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1st Party studio, part of Sony Playstation 
Responsible for the God of War series 
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This talk will cover high-level end-to-end pipeline with a focus on concepts, 
motivations, situations, and some technical depth 
Where possible I will integrate dates and behind the scenes info 
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It’s not intended to be implementation instructions or proofs. 
While we do bring some new ideas to the table, this is largely built on existing work 
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First let’s go over some terminology.  
All level editing is done in maya there is no level editor 
Wad - Streamable unit 
- scene heirarchy 
- Composed of a series of overlaid maya files 
- heap/object lifetime (this is important for reliability/repeatability since there’s 

never a full teardown) 
 

Wads contain “Refnodes” serve as general purpose links for  
- Prefab workflow - object instances 
- Level editing workflow layering (art/design, subdivision, vis, lights, entities) 
- These can be recursive 
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Hallmark of the series - no loading screens 
- Playable end to end, no discrete “levels” 
- Conveyor belt loading 
- What we load and when is data driven by level design and art 
- Design/art responsible for breakdown of wads 
- S-hallways, traversal pacing to hide/anticipate loading ahead and unloading behind 
 
Wads can be stacked 
- Kratos’ house is a wad that’s contained in the surrounding forest wad 
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In mid-2015, at our first playable, we had an indirect lighting pipeline that used 
lightmaps and loosely placed diffuse probes. It’s not an uncommon solution but it 
comes with tradeoffs.  
There’s a visual disparity between dynamic and static objects that’s reminiscent of old 
cartoons where you can tell something is about to move because it’s cell-painted in 
the animated layer instead of the matte painted background. 
Additionally there’s a complex pairing of lightmaps to instances. This is further 
complicated due to the generic and recursive nature of our refnodes. For example 
you might have an object on a table, the table could be instanced several times in a 
house and then the house might be instanced several times. The number of instances 
can explode quickly. Keeping track of what is and isn’t up to date is complex. 
UVs and probe placement is laborious. Changing mesh topology requires new UVs 
and rebaking. Moving lights and objects can require re-placing probes. All of this can 
be helped by tools but it’s still time consuming and painful. 
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We wanted to try something different. I’d used 3D textures for lighting in the previous 
console generation and it was affordable. 
Consistent look for static and dynamic objects. 
We have a relatively small lighting team, we want them focused on lighting not data 
management. 
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Keeping it simple, GI volumes are loosely placed boxes in Maya. Inside there’s a series 
of 3D textures that contain lighting baked data. 
Since we’re only storing indirect lighting resolution does not need to be high. Even 
larger than meter per voxel can be enough. 
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4 3D SH textures 
RGB – bounce lighting from analytic light sources 
Alpha – sky vis + monochrome bounce 
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Test scene 
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Here’s an example of a few slices from the GI volume. 
Splitting sky and bounce helps SH encoding maintain directionality. With 2-band SH 
opposing directions cancel each other out, leaving only the constant 0-band to 
represent the data. Sky comes largely from above and bounce from below.  
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You can think of the sky visibility term like a directional ao. The sky lighting is joined 
at runtime, this means we can change the sky without rebaking. We express sky 
lighting as a SH encoding of cubemap, generated during build.  
We do change sky lighting/rotate at runtime, mostly during transitions. 
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4 closest on screen 
Sort by authored priority 
We want this simple on the GPU. Shader walks in order, stops on first intersection 
We’ll talk a little about optimizations shorly. 
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Because the voxel density is low we get self occlusion and light leaking artifacts. This 
is a similar effect as shadow acne. 
We’re motivated to use hw filtering and avoid unrolling the 8 taps for manual 
filtering. To solve this we simply offset the GI sample away from the receiving surface 
along the normal.  This effectively inflates objects when sampling the GI so they’re 
sampling outside of themselves. 
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Sample offset on moving object reads like specular, looks shiny. We already had a bit 
in our gbuffer for characters. 
Don’t apply offset for characters (they didn’t participate in the bake anyway).  
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Video showing character GI looking like spec when moving because of normal offset. 
Real-time shader update shows problem go away on Kratos. 
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There’s a literal corner case where close-by normals cause the normal offset to poke 
through walls or the floor revealing un-occluded sky. 
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Over occlusion more acceptable than under 
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Box is not great for organic environments 
-we intend to investigate alternatives going forward 
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Cubemaps are sparse compared to the GI, which means spec lighting can leak into 
occluded areas. 
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A natural balance between diffuse and spec is more important than pixel correct 
reflections. 
Metals need to benefit from GI bake 
Ideally should leverage cubemap angular detail + GI spatial detail. 
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Again, the composition of reflections may be incorrect but the intensity/balance 
should be correct. This lets us get away with fewer cubemaps overall.  
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Example scene. Highlighted block and overhang occlude the corner of the hallway. 
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Example scene. Highlighted block and overhang occlude the corner of the hallway. 
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Cubemap sees the block, not the dark corner. 
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Original example. 
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Normalization on. Clearly contents of cubemap still incorrect (chrome ball) but the 
intensities are more correct. 
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Hard to tell they’re behind the block 
Spec diffuse balance is way off (upper left sphere) 
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Notice the chrome ball is brighter where reflections point out of the corner like you’d 
expect. 
Note: The corner on the left of the image isn’t water-tight, there’s an opening about 
the size of a tennis ball letting light in.  
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The back wall looks wet (remember there’s an overhang above). 
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Normalization on. 
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To keep ourselves honest, you can see that when the objects get closer to the 
cubemap capture location the effects of normalization lessen. These aren’t perfectly 
on the capture location, and the change is small. This is what you would expect 
because as the cubemap and the GI agree on what they see, they essentially cancel 
each other out. 
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This wasn’t really based on any particular paper however it ends up being pretty 
much identical to the call of duty technique (lazarov, 2013). I’ve spoken with other 
studios who’ve tried this (or similar) and some reported abandoning it because they 
didn’t like the results.  
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To fix the issues we reduce directionality and saturation in cubemap SH 
(denominator/div by 0).  
If you have problems resulting from particles or transparents in your cubemap (that 
don’t participate in the bake), you could probably use the GI at the cubemap capture 
location instead of SH from the cubemap as the denominator. We considered this but 
never ended up needing to try it. 

