

Beating Wallhacks using Deep Learning with Limited Resources

Junsik Hwang Machine Learning Engineer @ Nexon Korea

GAME DEVELOPERS CONFERENCE

MARCH 18-22, 2019 | #GDC19

Topics

```
problem definition: wallhack in FPS
real problems & solutions
  vs. limited data
  vs. limited signal
  vs. limited trust
project output
takeaways
```


Prerequisites

- What is Deep Learning
- How convolution layers work
- PyTorch (optional)

Problem Definition

Sudden Attack

- Developed by NexonGT released in 2005
- 15M+ Users & 260K+ MAU in South Korea
- #3 FPS in South Korea (PUBG > OW > SA)

Wallhacks in FPS

- See through walls
- Ruins fair competition
- Less obvious than other hacks such as aim hacks
- Most commonly used

Existing Measures and Limitations

- Game software protection: first line of defence
 - > abusers **bypass** the security check eventually

- Server-side log analysis: outlier detection
 - > hard how to tell "seeing through walls" with position coordinates and kill/death ratio

Live Bot Detection

Seeing is Detecting

- The surest way to detect wallhacks is to see how they see.

screenshots*: game screen only

But Manual Inspection is Laborious

- Pros:
 - reliable / error-free

- Cons:
 - labour-intensive
 - inspect 1,000 images/hour
 - gamers play when we rest

Number of Users per hour

Deep Learning excels in Image Classification

- ImageNet classification task: classify 1,000 classes
- ResNet *surpassed human* baseline in 2015

ImageNet Task

1: horse cart
2: minibus
3: oxcart

4: stretcher 5: half track

1: birdhouse
2: sliding door
3: window screen
4: mailbox
5: pot

1: forklift
2: garbage truck
3: tow truck
4: trailer truck
5: go-kart

top 5 error rates (%)

Beating Wallhacks using Human Labour

- Instead of going through images one by one...

Beating Wallhacks using Deep Learning

- Let's automate the detection process with Deep Learning

Beating Wallhacks (Using Dep Learning Let's automate the Maritheyes Using Dep Learning

security module sends screenshots* to the server suspicious players

N times

security module sends screenshots* to the server

to the server

Beating Wallhacks (Using Dop Learning Let's automate the Maritheys Current Learning

vs. Limited Data

Deep Learning requires Big Data

- Instead of handcrafted features, DL learn features from data
- Thus generally **not suitable** for small dataset

from numerous images

function

= "CAT"

DL learns useful features

And Big data requires Huge Investment

- Data acquisition / Preprocessing (ex. Labelling) are **costly**
- We started with a mere 10,000 unlabelled images

MNIST

- 60,000 images
- fully labelled
- 28x28 (grayscale)

label = 5

Sudden Attack

label = ?

- 10,000 images
- totally unlabelled & mixed
- 960x540 (RGB)

Harder than I expected

- Low resolution images to save storage space
- Some images are very **confusing**

Problem: 2,000 clean data to start with

- Prepared 2,000 wallhack / normal images (1,000 each)
- But is this **big enough** to run Deep Learning?

wallhack

normal

Solution: Transfer Learning

- Borrow feature extractor from a successfully trained model

- Low level: lines & curves
- High level: shapes & texture

Solution: Transfer Learning

- Don't train the whole model: fine-tune NN with small datasets

1.2M images

▶ 1,000 label classification

2,000 images

Use pre-trained weights

- Pre-trained models are available with PyTorch, TensorFlow, Keras

- Pre-trained models are available with PyTorch, TensorFlow, Keras

- Pre-trained models are available with PyTorch, TensorFlow, Keras

- Pre-trained models are available with PyTorch, TensorFlow, Keras

- Pre-trained models are available with PyTorch, TensorFlow, Keras

Effect: Worked well!

