
1

1st Party studio, part of Sony Playstation
Responsible for the God of War series

2

3

4

5

6

7

8

This talk will cover high-level end-to-end pipeline with a focus on concepts,
motivations, situations, and some technical depth
Where possible I will integrate dates and behind the scenes info

9

It’s not intended to be implementation instructions or proofs.
While we do bring some new ideas to the table, this is largely built on existing work

10

First let’s go over some terminology.
All level editing is done in maya there is no level editor
Wad - Streamable unit
- scene heirarchy
- Composed of a series of overlaid maya files
- heap/object lifetime (this is important for reliability/repeatability since there’s

never a full teardown)

Wads contain “Refnodes” serve as general purpose links for
- Prefab workflow - object instances
- Level editing workflow layering (art/design, subdivision, vis, lights, entities)
- These can be recursive

11

Hallmark of the series - no loading screens
- Playable end to end, no discrete “levels”
- Conveyor belt loading
- What we load and when is data driven by level design and art
- Design/art responsible for breakdown of wads
- S-hallways, traversal pacing to hide/anticipate loading ahead and unloading behind

Wads can be stacked
- Kratos’ house is a wad that’s contained in the surrounding forest wad

12

In mid-2015, at our first playable, we had an indirect lighting pipeline that used
lightmaps and loosely placed diffuse probes. It’s not an uncommon solution but it
comes with tradeoffs.
There’s a visual disparity between dynamic and static objects that’s reminiscent of old
cartoons where you can tell something is about to move because it’s cell-painted in
the animated layer instead of the matte painted background.
Additionally there’s a complex pairing of lightmaps to instances. This is further
complicated due to the generic and recursive nature of our refnodes. For example
you might have an object on a table, the table could be instanced several times in a
house and then the house might be instanced several times. The number of instances
can explode quickly. Keeping track of what is and isn’t up to date is complex.
UVs and probe placement is laborious. Changing mesh topology requires new UVs
and rebaking. Moving lights and objects can require re-placing probes. All of this can
be helped by tools but it’s still time consuming and painful.

13

We wanted to try something different. I’d used 3D textures for lighting in the previous
console generation and it was affordable.
Consistent look for static and dynamic objects.
We have a relatively small lighting team, we want them focused on lighting not data
management.

14

Keeping it simple, GI volumes are loosely placed boxes in Maya. Inside there’s a series
of 3D textures that contain lighting baked data.
Since we’re only storing indirect lighting resolution does not need to be high. Even
larger than meter per voxel can be enough.

15

4 3D SH textures
RGB – bounce lighting from analytic light sources
Alpha – sky vis + monochrome bounce

16

Test scene

17

Here’s an example of a few slices from the GI volume.
Splitting sky and bounce helps SH encoding maintain directionality. With 2-band SH
opposing directions cancel each other out, leaving only the constant 0-band to
represent the data. Sky comes largely from above and bounce from below.

18

You can think of the sky visibility term like a directional ao. The sky lighting is joined
at runtime, this means we can change the sky without rebaking. We express sky
lighting as a SH encoding of cubemap, generated during build.
We do change sky lighting/rotate at runtime, mostly during transitions.

19

4 closest on screen
Sort by authored priority
We want this simple on the GPU. Shader walks in order, stops on first intersection
We’ll talk a little about optimizations shorly.

20

Because the voxel density is low we get self occlusion and light leaking artifacts. This
is a similar effect as shadow acne.
We’re motivated to use hw filtering and avoid unrolling the 8 taps for manual
filtering. To solve this we simply offset the GI sample away from the receiving surface
along the normal. This effectively inflates objects when sampling the GI so they’re
sampling outside of themselves.

21

22

Sample offset on moving object reads like specular, looks shiny. We already had a bit
in our gbuffer for characters.
Don’t apply offset for characters (they didn’t participate in the bake anyway).

23

Video showing character GI looking like spec when moving because of normal offset.
Real-time shader update shows problem go away on Kratos.

24

There’s a literal corner case where close-by normals cause the normal offset to poke
through walls or the floor revealing un-occluded sky.

25

26

Over occlusion more acceptable than under

27

Box is not great for organic environments
-we intend to investigate alternatives going forward

28

Cubemaps are sparse compared to the GI, which means spec lighting can leak into
occluded areas.

29

30

A natural balance between diffuse and spec is more important than pixel correct
reflections.
Metals need to benefit from GI bake
Ideally should leverage cubemap angular detail + GI spatial detail.