46 



Here’s an example of the discoloration that results from clamping and channel 
separation. 
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We used the ragdoll capsules for our character AO. It worked well but AO ended up 
having competing goals with ragdoll and we narrowly cleared the AO limit during 
finaling. Ragdoll can inflate capsules for various reasons, and potentially add extra to 
avoid falling through the world. We plan to make this a custom pipeline going 
forward. 
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Add capsules 
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Add ssao 
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Add ao maps 
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Consistency is important so the fog also uses the GI.  
The fog uses only band0 (single texture fetch) of the GI as an optimization we made 
for the e3 2016 reveal of the game. We used to store a texture per channel, had to 
reswizzle data to be a texture per band. 
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GI and cubemaps are applied together in one pass. 
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Nova was developed in the PS3 generation. It has shipped lots of great games and I 
believe is still used. 
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…But it wasn’t great for iteration. 
- It has its own data format that is principally redundant to ours and is built only for 

Nova.  
- The material conversion is complex for our materials. They were baked to vertex 

colors as an optimization. 
- Are the results correct? Does Nova model their lights the same as we do? 

Spotlights were problematic for this reason. It was hard to verify that you’ve 
converted your parameters correctly. Left us to verify visually (which isn’t 
trustworthy). 

Additionally 
- Scattering/translucent materials were possible with Nova but another tricky 

conversion. 
- No volumetric fog. 
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The Nova pipeline largely relied on automated testing to stay functioning. The (small) 
lighting team was the only group really using the tool and it was easy for even 
seemingly benign material changes to break the Nova pipeline.  
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I get asked why we bake on the PS4 instead of the PC.  
- PC does share some but not all data, so it would be an extra build 
- We were trying to get the lighters off their own support island. Our PC build isn’t 

really used in any workflow so it, like Nova relies on automated testing to stay 
functioning. 

- Generally, we would rather have everyone looking at results on PS4 (it’s what 
we’re shipping after all) 

- Most importantly, we could have abandoned PC build if the maintenance became 
more than we could afford. It wasn’t critical to ship the game. 

 
Caldera (“The Lake of Nine”) ended up only baking on PS4Pro because it required 
extra debug memory to bake. 
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Credit to Stephen Hill for adaptation for GI volumes 
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The first step is to shrink-wrap all the geometry into a cloud of surfels, each 
containing associated materials properties like normal, position, albedo, etc. To do 
this we hijack the rasterizer, rendering with no render or depth targets and no back-
face culling. It simply samples triangles on a regular grid for us. We use atomics to 
collect the surfels as we go into one list. 
 
We have a lot of shaders so adding a GI bake permutation would slow the build down 
or create an ugly build-the-level-for-GI-baking workflow. Fortunately, we already had 
a debug shader permutation that we use for a variety of debug/instrumentation 
views. This shader obviously doesn’t need to be performant so it was a convenient 
place to add a static branch for emitting the surfels. 
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Example: creating surfels on each axis 
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Again, but viewing normals.  
 
