J

Santa

Monica
Studio

The Indirect Lighting Pipeline

of God of War

Josh Hobson

1%t Party studio, part of Sony Playstation
Responsible for the God of War series

What this talk is

Overview of the entire pipeline

Motivations and trade-offs

Context/situations that drove decisions

Technical overview

This talk will cover high-level end-to-end pipeline with a focus on concepts,
motivations, situations, and some technical depth
Where possible | will integrate dates and behind the scenes info

What this talk is NOT -

Theory or proofs

Code

Implementation Instructions

It’s not intended to be implementation instructions or proofs.
While we do bring some new ideas to the table, this is largely built on existing work

10

Pipeline Overview

Wads
Streamable unit, lifetime of objects, heap
Defined by reference hierarchy of Maya files
Refnodes
Level assembly workflow

Prefalbs

Maya file pointer or #include

First let’s go over some terminology.

All level editing is done in maya there is no level editor

Wad - Streamable unit

- scene heirarchy

- Composed of a series of overlaid maya files

- heap/object lifetime (this is important for reliability/repeatability since there’s
never a full teardown)

Wads contain “Refnodes” serve as general purpose links for

- Prefab workflow - object instances

- Level editing workflow layering (art/design, subdivision, vis, lights, entities)
- These can be recursive

11

Wad Loading

No discrete “levels” — streamed end-to-end

Loaded Loaded Loaded

You
are
Here

Hallmark of the series - no loading screens

- Playable end to end, no discrete “levels”

- Conveyor belt loading

- What we load and when is data driven by level design and art

- Design/art responsible for breakdown of wads

- S-hallways, traversal pacing to hide/anticipate loading ahead and unloading behind

Wads can be stacked
- Kratos’ house is a wad that’s contained in the surrounding forest wad

12

Background

Indirect lightmaps and probes (until mid 2015)
Disconnect between environments and characters
Lightmaps per instance, bookkeeping complicated by refnodes
Maintaining UV sets is laborious
Probe placement is laborious

Layout/geo changes iteration is slow

In mid-2015, at our first playable, we had an indirect lighting pipeline that used
lightmaps and loosely placed diffuse probes. It’s not an uncommon solution but it
comes with tradeoffs.

There’s a visual disparity between dynamic and static objects that’s reminiscent of old
cartoons where you can tell something is about to move because it’s cell-painted in
the animated layer instead of the matte painted background.

Additionally there’s a complex pairing of lightmaps to instances. This is further
complicated due to the generic and recursive nature of our refnodes. For example
you might have an object on a table, the table could be instanced several times in a
house and then the house might be instanced several times. The number of instances
can explode quickly. Keeping track of what is and isn’t up to date is complex.

UVs and probe placement is laborious. Changing mesh topology requires new UVs
and rebaking. Moving lights and objects can require re-placing probes. All of this can
be helped by tools but it’s still time consuming and painful.

13

Gl Volumes Motivation

Less manual overhead

Needs to work well with loading scheme

« Wads overlapping, loading, unloading

« Support lighting swaps
Needs consistency between characters and environment

Needs to be cheap to apply

We wanted to try something different. I'd used 3D textures for lighting in the previous
console generation and it was affordable.
Consistent look for static and dynamic objects.

We have a relatively small lighting team, we want them focused on lighting not data
management.

14

Gl Volumes

Static indirect lighting - low frequency

I+ meters per voxels can be enough

Loosely placed in Maya

Baked externally

J
Santa Monica Studio

Keeping it simple, Gl volumes are loosely placed boxes in Maya. Inside there’s a series

of 3D textures that contain lighting baked data.
Since we’re only storing indirect lighting resolution does not need to be high. Even

larger than meter per voxel can be enough.

15

M

Encoding

Four 3D textures

« 2 band spherical harmonics

« RGB bounce and sky visibility + monochrome bounce (1)

* Floatlé (more Iater)

Gilabert and Stefanov "Deferred Radiance Transfer Volumes — Global lllumination in Far Cry 37, GDC 2012

4 3D SH textures

RGB — bounce lighting from analytic light sources
Alpha — sky vis + monochrome bounce

16

Test scene

17

Encoding

Splitting sky and bounce
improves directionality (1)

m Gilabert and Stefanov “Deferred Radiance Transfer Volumes — Global lllumination in Far Cry 3, GDC 2012

Here’s an example of a few slices from the Gl volume.

Splitting sky and bounce helps SH encoding maintain directionality. With 2-band SH
opposing directions cancel each other out, leaving only the constant 0-band to
represent the data. Sky comes largely from above and bounce from below.