31

32

Again, the composition of reflections may be incorrect but the intensity/balance
should be correct. This lets us get away with fewer cubemaps overall.

33

Example scene. Highlighted block and overhang occlude the corner of the hallway.

34

Example scene. Highlighted block and overhang occlude the corner of the hallway.

35

Cubemap sees the block, not the dark corner.

36

Original example.

37

Normalization on. Clearly contents of cubemap still incorrect (chrome ball) but the
intensities are more correct.

38

Hard to tell they’re behind the block
Spec diffuse balance is way off (upper left sphere)

39

Notice the chrome ball is brighter where reflections point out of the corner like you’d
expect.
Note: The corner on the left of the image isn’t water-tight, there’s an opening about
the size of a tennis ball letting light in.

40

The back wall looks wet (remember there’s an overhang above).

41

Normalization on.

42

43

To keep ourselves honest, you can see that when the objects get closer to the
cubemap capture location the effects of normalization lessen. These aren’t perfectly
on the capture location, and the change is small. This is what you would expect
because as the cubemap and the GI agree on what they see, they essentially cancel
each other out.

44

This wasn’t really based on any particular paper however it ends up being pretty
much identical to the call of duty technique (lazarov, 2013). I’ve spoken with other
studios who’ve tried this (or similar) and some reported abandoning it because they
didn’t like the results.

45

To fix the issues we reduce directionality and saturation in cubemap SH
(denominator/div by 0).
If you have problems resulting from particles or transparents in your cubemap (that
don’t participate in the bake), you could probably use the GI at the cubemap capture
location instead of SH from the cubemap as the denominator. We considered this but
never ended up needing to try it.

46

Here’s an example of the discoloration that results from clamping and channel
separation.

47

48

We used the ragdoll capsules for our character AO. It worked well but AO ended up
having competing goals with ragdoll and we narrowly cleared the AO limit during
finaling. Ragdoll can inflate capsules for various reasons, and potentially add extra to
avoid falling through the world. We plan to make this a custom pipeline going
forward.

49

50

51

Add capsules

52

Add ssao

53

Add ao maps

54

Consistency is important so the fog also uses the GI.
The fog uses only band0 (single texture fetch) of the GI as an optimization we made
for the e3 2016 reveal of the game. We used to store a texture per channel, had to
reswizzle data to be a texture per band.

55

GI and cubemaps are applied together in one pass.

56

57

Nova was developed in the PS3 generation. It has shipped lots of great games and I
believe is still used.

58

…But it wasn’t great for iteration.
- It has its own data format that is principally redundant to ours and is built only for

Nova.
- The material conversion is complex for our materials. They were baked to vertex

colors as an optimization.
- Are the results correct? Does Nova model their lights the same as we do?

Spotlights were problematic for this reason. It was hard to verify that you’ve
converted your parameters correctly. Left us to verify visually (which isn’t
trustworthy).

Additionally
- Scattering/translucent materials were possible with Nova but another tricky

conversion.
- No volumetric fog.

59

The Nova pipeline largely relied on automated testing to stay functioning. The (small)
lighting team was the only group really using the tool and it was easy for even
seemingly benign material changes to break the Nova pipeline.

60

I get asked why we bake on the PS4 instead of the PC.
- PC does share some but not all data, so it would be an extra build
- We were trying to get the lighters off their own support island. Our PC build isn’t

really used in any workflow so it, like Nova relies on automated testing to stay
functioning.

- Generally, we would rather have everyone looking at results on PS4 (it’s what
we’re shipping after all)

- Most importantly, we could have abandoned PC build if the maintenance became
more than we could afford. It wasn’t critical to ship the game.

Caldera (“The Lake of Nine”) ended up only baking on PS4Pro because it required
extra debug memory to bake.

61

Credit to Stephen Hill for adaptation for GI volumes

62

The first step is to shrink-wrap all the geometry into a cloud of surfels, each
containing associated materials properties like normal, position, albedo, etc. To do
this we hijack the rasterizer, rendering with no render or depth targets and no back-
face culling. It simply samples triangles on a regular grid for us. We use atomics to
collect the surfels as we go into one list.

We have a lot of shaders so adding a GI bake permutation would slow the build down
or create an ugly build-the-level-for-GI-baking workflow. Fortunately, we already had
a debug shader permutation that we use for a variety of debug/instrumentation
views. This shader obviously doesn’t need to be performant so it was a convenient
place to add a static branch for emitting the surfels.