- Pre-trained ResNet50: 80% test accuracy with 2,000 images

Input

Fine-tuned ResNet50

Output

Image Credit: Little Britain

Effect: OK with 1 GPU

- Takes less than 20 minutes with a *single* NVIDIA 1060 GPU

Input

Freeze the parameters of the feature extractor

```
# Class CustomResNet

if toFreeze:
    for param in self.feature_extractor.parameters():
        param.requires_grad=False

else:
    for param in self.feature_extractor.parameters():
        param.requires_grad=True
```

→ Train the classifier only

Transfer Learning Strategies from CS231n

- Guideline based on the size and nature of your dataset
- We re-trained the full network after getting 10,000+ images

However: terribly overfitted

- Didn't work with **unseen** maps and weapons
- Too many image features to learn

What we wanted

function(seeing thru wall) = "HACK"

What we actually got

function(cool golden weapon) = "HACK"

vs. Limited Signal

Problem:

Problem: Low Signal / Noise Ratio

- Too many irrelevant features spoil the training
- Model predicts based on kill marks or weapons
 NOT on wallhack figures

MARCH 18-22, 2019 | #GDC19

Compared to other classification tasks

MNIST

ImageNet

Solution: Divide & Conquer in Patches (1)

- 1) Remove Top & Bottom
 - SA maps are mostly flat
 - Players tend to place targets on the line of the crosshair

Solution: Divide & Conquer in Patches (2)

- 1) Remove Top & Bottom
- 2) Break into patches
 - found optimal # of patchesvia experiments
 - single 960x540 image
 - > multiple 197x197 patches

Effect: Less prone to Noise

Effect: the more data the merrier

- Generate 24+ patches from a single image

Downside: labelling all over again

- Re-labelled 5,000 wallhack / normal patches

Effect: worked superbly with ResNet50

- Test accuracy: **92**%

Effect: worked superbly with ResNet50

- Test accuracy: 92% + kind of object localisation effect

ResNet50

patches

Draw boxes on

hack patches

Downside: Confusing patches

- Figures on edges side effect of discretisation
- Even **human** inspectors find it difficult to tell

Same image region with different crop coordinates

Downside: still makes mistakes

- Patch-wise inference helps but does not tell why

vs. Limited Trust

Hey everyone, it WORKS!!!

- Test accuracy 92% is amazing enough!

Hey everyone, it WORKS?

- Test accuracy 92% is amazing enough?

Same goal, Different approaches

- ML team explores new algorithms
- If it works, being a blackbox model is not a big deal

Model

ML guy

Model

Image Credit: Little Britain

Same goal, Different approaches

- Community managers face gamers directly
- **Distrust** comes from not knowing why

Community manager

Gamer

Jan 9, 2019

Dec 19, 2018

Sep 15, 2018

Aug 8, 2018

1 post

6 posts

I got banned for no reason

Got banned for no reason.

Literally banned for no reason...

Banned For No Reason

More results from Manage

More results from www.____.com

Community manager

Image Credit: Little Britain

We're not there to show off

- But to make things easier and solve problems

DL to enhance human productivity

- Filter out normal images as much as possible

Problem: More Accurate Bounding Boxes

- Bounding boxes shorten per-image inspection time
- Can wallhack localisation be **more accurate?**

Solution: Class Activation Map (CAM)

- CAM tells where the model look at for its prediction

"Learning Deep Features for Discriminative Localization" by Zhou et al (2016)

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Image Detection without bounding boxes

- Weakly Supervised Learning: works only with image-level labels
- Bounding box coordinates are expensive to prepare

Image-level Label
Bounding Box
coordinates
(x, y, width, height)

Image-level label

Drawing Bounding Box with CAM

input patch

Drawing Bounding Box with CAM

input patch

CAM heat map

Drawing Bounding Box with CAM

input patch

CAM heat map

CAM bounding box

Effect: CAM result

Hack Prob: 96.2%

Hack Prob: 97.7%

Hack Prob: 100.0%

Hack Prob: 90.6%

Patch-wise Operation

- Input: patch
- Output: predicted label & bounding box

More Efficient Inference

Patch-wise Operation for Screenshot

- Crop the original screenshot into patches for the model
- Get a **Map** of probabilities and **CAMs**