18

Encoding

Sky agnostic, expressed
separately, joined with
Gl at runtime (1)

m Gilabert and Stefanov “Deferred Radiance Transfer Volumes — Global lllumination in Far Cry 3, GDC 2012

You can think of the sky visibility term like a directional ao. The sky lighting is joined
at runtime, this means we can change the sky without rebaking. We express sky
lighting as a SH encoding of cubemap, generated during build.

We do change sky lighting/rotate at runtime, mostly during transitions.

19

Applying Gl
Volumes

Collect 4 closest Gl volumes on
screen

Each volume is assigned a priority by

the lighters. L

Sort by priority

Shader walks Gl volumes in order,
stops on first intersection

J
Santa Monica Studio

4 closest on screen
Sort by authored priority

We want this simple on the GPU. Shader walks in order, stops on first intersection

We'll talk a little about optimizations shorly.

20

Light Leaking

Large voxels -> self occlusion,
light leaking

Offset Gl sample locations by
the normal one voxel.

Compatible Hardware
filtering

J
Santa Monica Studio

Because the voxel density is low we get self occlusion and light leaking artifacts. This
is a similar effect as shadow acne.

We’re motivated to use hw filtering and avoid unrolling the 8 taps for manual
filtering. To solve this we simply offset the Gl sample away from the receiving surface
along the normal. This effectively inflates objects when sampling the Gl so they’re
sampling outside of themselves.

21

Normal Offset

22

Moving Objects

Moving objects with
normal offset get a shiny
look

Don't offset by normal on
dynamic objects, they
weren't in the bake

anyway

Sample offset on moving object reads like specular, looks shiny. We already had a bit
in our gbuffer for characters.

Don’t apply offset for characters (they didn’t participate in the bake anyway).

23

o
Backyard: MothersknifeCine

Video showing character Gl looking like spec when moving because of normal offset.
Real-time shader update shows problem go away on Kratos.

24

Corner Case

Normal offset doesnt always work

« Smooth normal better but requires extra
g-buffer

» Probably could be solved during baking
« Mostly organic environments.

Closed geometlry prevents light leaking in

J
Santa Monica Studio

There’s a literal corner case where close-by normals cause the normal offset to poke
through walls or the floor revealing un-occluded sky.

25

Light Leaking — Corner Case

Glowing from sampling below plane

> Hd . BEONOEN ORHOF 88 S0 G o< Oox Ko @
e
K - . e e -
S - e -
- m e -
S = -

26

Light Leaking — Corner Case

Simple data fix, cap with bake-only geo

* G . SENEOEN OTHOE 88 S 0d S < Oox hox @
T —————— e
i - -
P . -
G - » e
\ - - . o

J
Santa Monica Studio

Over occlusion more acceptable than under

27

Indirect Specular

Optional Screen Space Reflections
Cubemaps (gloss convolution in mip chain)
Box parallax correction (2)

Placed manually (including box collision)

Utilities to find the best-fit box collision from cubemap depth
buffers

Box is not a very good for organic environments

(2) Lagarde and Zanuttini, “Local Image-based Lighting With Parallax-corrected Cubemaps”, Siggraph 2012

Box is not great for organic environments
-we intend to investigate alternatives going forward

28

Glowing Reflections

The problem:
Cubemaps are sparse

Gl has local occlusion, cubemap
does not

Metals see only cubemaps

Nl N

Cubemaps are sparse compared to the Gl, which means spec lighting can leak into
occluded areas.

29

Cubemap Normadlization

30

Cubemap Normalization

Objectives

« Keep anatural balance between diffuse
and specular ambient lighting

« Use cubemaps for angular detail and Gl
for spatial detail.

A natural balance between diffuse and spec is more important than pixel correct
reflections.

Metals need to benefit from Gl bake
Ideally should leverage cubemap angular detail + Gl spatial detail.

31

Cubemap Normalization

Generate spherical harmonics from cubemap during build
Use spherical harmonics to remove low frequency detail

Replace with low frequency detail from Gl

32

Cubemap Normadilization

Cubemap Cubemap SH Result

Again, the composition of reflections may be incorrect but the intensity/balance
should be correct. This lets us get away with fewer cubemaps overall.

33

Cubemap
Capture
Location

Example scene. Highlighted block and overhang occlude the corner of the hallway.

34

Cubemap
Capture
Location

Example scene. Highlighted block and overhang occlude the corner of the hallway.