This is the first of several times that I’m going to stress how important it is to build 
good debugging in _while_ developing a large feature like this.  
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Accumulate lighting in surfels rather than lightmaps, credit again to Stephen Hill. 
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For each ray we build an orthographic projection around the area we care about. We 
project each surfel to a texture where each texel is the head pointer of a linked list. 
We use an atomic swap to replace the current head pointer with the new surfel. 
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Next we sort the rays using a bubble sort. It was easy to implement and validate. It’s 
surprisingly fast and never became the highest priority to optimize.  
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Again it’s extremely important to build good debug rendering. Here’s a view to help 
validate the sort order of lists. It renders directly from the surfel cloud with links 
between them. Improperly sorted links show up as red. Head surfels are green, tails 
are blue, otherwise cyan. 
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How could you validate 100k linked lists over 1000’s of rays without it? 
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Now that the lists are sorted we need to exchange lighting. Simply walk the list and 
treat neighbors as light sources. Back-facing surfels are black. Head surfel sees 
unoccluded sky, sky is accumulated separately from lighting. 
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Lastly, we take the voxel center, project it into the list and walk until it’s between two 
surfels. Then we simply encode the lit surfel as SH. Then we progress to the next ray. 

80 



Video showing the bake in GI view. Less than 14 seconds (realtime) to bake 512 rays, 
but the image stabilizes in far fewer rays. Artists can cancel, move objects/lights and 
restart. You can see how this would allow them to quickly iterate. 
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80ms target means most of the frame is spent on baking but maintains high enough 
framerate to be responsive.  
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Objects like doors and breakables would be excluded from bake. Lights generally 
should participate except accent lights in cinematics and potentially special fx. For the 
e3 2016 demo there were several different suns with different angles and intensities 
to sell the progression of time. Transitions were strategically hidden.  
To avoid seams in the bakes, all suns were marked as do-not-bake and a single bake-
only sun was added from an average direction and intensity.  
 
GI volume resolution will be based on ideal meters per voxel up until it reaches the 
memory budget, in which case it will reduce resolution to fit. 
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Entire categories of lights can be disabled during the bake for convenience. For 
example lights marked as special fx could be disabled during the bake.  
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Level from beginning of the game 
Original troll arena in e3 2016 
Load additional wad 
Quick bake 
(realtime) 
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This video shows surfel debug mode, lighting, sky vis, albedo, normal. 
Baking progress while in surfel debug mode. 
 
(realtime) 
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We support single step debugging through the bake. Here I single step while in linked 
list debug mode. 
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Here’s an example of a more typical iterative workflow. Lights and objects being 
moved around several times re-baking along the way. You can see the surfels update 
after the sphere moves, there’s no precomputation of the scene required. Bakes are 
easily cancelled and restarted. You can see that bright/small lighting causes fireflies 
initially but it smooths out with more rays.  
(realtime) 
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As I mentioned before, having fog participate in the bake is one of the motivators for 
moving away from Nova. Fog can be a significant light source in a scene. For this Bart 
modified his technique to use an orthographic projection for the lighting and 
scattering textures around the GI volume. We use a cubemap for anything outside. 
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We modify the light transfer to sample the fog textures, taking multiple taps to 
accumulate extinction and in-scattering. 
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For resolve we do the same thing but from voxel center to surfel 
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Scene, no fog 
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Add fog 
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No fog in bake 
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Fog in bake 
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No fog in bake 
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With fog in bake 
-Directionality on block at the left comes from the column of light, quite a drastic 
change. 
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Thin (2-sided) we add 2 surfels at the same location. We use some bit hacking to 
guarantee proper sort ordering for each ray. 
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Block of ice + spot light 
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Indirect lighting changes are low frequency in open air, away from objects.  
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Variable resolution uses essentially a 3D virtual texture. This is a technique I’d 
developed in the previous generation. Indirection texture is usually 4 meters per 
voxel, sometimes larger. Each indirection voxel can be backed by a different sized 
block in the atlas texture.  
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On the right you see an example section of an atlas texture, scrambled blocks of 
different resolutions packed together. On the left you see a piece of the indirection 
texture, containing location and size information for the blocks in the atlas texture. 
The indirection texture’s job essentially is to unscramble the atlas. 
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Run over a small number of rays (256-512) at indirection resolution to determine the 
average-nearest-distance to a surfel from the indirection voxel center in all directions. 
Then we use a greedy algorithm starting with all voxels as 1x1x1 that promotes the 
voxel that we estimate reduces error the most based on the average-nearest-
distance. We repeat this until we’ve spent our memory budget. This allows us to 
know our final resolution _before_ we do any baking. 
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So how do we estimate error? There wasn’t a lot of time to derive a perfect mapping 
so we went with something empirical. The basic idea is we assume all surfaces have 
high frequency detail. If you move an observer point that is close to the surface 
perpendicularly the observed error would be large. Whereas an observer far away 
moving that same distance would have a small error. So we use that parallax angle as 
our error metric.  
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Here’s a debug visualization showing voxel resolution. This GI volume is uniform. 