Patch-wise Operation for Screenshot

- Enables more conservative classification
- Stitching CAMs together to annotate the screenshot

Problem: Unclear Patches

- Patch cropping might *miss* the wallhack figures

Problem: Unclear Patches

- Ambiguous wallhack figures due to cropping

Unclear

Clear

Problem: Unclear Patches

- Fine-grained patches captures wallhack regions, but cropping and stitching becomes **bulkier**

Problem: Inefficient inference

- Use **batch** dimension for multi-patch processing

Problem: Inefficient inference

- Can it process multiple screenshots in a single forward pass?

More Convenient Inference

- Use patches to train the model
- And inference screenshots directly without cropping

Screenshot as Input

- ResNet50 **CAN** take screenshots without resizing thanks to Convolutional Layers

*batch dim is omitted

Screenshot as Input

- GAP shrinks a feature map of any size into a single number

*batch dim is omitted

Problem: Can't process Screenshot

- AvgPool2d produces patch-wise information, but the linear layer returns **RuntimeError**

Idea: Fully Convolutional Network

- FCN's output is in proportion to the input size

"OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks" by Sermanet et al (2013)

1x1 conv manipulates channel dim

*batch dim is omitted

Idea: CAM with 1x1 conv

- Use 1x1 conv's weight to generate CAM

"Adversarial Complementary Learning for Weakly Supervised Learning" by Zhang et al (2018)

ACoL CAM - Feature Maps - 1x1 conv

Solution: Fully Convolutional CAM

- AvgPool2d outputs a map of wallhack probabilities

Solution: Fully Convolutional CAM

- Use 1x1 conv to generate CAM for screenshot

Effect: CAM without pre&post processing

Examples

Effect: debuggable dataset

- Use CAM to find **helpful** false positive patches

Effect: debuggable dataset

- Use CAM to find **helpful** false positive patches

Effect: debuggable dataset

- Use CAM to find **helpful** false positive patches

Effect: Active Learning with CAM

- Feed data that **complement** model's weakness

Passive Learning

for patch in unlabelled_patches:

Active Learning with CAM

Project Output

Wallhack Detector

Wallhack Detector in Ban Process

- Filter out normal images and annotate wallhack regions

Realtime Dashboard

Project Output

- Abusers get banned in 24 hours > 2 minutes (0.001%)
- Number of images to inspect: 5,000 > 50,000 (10x)

Project Output

- Shorten daily inspection: 4 hours > 1 hour (25%)
- Free up community managers' time for more valuable tasks

Takeaways

- 1. Leverage *Transfer Learning* when your dataset is small.
- 2. Handcraft features when the signal is too weak.
- 3. Use Class Activation Mapping to make NN interpretable
- 4. Go make your **own**!

Questions?

```
Email - junsik.whang@nexon.co.kr
Blog - https://jsideas.net
```

https://career.nexon.com/

References

- [1] Stanford CS231n Transfer Learning
- [2] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba. Learning Deep Features for Discriminative Localization https://arxiv.org/abs/1512.04150
- [3] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann Lecun. Overfeat: Integrated recognition, localization and detection using convolutional networks. http://arxiv.org/abs/1312.6229.
- [4] Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, Thomas Huang.

 Adversarial Complementary Learning for Weakly Supervised Object Localization

 https://arxiv.org/abs/1804.06962v1

Appendix - CAMs

	method	Pros	Cons
Original CAM	linear weight based	suitable for basic ResNetforward pass	
Grad-CAM	gradient based	 compatible with any architecture better results than CAM (sometimes) 	need gradient informationslower than CAM
CAM (ACoL)	1x1 conv weight based	more convenient than CAMforward pass	
LIME / RISE	occlusion based	works on any algorithms	- takes too long in our case