35

Cubemap sees the block, not the dark corner.

36

Original example.

37

Normalization on. Clearly contents of cubemap still incorrect (chrome ball) but the
intensities are more correct.

38

Hard to tell they’re behind the block
Spec diffuse balance is way off (upper left sphere)

39

Notice the chrome ball is brighter where reflections point out of the corner like you’d

expect.
Note: The corner on the left of the image isn’t water-tight, there’s an opening about

the size of a tennis ball letting light in.

40

The back wall looks wet (remember there’s an overhang above).

41

Normalization on.

42

43

To keep ourselves honest, you can see that when the objects get closer to the
cubemap capture location the effects of normalization lessen. These aren’t perfectly
on the capture location, and the change is small. This is what you would expect

because as the cubemap and the Gl agree on what they see, they essentially cancel
each other out.

44

(3)

Cubemap Normalization

Not an original concept (3)

Other studios were unhappy with results

Your mileage may vary
« Divide by 0 (or near)

« Channel separation causes discoloration

Lazarov, “Getting More Physical in Call of Duty: Black Ops II”, Siggraph 2013

This wasn’t really based on any particular paper however it ends up being pretty
much identical to the call of duty technique (lazarov, 2013). I've spoken with other

studios who’ve tried this (or similar) and some reported abandoning it because they
didn’t like the results.

45

“Fixing” Cubemap Normailization

Empirical tuning of denominator

» Reduce directionality of cubemap SH encoding

« Reduce saturation of cubemap SH encoding
ldedlly Gl and cubemap have the same information

Use reconstructed Gl at cubemap capture location for
denominator instead of cubemap?

To fix the issues we reduce directionality and saturation in cubemap SH
(denominator/div by 0).

If you have problems resulting from particles or transparents in your cubemap (that
don’t participate in the bake), you could probably use the Gl at the cubemap capture
location instead of SH from the cubemap as the denominator. We considered this but
never ended up needing to try it.

46

~ Cubemap Normalization Problems

Here’s an example of the discoloration that results from clamping and channel
separation.

47

- Cubemap Normallization Fixed

48

(4)

Ambient Occlusion

SSAO
AO maps

Character AO capsules similar to the Last of Us constant +
directional term (4)

For God of War we used the ragdoll capsules

« Almost ran over limit late in production

« Will be custom going forward

Iwanicki, “Lighting Technology ot “The Last of Us"", Siggraph 2013

We used the ragdoll capsules for our character AO. It worked well but AO ended up
having competing goals with ragdoll and we narrowly cleared the AO limit during
finaling. Ragdoll can inflate capsules for various reasons, and potentially add extra to

avoid falling through the world. We plan to make this a custom pipeline going
forward.

49

50

51

Add capsules

52

Add ssao

53

Add ao maps

54

(5)

Volumetlric Fog

Fog uses Bart Wronski’s technique. (5)

Gl volumes (0 band only) are sampled when constructing
the lighting texture.

Particles use fog lighting texture for cheaper lighting. Get
Gl for free. Bart’s idea.

Wronski, "Velumetric Fog: Unified Compute Shader-Based Solution to Atmospheric Scattering”, Siggraph 2014

Consistency is important so the fog also uses the Gl.

The fog uses only bandO (single texture fetch) of the Gl as an optimization we made
for the e3 2016 reveal of the game. We used to store a texture per channel, had to
reswizzle data to be a texture per band.

55

Optimization

Accelerated as part of our tiled lighting. Each 8x8 tile has a
mask of potentially intersecting Gl volumes, loaded as SGPR.

Runs in parallel with shadow rendering on async compute.

Shader applies both ambient diffuse and spec.

J
Santa Monica Studio

Gl and cubemaps are applied together in one pass.

56

Baking Background

Nova bakes (e3 2016)
« Tt party tool developed by Sony research ATG
« Carried over from lightmap and probe workflow

« Good staring point, known quantity

Nova was developed in the PS3 generation. It has shipped lots of great games and |
believe is still used.

58

Baking Background

Nova bakes
Complex material/mesh/scene conversion (20+ minutes,

compute shader to bake materials into vertex colors)
Bakes took a long time (30-60 minutes)

Differences in lighting models as well as light primitives
and parameters. Are results correct?

Translucency was problematic
Volumetric fog was not represented

..But it wasn’t great for iteration.

- It has its own data format that is principally redundant to ours and is built only for
Nova.

- The material conversion is complex for our materials. They were baked to vertex
colors as an optimization.