106 



A variable resolution GI volume using the same memory budget.  
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Here’s a video to hopefully help explain the technique using that same debug view. I’ll 
sweep a plane across the volume so you can see the resolution change in open 
spaces. Colder colors are lower res, warmer are higher res. 
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Again, time was limited so there are probably better solutions for packing the atlas 
texture. This is essentially a 3D pooled allocator for 32x32x32 sections. Each 
32x32x32 section is filled as tightly as it can be with the blocks remaining. Then, we 
simply find the best dimensions for the texture based on the number of sections. In 
the ideal case the number of sections is a cube, this is never the case so we search 
the possible width and height options to find one that minimizes waste. 
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Now that we know the final layout of the atlas texture we can actually bake. Only the 
resolve stage of the baking changes with variable res. We need some way of mapping 
atlas voxels to world positions. With uniform volumes we break the voxels into 4x4x4 
wavefronts. With variable res we break the individual blocks into 4x4x4 wavefronts 
too. However, anything that’s not a multiple of 4 will have wasted lanes. This didn’t 
end up being a significant performance hit.  
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Keeping hardware filtering is even more important now with the indirection texture, 
it too would unroll to 8 samples + indirection logic for each + 8 atlas taps. So we treat 
voxel centers as box corners, this means that we transition to the next block before 
we’d start filtering outside our current block (and from sampling the random 
neighboring block in the atlas texture). 
 
Seams should only occur where sampling density is lower than lighting frequency and 
where neighbors have different resolutions 
- Under-sampling means error estimate failed or we ran out of memory 
- Going forward I’d like to experiment with using real lighting information to drive the 
resolution. Maybe replacing the average-nearest-depth pass with instead a lighting 
variance over the voxel. This would also avoid wasting samples close to objects that 
don’t actually have interesting lighting features. 
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Precompute solver for each pair of neighbor options. Then run across each axis 
separately. Corners and edges have multiple constraints so we have to run multiple 
iterations. 
Can take minutes to compute on the CPU. 
There are better options but we ran out of time 
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Before fixup 
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After fixup 
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Here’s a video of me sweeping that plane across the volume again, this time with the 
GI results. 
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Uniform 
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Variable res with the same memory budget 
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We prioritized variable res over compression because it seemed higher risk and the 
window to implement would close sooner than compression. We could do 
compression really late right?  
 
Total energy of SH is represented in the constant term, can be used to normalize 
second band. Store only constant (band0) as float, and the second band as ldr. 
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Before 
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After. Whoops 
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What happened? Well, technically the interpolation changes with this compression. 
Normally this wouldn’t be an issue, light maps tend to be higher res, in fact Frostbite 
presented only a month or so after we’d scrapped it and moved on. For them this 
approach worked great for lightmaps. So I believe the problem is two fold 1) 
resolution and 2) high contrast lighting changes from inside and outside of the object 
coupled with that we’d tuned the normal offset distance down to prevent some over-
darkening artifacts which I believe left us with a subtle amount of self-occlusion. 
When the interpolation changed it exaggerated that self-occlusion. We’ll do some 
more investigation into this, but at a month before gold we didn’t have time to open 
back up the normal offset again. 
Fortunately perf and memory were ok. Disk space was our main motivator to get 
compression in. 
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So we simply min/max compressed the second band instead. We tested lots of levels 
and found that banding artifacts were not that common. So, it was defaulted on and 
the lighters were gracious enough to go back through and verify wads. They turned 
off compression where there were banding artifacts. Savings (and bake times) were 
worth it.  
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Runtime numbers are estimates (removing portions of the combined shader), there 
are interaction effects between cubemaps and GI. The AO number isn’t the total AO 
time, just the portion of the combined shader that applying it cost. 
 
Bake times: 15mins is the more typical worst case. Lake of nine was the absolute 
worst case variable res, it took 20 mins. 
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Offline blending only 
- Where there’s overlap, lower priority GI volumes sample higher priority and replace 
contents 
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