63

Example: creating surfels on each axis

64

65

66

Again, but viewing normals.

This is the first of several times that I’m going to stress how important it is to build
good debugging in _while_ developing a large feature like this.

67

68

69

Accumulate lighting in surfels rather than lightmaps, credit again to Stephen Hill.

70

71

72

73

For each ray we build an orthographic projection around the area we care about. We
project each surfel to a texture where each texel is the head pointer of a linked list.
We use an atomic swap to replace the current head pointer with the new surfel.

74

Next we sort the rays using a bubble sort. It was easy to implement and validate. It’s
surprisingly fast and never became the highest priority to optimize.

75

Again it’s extremely important to build good debug rendering. Here’s a view to help
validate the sort order of lists. It renders directly from the surfel cloud with links
between them. Improperly sorted links show up as red. Head surfels are green, tails
are blue, otherwise cyan.

76

How could you validate 100k linked lists over 1000’s of rays without it?

77

78

Now that the lists are sorted we need to exchange lighting. Simply walk the list and
treat neighbors as light sources. Back-facing surfels are black. Head surfel sees
unoccluded sky, sky is accumulated separately from lighting.

79

Lastly, we take the voxel center, project it into the list and walk until it’s between two
surfels. Then we simply encode the lit surfel as SH. Then we progress to the next ray.

80

Video showing the bake in GI view. Less than 14 seconds (realtime) to bake 512 rays,
but the image stabilizes in far fewer rays. Artists can cancel, move objects/lights and
restart. You can see how this would allow them to quickly iterate.

81

80ms target means most of the frame is spent on baking but maintains high enough
framerate to be responsive.

82

Objects like doors and breakables would be excluded from bake. Lights generally
should participate except accent lights in cinematics and potentially special fx. For the
e3 2016 demo there were several different suns with different angles and intensities
to sell the progression of time. Transitions were strategically hidden.
To avoid seams in the bakes, all suns were marked as do-not-bake and a single bake-
only sun was added from an average direction and intensity.

GI volume resolution will be based on ideal meters per voxel up until it reaches the
memory budget, in which case it will reduce resolution to fit.

83

Entire categories of lights can be disabled during the bake for convenience. For
example lights marked as special fx could be disabled during the bake.

84

Level from beginning of the game
Original troll arena in e3 2016
Load additional wad
Quick bake
(realtime)

85

This video shows surfel debug mode, lighting, sky vis, albedo, normal.
Baking progress while in surfel debug mode.

(realtime)

86

We support single step debugging through the bake. Here I single step while in linked
list debug mode.

87

Here’s an example of a more typical iterative workflow. Lights and objects being
moved around several times re-baking along the way. You can see the surfels update
after the sphere moves, there’s no precomputation of the scene required. Bakes are
easily cancelled and restarted. You can see that bright/small lighting causes fireflies
initially but it smooths out with more rays.
(realtime)

88

As I mentioned before, having fog participate in the bake is one of the motivators for
moving away from Nova. Fog can be a significant light source in a scene. For this Bart
modified his technique to use an orthographic projection for the lighting and
scattering textures around the GI volume. We use a cubemap for anything outside.

89

We modify the light transfer to sample the fog textures, taking multiple taps to
accumulate extinction and in-scattering.

90

For resolve we do the same thing but from voxel center to surfel

91

Scene, no fog

92

Add fog

93

No fog in bake

94

Fog in bake

95

No fog in bake

96

With fog in bake
-Directionality on block at the left comes from the column of light, quite a drastic
change.

97

Thin (2-sided) we add 2 surfels at the same location. We use some bit hacking to
guarantee proper sort ordering for each ray.

98

Block of ice + spot light

99

100

Indirect lighting changes are low frequency in open air, away from objects.

101

Variable resolution uses essentially a 3D virtual texture. This is a technique I’d
developed in the previous generation. Indirection texture is usually 4 meters per
voxel, sometimes larger. Each indirection voxel can be backed by a different sized
block in the atlas texture.

102

On the right you see an example section of an atlas texture, scrambled blocks of
different resolutions packed together. On the left you see a piece of the indirection
texture, containing location and size information for the blocks in the atlas texture.
The indirection texture’s job essentially is to unscramble the atlas.