- Are the results correct? Does Nova model their lights the same as we do?
Spotlights were problematic for this reason. It was hard to verify that you've
converted your parameters correctly. Left us to verify visually (which isn’t
trustworthy).

Additionally

- Scattering/translucent materials were possible with Nova but another tricky
conversion.

- No volumetric fog.

59

Baking in-Engine Molivation
Leverage built data
» Lighters already build the levels to see results

» Custom building for light baking is wasteful

+ Fewer pipelines -> fewer points of failure

Real-time results

» Lighting workflow is iterative

+« We dlready support live-update changes from Maya

The Nova pipeline largely relied on automated testing to stay functioning. The (small)
lighting team was the only group really using the tool and it was easy for even
seemingly benign material changes to break the Nova pipeline.

60

Baking on PC or PS4

Why not use PC build?
PC doesn't use PS4 data
Would require lighters to move their workflow

PC only ran on automated tests

If it broke could we justify fixing late in dev?

PS4 issues?
Memory — debug heap is small

Ended up baking some levels on PS4 Pro

get asked why we bake on the PS4 instead of the PC.
PC does share some but not all data, so it would be an extra build
We were trying to get the lighters off their own support island. Our PC build isn’t
really used in any workflow so it, like Nova relies on automated testing to stay
functioning.
Generally, we would rather have everyone looking at results on PS4 (it’s what
we’re shipping after all)
Most importantly, we could have abandoned PC build if the maintenance became
more than we could afford. It wasn’t critical to ship the game.

Caldera (“The Lake of Nine”) ended up only baking on PS4Pro because it required
extra debug memory to bake.

61

(6)

Baking inEngine

“Fast Global llumination Baking via Ray-Bundles” (6)

» Early rays have fewer bounces, converges on multi-

bounce.

« Rather than looping over rays for every point, loop
over points for every ray.

Recommendation from Bart Wronski. Ideas borrowed
from Stephen Hill.

Tokuyoshi, Sekine, and Ogaki, “Fast Global lllumination Baking via Ray-Bundles”, Siggraph Asia 2011

Credit to Stephen Hill for adaptation for Gl volumes

62

Gl Baking — Building Surfels

Rasterize geo on X,Y.Z shrink-wrap to cloud of surfels.
* Null render target/depth, no culling

 Hijack debug shader to append each shaded point to the global list of
surfels using atomics

Every shader dlready has a debug permutation for various visualization
modes.

Full material evaluated stored into surfel

« Position, normal, albedo, emissive, translucency

The first step is to shrink-wrap all the geometry into a cloud of surfels, each
containing associated materials properties like normal, position, albedo, etc. To do
this we hijack the rasterizer, rendering with no render or depth targets and no back-
face culling. It simply samples triangles on a regular grid for us. We use atomics to
collect the surfels as we go into one list.

We have a lot of shaders so adding a Gl bake permutation would slow the build down
or create an ugly build-the-level-for-Gl-baking workflow. Fortunately, we already had
a debug shader permutation that we use for a variety of debug/instrumentation
views. This shader obviously doesn’t need to be performant so it was a convenient
place to add a static branch for emitting the surfels.

63

(

7
A\

)

74

i,

b

]
’I Iy <
R

Example: creating surfels on each axis

64

65

66

Again, but viewing normals.

This is the first of several times that I'm going to stress how important it is to build
good debugging in _while_ developing a large feature like this.

67

[EERTTIITH

68

!
;
;
O
o}
i

69

Light Injection

Original technique accumulated intermediate results in lightmaps
« This is done in the persistent set of surfels instead

« Lighting holds emissive when surfel is created

Direct light is evaluated for every surfel for every light (added to
emissive)

+ Uses the same lighting calculations/models as the main render

Accumulate lighting in surfels rather than lightmaps, credit again to Stephen Hill.

70

71

72

Ray Processing

N rays

* Project surfels into linked lists

« Sort the lists
« Walk list, transfer light between surfels

« Resolve to Gl volume

73

Build Lists

For every ray direction

» Project surfels into texture of linked
lists

Each texel stores the current list
head pointer

Atomic swap to append new
surfel as the new head

J
Santa Monica Studio

For each ray we build an orthographic projection around the area we care about. We
project each surfel to a texture where each texel is the head pointer of a linked list.
We use an atomic swap to replace the current head pointer with the new surfel.

