepares command lists

● Avoids command list create/reset stalls

● Elide superfluous signal/waits



Async compute

● Submits also handled by the queue manager

● 2 types of compute workloads

● Dependent on gfx state

● Independent

● Used for workloads that do not need to finish 
soon 



Async compute examples

● Depth downsampling and light culling

● Fog and volumetrics

● Rain/snow GPU particles

● Sky coverage sampling

● Grass/vegetation updates

● Shadows (variable penumbra pre-calc)

● GI relighting



● Async compute is stalling the gfx pipe!

● Can result in GPU under-utilization

● On consoles: limit async compute occupancy

● Not current possible on PC 

● D3D12_COMMAND_QUEUE_PRIORITY



Key takeaways

● Check time spent inside DirectX® 12

● Maybe you need a driver thread too?

● Experiment with buffer upload patterns

● Look at your async compute behaviour!

● Would low-prio workloads help you?

● If so, help us push Microsoft + IHVs ☺



AMD DevTech 

● Helping devs get the most out of:

● Tools

● Driver

● Hardware

● Shader Compiler



Existing optimizations in Snowdrop

● Use SGPRs

● Optimized LODs

● Sorting by state

● Batching barriers

● Root signature order 

● Use of async compute



Better async

● Async is awesome

● Can we do better?

● Typical usage is:

● Graphics queue, for what I need ASAP

● Async queue, for not time critical 

● Problem: Async and Graphics queue may compete



Better async

● Competing for execution resources

Screenshot of Radeon(TM) GPU Profiler taken on Radeon(TM) Vega64 and Threadripper(TM) based system.



● Competing for cache

Better async



Better async

● Solution: Parallelize unalike workloads

Memory dominated Shader Throughput Geometry dominated

Shadow Mapping
ROP heavy workloads
Many Gbuffer operations
DMA operations:
- Texture upload
- Heap defrag

Deferred lighting 
(usually)
Many Postprocessing 
effects
Most compute tasks:
-Texture compression
-Physics
-Simulation

Rendering highly detailed 
modules



Ongoing research

● Interest from several developers

● Expose a way to slow down the async pipe 

● Still experimenting…

● Results are so far are exciting!

● PC is tricky



Ongoing research

● Competing for cache



Questions?
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