103

Run over a small number of rays (256-512) at indirection resolution to determine the
average-nearest-distance to a surfel from the indirection voxel center in all directions.
Then we use a greedy algorithm starting with all voxels as 1x1x1 that promotes the
voxel that we estimate reduces error the most based on the average-nearest-
distance. We repeat this until we’ve spent our memory budget. This allows us to
know our final resolution _before_ we do any baking.

104

So how do we estimate error? There wasn’t a lot of time to derive a perfect mapping
so we went with something empirical. The basic idea is we assume all surfaces have
high frequency detail. If you move an observer point that is close to the surface
perpendicularly the observed error would be large. Whereas an observer far away
moving that same distance would have a small error. So we use that parallax angle as
our error metric.

105

Here’s a debug visualization showing voxel resolution. This GI volume is uniform.

106

A variable resolution GI volume using the same memory budget.

107

Here’s a video to hopefully help explain the technique using that same debug view. I’ll
sweep a plane across the volume so you can see the resolution change in open
spaces. Colder colors are lower res, warmer are higher res.

108

Again, time was limited so there are probably better solutions for packing the atlas
texture. This is essentially a 3D pooled allocator for 32x32x32 sections. Each
32x32x32 section is filled as tightly as it can be with the blocks remaining. Then, we
simply find the best dimensions for the texture based on the number of sections. In
the ideal case the number of sections is a cube, this is never the case so we search
the possible width and height options to find one that minimizes waste.

109

110

Now that we know the final layout of the atlas texture we can actually bake. Only the
resolve stage of the baking changes with variable res. We need some way of mapping
atlas voxels to world positions. With uniform volumes we break the voxels into 4x4x4
wavefronts. With variable res we break the individual blocks into 4x4x4 wavefronts
too. However, anything that’s not a multiple of 4 will have wasted lanes. This didn’t
end up being a significant performance hit.

111

Keeping hardware filtering is even more important now with the indirection texture,
it too would unroll to 8 samples + indirection logic for each + 8 atlas taps. So we treat
voxel centers as box corners, this means that we transition to the next block before
we’d start filtering outside our current block (and from sampling the random
neighboring block in the atlas texture).

Seams should only occur where sampling density is lower than lighting frequency and
where neighbors have different resolutions
- Under-sampling means error estimate failed or we ran out of memory
- Going forward I’d like to experiment with using real lighting information to drive the
resolution. Maybe replacing the average-nearest-depth pass with instead a lighting
variance over the voxel. This would also avoid wasting samples close to objects that
don’t actually have interesting lighting features.

112

Precompute solver for each pair of neighbor options. Then run across each axis
separately. Corners and edges have multiple constraints so we have to run multiple
iterations.
Can take minutes to compute on the CPU.
There are better options but we ran out of time

113

Before fixup

114

After fixup

115

Here’s a video of me sweeping that plane across the volume again, this time with the
GI results.

116

117

Uniform

118

Variable res with the same memory budget

119

We prioritized variable res over compression because it seemed higher risk and the
window to implement would close sooner than compression. We could do
compression really late right?

Total energy of SH is represented in the constant term, can be used to normalize
second band. Store only constant (band0) as float, and the second band as ldr.

120

Before

121

After. Whoops

122

What happened? Well, technically the interpolation changes with this compression.
Normally this wouldn’t be an issue, light maps tend to be higher res, in fact Frostbite
presented only a month or so after we’d scrapped it and moved on. For them this
approach worked great for lightmaps. So I believe the problem is two fold 1)
resolution and 2) high contrast lighting changes from inside and outside of the object
coupled with that we’d tuned the normal offset distance down to prevent some over-
darkening artifacts which I believe left us with a subtle amount of self-occlusion.
When the interpolation changed it exaggerated that self-occlusion. We’ll do some
more investigation into this, but at a month before gold we didn’t have time to open
back up the normal offset again.
Fortunately perf and memory were ok. Disk space was our main motivator to get
compression in.

123

So we simply min/max compressed the second band instead. We tested lots of levels
and found that banding artifacts were not that common. So, it was defaulted on and
the lighters were gracious enough to go back through and verify wads. They turned
off compression where there were banding artifacts. Savings (and bake times) were
worth it.

124

Runtime numbers are estimates (removing portions of the combined shader), there
are interaction effects between cubemaps and GI. The AO number isn’t the total AO
time, just the portion of the combined shader that applying it cost.

Bake times: 15mins is the more typical worst case. Lake of nine was the absolute
worst case variable res, it took 20 mins.

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

Offline blending only
- Where there’s overlap, lower priority GI volumes sample higher priority and replace
contents

143