74

Sort Lists

For every ray direction (cont’'d)
Sort and flatten

Can be highly divergent, unique
linked list per thread

Slowest part of the process, uses
bubble sort (the shame)

Not shipping code, needs to be
fast enough to get realtime results,
surprisingly not very slow

J
Santa Monica Studio

Next we sort the rays using a bubble sort. It was easy to implement and validate. It’s
surprisingly fast and never became the highest priority to optimize.

75

Unsorted

Again it’s extremely important to build good debug rendering. Here’s a view to help
validate the sort order of lists. It renders directly from the surfel cloud with links
between them. Improperly sorted links show up as red. Head surfels are green, tails
are blue, otherwise cyan.

76

~Sorted

How could you validate 100k linked lists over 1000’s of rays without it?

77

78

Light Transfer

For every ray direction (cont'd)
Walk sorted lists

Accumulate lighting contribution from
neighbor into surfel

Uses shared lighting code with the renderer

Accumulate sky the same way but additionally
the head surfel sees sky as light source

J
Santa Monica Studio

Now that the lists are sorted we need to exchange lighting. Simply walk the list and
treat neighbors as light sources. Back-facing surfels are black. Head surfel sees
unoccluded sky, sky is accumulated separately from lighting.

79

Resolve to Volume

Accumulate SH encoding immediately as
we progress

For every ray direction (cont’'d)
For every voxel center
Project into head texture
Walk list until between two surfels

Encode surfel contribution

J
Santa Monica Studio

Lastly, we take the voxel center, project it into the list and walk until it’s between two
surfels. Then we simply encode the lit surfel as SH. Then we progress to the next ray.

80

Resolve to Volume

Video showing the bake in Gl view. Less than 14 seconds (realtime) to bake 512 rays,
but the image stabilizes in far fewer rays. Artists can cancel, move objects/lights and
restart. You can see how this would allow them to quickly iterate.

81

Gl Baking Execution

State machine
Schedules GPU work by inserting passes into the renderer

Issues multiple state updates a frame (all necessary states
are buffered)

Targets 80ms a frame. Assumes GPU time scales linearly with
passes, adjusts accordingly.

80ms target means most of the frame is spent on baking but maintains high enough
framerate to be responsive.

82

Smilight

Maya Setup

Bake-only/no-bake objects

Bake-only/no-bake lights

Assign light categories

Gl volumes

- Priority e
+ Memory budget

* Meters per voxel

Objects like doors and breakables would be excluded from bake. Lights generally
should participate except accent lights in cinematics and potentially special fx. For the
e3 2016 demo there were several different suns with different angles and intensities
to sell the progression of time. Transitions were strategically hidden.

To avoid seams in the bakes, all suns were marked as do-not-bake and a single bake-
only sun was added from an average direction and intensity.

Gl volume resolution will be based on ideal meters per voxel up until it reaches the
memory budget, in which case it will reduce resolution to fit.

83

Bake Editor

PC front-end to baker
Capture cubemaps
Edit bake context
Remember wads to load
Num rays
Surfel density
Variable resolution

e e e e T ———

J
Santa Monica Studio

Entire categories of lights can be disabled during the bake for convenience. For
example lights marked as special fx could be disabled during the bake.

84

Level from beginning of the game
Original troll arenain e3 2016
Load additional wad

Quick bake

(realtime)

85

This video shows surfel debug mode, lighting, sky vis, albedo, normal.
Baking progress while in surfel debug mode.

(realtime)

86

|
'”‘MW

I

We support single step debugging through the bake. Here | single step while in linked

list debug mode.

87

Here’s an example of a more typical iterative workflow. Lights and objects being
moved around several times re-baking along the way. You can see the surfels update
after the sphere moves, there’s no precomputation of the scene required. Bakes are
easily cancelled and restarted. You can see that bright/small lighting causes fireflies
initially but it smooths out with more rays.

(realtime)

88

FoginBake

Reuse volumetric fog scattering
and lighting textures.

« Ortho proj instead of frustum.,
 Fit to baking area

Precompute cubemap with fog
effects outside baking area.

Lighting texture

J
Santa Monica Studio

As | mentioned before, having fog participate in the bake is one of the motivators for
moving away from Nova. Fog can be a significant light source in a scene. For this Bart
modified his technique to use an orthographic projection for the lighting and
scattering textures around the Gl volume. We use a cubemap for anything outside.

89

Light Transfer -Fog

For every ray direction (cont'd)

* Apply extinction and in-
scattering between surfels

Variable num taps, fixed step
size,

J
Santa Monica Studio

We modify the light transfer to sample the fog textures, taking multiple taps to
accumulate extinction and in-scattering.

90

Resolve -Fog

For every ray direction (cont'd)

TN\

« Apply extinction and in- ()

scattering between voxel
center and surfel

Variable num taps, fixed step
size.

J
Santa Monica Studio

For resolve we do the same thing but from voxel center to surfel

91

Scene, no fog

92

Add fog

93

No fog in bake

No FoginBake

94

Fog in bake

FoginBake

95

No fog in bake

96

With fog in bake
-Directionality on block at the left comes from the column of light, quite a drastic
change.

97

Translucency

Uses the same model as our materials

Transmission through object

Surfel has scattering color
Assume space between surfels is solid

Compute transmission from surfel
distance

Thin scattering uses same model, inserts
2 fragments

J
Santa Monica Studio

Thin (2-sided) we add 2 surfels at the same location. We use some bit hacking to
guarantee proper sort ordering for each ray.

98

Block of ice + spot light

99

Variable Resolution

100

Variable Resolution Motivation

Lighting is relatively constant in open spaces
Lighting varies most near surfaces
It would be nice to redistribute resolution near surfaces

Can't explode bake times, ideally bakes still scale with
sampling density

Indirect lighting changes are low frequency in open air, away from objects.

101

Encoding

Atlas discontiguous blocks in the Gl textures
Indirection texture to reassemble
« Indirection texture roughly 4m3 voxels (uniform) (7)

» Stores effective resolution (Ix1x1 — 8x8x8 in GoW) +
atlas location

(V3] J.M.P. van Waveren, “Software Virtual Textures”, 2012

Variable resolution uses essentially a 3D virtual texture. This is a technique I'd
developed in the previous generation. Indirection texture is usually 4 meters per
voxel, sometimes larger. Each indirection voxel can be backed by a different sized
block in the atlas texture.

102

Encoding

On the right you see an example section of an atlas texture, scrambled blocks of
different resolutions packed together. On the left you see a piece of the indirection
texture, containing location and size information for the blocks in the atlas texture.
The indirection texture’s job essentially is to unscramble the atlas.

103

Determining Resolution

After surfels are collected, before lighting

Small number of rays to calc average distance from indirection
voxels. (< 10 sec)

Read back on the cpu.

Start with indirection voxels as Ix1x].

Promote the voxel that reduces error the most. Repeat until memory
budget has been met.

Run over a small number of rays (256-512) at indirection resolution to determine the

average-nearest-distance to a surfel from the indirection voxel center in all directions.

Then we use a greedy algorithm starting with all voxels as 1x1x1 that promotes the
voxel that we estimate reduces error the most based on the average-nearest-
distance. We repeat this until we’ve spent our memory budget. This allows us to
know our final resolution _before_ we do any baking.

104

Estimating Error

How much does reducing step size — -
reduce error?

- . . 2x 2 x 2 Voxel Ste 3 x 3 x 3 Voxel Ste
Very tight schedule, little time to ? ?

experiment.

This was crude and derived
empirically.

Approximate error from avg. distance
and voxel step size.

J
Santa Monica Studio

So how do we estimate error? There wasn’t a lot of time to derive a perfect mapping
so we went with something empirical. The basic idea is we assume all surfaces have
high frequency detail. If you move an observer point that is close to the surface
perpendicularly the observed error would be large. Whereas an observer far away
moving that same distance would have a small error. So we use that parallax angle as
our error metric.

105

Here’s a debug visualization showing voxel resolution. This Gl volume is uniform.

106

A variable resolution Gl volume using the same memory budget.

107

Here’s a video to hopefully help explain the technique using that same debug view. Ill
sweep a plane across the volume so you can see the resolution change in open
spaces. Colder colors are lower res, warmer are higher res.

108

Altlas Packing

We know idedl resolution for every block
List of blocks for each resolution
Brute force fill 32x32x32 section with blocks.

Then pick best atlas texture size to minimize waste

« idealDim = Ynum 32x32x32 sections

Build indirection texture before lighting

Again, time was limited so there are probably better solutions for packing the atlas
texture. This is essentially a 3D pooled allocator for 32x32x32 sections. Each
32x32x32 section is filled as tightly as it can be with the blocks remaining. Then, we
simply find the best dimensions for the texture based on the number of sections. In
the ideal case the number of sections is a cube, this is never the case so we search
the possible width and height options to find one that minimizes waste.

109

Baking

Resolve - Break blocks in to 4x4x4
Once sample locations are known resolve like normal.

Small blocks are wasteful but bake times aren't
drastically slower.

« Could pack multiple small blocks into wavefronts

Now that we know the final layout of the atlas texture we can actually bake. Only the
resolve stage of the baking changes with variable res. We need some way of mapping
atlas voxels to world positions. With uniform volumes we break the voxels into 4x4x4
wavefronts. With variable res we break the individual blocks into 4x4x4 wavefronts
too. However, anything that’s not a multiple of 4 will have wasted lanes. This didn’t
end up being a significant performance hit.

111

Block Borders

Voxel centers are corners. Essentially a voxel border.
« Allows hardware filtering.

Seams? Only where under-sampled and neighbors
differ in resolution

Better error estimator should help

» |dedlly closer match in sampling res and signal
frequency.

Keeping hardware filtering is even more important now with the indirection texture,
it too would unroll to 8 samples + indirection logic for each + 8 atlas taps. So we treat
voxel centers as box corners, this means that we transition to the next block before
we’d start filtering outside our current block (and from sampling the random
neighboring block in the atlas texture).

Seams should only occur where sampling density is lower than lighting frequency and
where neighbors have different resolutions

- Under-sampling means error estimate failed or we ran out of memory

- Going forward I'd like to experiment with using real lighting information to drive the
resolution. Maybe replacing the average-nearest-depth pass with instead a lighting
variance over the voxel. This would also avoid wasting samples close to objects that
don’t actually have interesting lighting features.

112

(4)

Variable Resolution - Fixup

Use Eigen library linear solver to minimize error in border
voxels across neighbors (4)

Solve runs on pairs of neighbors on a single axis at a
time to allow precomputing.

Fixup must be run several times to fix corners and edges

Could solve whole volume at once but probably would
be very expensive (large matrix)

Iwanicki, “Lighting Technology ot “The Last of Us"", Siggraph 2013

Precompute solver for each pair of neighbor options. Then run across each axis
separately. Corners and edges have multiple constraints so we have to run multiple
iterations.

Can take minutes to compute on the CPU.

There are better options but we ran out of time

113

Before fixup

114

After fixup

115

Here’s a video of me sweeping that plane across the volume again, this time with the
Gl results.

116

Variable Resolution

Added late in development (rolled out Sept. 2017, gold Mar.
2018)

Optional and opt-in

+ Helped trim memory or improve visuals depending on the
level.

Small divergent branch to alter UVs used when applying Gl
volume

117

Uniform

118

Variable res with the same memory budget

119

Compression

Added Jan.-Feb. 2018 (gold in Mar.2018)
“Low risk” compared to variable res.

Keep bandO as floatlé

Store % as LDR (8)

Compute band 1by multiplying by band0 * v/3

(8) Hazel, “Converting SH Radiance to Irradiance”, 2017

We prioritized variable res over compression because it seemed higher risk and the
window to implement would close sooner than compression. We could do
compression really late right?

Total energy of SH is represented in the constant term, can be used to normalize
second band. Store only constant (band0) as float, and the second band as Idr.

120

pads Teggle zero tine
4i Frame step
bad: Sow wotion

Before

121

Press pad: Toggle zero tine
Tap pagdi Frame step
Tap & hold padi Slow setion

After. Whoops

122

(9)

Compression

Works for point sampling

Negligible error when high res.

Worked for Frostbite (9)

We're relying heavily on interpolation/up-sampling
Normal offset slightly less than 1 voxel diagonal

O'Donnell, “Precomputed Global lllumination in Frostbite”, GDC 2018

What happened? Well, technically the interpolation changes with this compression.
Normally this wouldn’t be an issue, light maps tend to be higher res, in fact Frostbite
presented only a month or so after we’'d scrapped it and moved on. For them this
approach worked great for lightmaps. So | believe the problem is two fold 1)
resolution and 2) high contrast lighting changes from inside and outside of the object
coupled with that we’d tuned the normal offset distance down to prevent some over-
darkening artifacts which | believe left us with a subtle amount of self-occlusion.
When the interpolation changed it exaggerated that self-occlusion. We'll do some
more investigation into this, but at a month before gold we didn’t have time to open
back up the normal offset again.

Fortunately perf and memory were ok. Disk space was our main motivator to get
compression in.

123

Compression—PlanB

Band 1- Range remap, store in LDR

One min/max for all color channels per Gl volume to
avoid quantization discoloration

Worked for most volumes.
Turned off for a few due to dynamic range.
Came in during finaling.

Defaulted on. Lighters went back through all levels to
verify. Sorry!

So we simply min/max compressed the second band instead. We tested lots of levels
and found that banding artifacts were not that common. So, it was defaulted on and
the lighters were gracious enough to go back through and verify wads. They turned
off compression where there were banding artifacts. Savings (and bake times) were
worth it.

124

Stats

Runtime
Gl + Cubemaps — 2 ms
- Final AO apply — 0.25ms
- Gl - 0.75ms
- Cubemaps — 0.75ms

- Unpack g-buffers + write results — 0.25ms

Bake times
Uniform — 30sec — 6 mins

Variable Res — 3 — 15 mins

Runtime numbers are estimates (removing portions of the combined shader), there
are interaction effects between cubemaps and GI. The AO number isn’t the total AO
time, just the portion of the combined shader that applying it cost.

Bake times: 15mins is the more typical worst case. Lake of nine was the absolute
worst case variable res, it took 20 mins.

125

Stats

Gl Volumes
300 total
80 variable res

250 compressed

Disc
2.9 GBfor Gl
30% total savings by compression

126

127

128

129

130

131

132

133

134

135

136

Thanks

Bart Wronski
Stephen Hill

Santa Monica Studio Rendering Team

Santa Monica Studio Lighting Team

137

References

Gilabert and Stefanov “Deferred Radiance Transfer Volu s — Global lllumination in Far
Zanuttinl, "Loc age-bas E aps”. Siggraph 2012
etting More Physical in Call of Duty: Black Ops II*, Siggraph 2013

“Lighting Technology of "The Last of Us"", Siggrap

Wronski, "Volumetric Fog: Unifiec Shader-Based ution t \ S teri . Siggraph 2014

kine, and Ogaki, "Fast Global |llumination Baking via Ray-Bundles”, Siggraph Asia :

ren. “Software Virtual Textures”,

Hazel. nverting SH Radiance to Irradianc

onnell, "Precomputed Global llluminatio

138

J
Santa Monica Studio

Our journey
Your story

We'e hiring for what'’s next!

We're expanding our family across disciplines and would love
to meet you. Please visit sms.playstation.com/careers for all
openings or drop us a line at sms@sony.com

@ santamonicastudio ’ @ SonySantaMonica n @ santamonicastudio

139

JOIN US AT GBC 2019

BQUNO VEL/\ZQUEZ /\nmanon Bve:lor
f W, thin .

BUILD YOUR GOB OF WAR GBC A

SCHEDULE.GDCONF.COM

]/\SON MCSONAL& E)euqn B.recwr

JTH HALL

MELISS/\ SHIM Senior Animator

ROB BAVIS - Lead Level Besigner & MIKE NIESERQUELL Lead Sound Designer
vel De n 5 T - i e of God of & 0

20PM

ERICA PINTO Lead Narrative Anisator SHAYNA MOON - Associate Producer
What They Don't Teach You in ok Lessons 2 Leads - ART DIRECTION BOOTCAMP 4 Shipping Gre Pra Lessons from Audi
SDAY, MARCH

AXEL ST/\NLEY -GROSSMAN - Lead Technical Character Artist NAYATO YOSHIBOME 5r. Staff Technical Combat Besigner

Pre R fo of War - DESIGN

! - ROOM ST HALL
RUPERT RENARD Semor Programmer JOSN NOBSON - Lead Rendermq Proqrunmer
ati T Indi Pipeline of God C

M - 5:00

SEAN FEELEY - Sr Stoff Technical Artit
an
ED BEARIEN & JEET SHROF - Asistant Predicer & Ganeplay irecter
KORAT NAGEN Senior Proqmmmev MKNIQ SNETN &]EET SNROFF - Lead Combat Besquer & Gameplay Birector

BORI ARAZI - Birector o; Phetegrapty.
C nnection:
M - 4:30PM

(@)
santa Monica studo GOC

140

Thank youl

josh_hobson@playstationsony.com

L. SIE Worldwide Studios

141

Bonus Slides

142

Blending Between Gl Volumes

Gl Volume bakes were sometimes manual

« Some setups involved manually altering the setup before baking

+ For that reason we could not automatically re-bake the whole game.

* Having all special setups saved as data going forward is a goal so we can automate,
No blending between volumes at run time.

Offline tool identifies overlaps

« Resamples lower priority volume from higher priority.

+ Bilinear smooths edges around borders.

Offline blending only
- Where there’s overlap, lower priority Gl volumes sample higher priority and replace
contents

143

