
1 



2 



[00:00] [35 seconds] 
 
Welcome to my talk. 
My name is Rupert Renard. 
I’m an Australian game developer. 
I’ve been programming games for over 12 years now. 
I’ve worked on 12 shipped titles, and half a dozen cancelled titles. 
Some of the games I’ve worked on you may have heard about, such as: God of War, 
The Legend of Zelda, Deus Ex, Mass Effect 3, de Blob 2, and Scooby-Doo. 
I’ve worked in a variety of programming positions. 
I’m currently at Sony Santa Monica as a graphics and engine programmer, where we 
shipped God of War in April 2018, and it did pretty well. 
 

3 



[00:35] [55 seconds] 
 
Wind is starting to become a standard feature in games these days. 
Most times the wind is just a generic sine wave animating some bushes back and 
forth, we decided to go a little deeper. 
While building our wind system, over time we started to have a reasonable decent 
amount of customers wanting to dynamically change their state based on the wind 
around their location. 
Our particle system was one of the early adopters, particles getting pushed around 
the world. 
Hair, leaves and fur were grouped together in another system, able to bend and sway 
in localised clusters. 
Audio emitters changed the way they behaved based on the intensity of the wind. 
And our cloth system also experimented with being affected by the wind. 
The goal was to have a dynamic, living world, where nothing less than hard stone was 
susceptible from being affected by wind. 

4 



[01:30] [96 seconds] 
 
I've recorded some footage from the final game to demonstrate some of the wind 
effects we have, as well as demonstrate that the game can get pretty windy at times, 
and it's a useful effect to have in order to help set mood. 
Basically if it looks like it's moving in the wind, there's a really good chance it's being 
animated dynamically based on the wind simulation, otherwise it might be a baked 
animation. 
We also wanted the wind to be SUBTLE for most cases, and to be obvious in others. 
 

5 



[03:06] [34 seconds] 
*click* We prototyped the fluid simulation on the CPU, we based it off an old tech 
paper from GDC 2003 called Real-Time Fluid Dynamics for Games by Jos Stam. 
*click* The tech paper however took a few shortcuts. 
These shortcuts were beneficial at the time the paper was written, but created some 
very obvious quality issues. 
We felt like these quality issues weren’t acceptable anymore, especially since we 
have the performance available to avoid it. 
So now we have the ability to do a proper fluid simulation without these shortcuts, 
and achieve high quality. 
*click* But the paper itself was an amazing source of information as a starting point, 
and it still is today. 

6 



[03:40] [65 seconds] 
We have a 3 tiered system for most of our wind sampling systems. 
*click* Static wind is a global vector applied uniformly to everything in the scene. 
It’s capable of changing over time and also as the player moves around the world. 
We feed static wind sometimes with a scrolling noise texture. 
*click* Dynamic wind is the focus of this talk, it’s a 3d volume that contains the 
detailed fluid simulation that surrounds the player. 
It’s always aligned to world coordinates, and shifts as the player moves. 
*click* Counter wind is a simple mechanism used to fake wind application on things 
that are moving. 
It’s simply the negative velocity vector of the object that is moving. 
If an object is moving roughly at the same speed and direction as the static or 
dynamic wind, this will counter-act the wind (hence the name), and give the 
appearance that the object isn’t being affected by wind. 
This is ideal, since the object is roughly in sync with the static or dynamic wind itself. 

7 



[04:45] [16 seconds] 
So we combine these three tiers like so for an object that is sampling: 
The static wind vector is added. 
The dynamic wind volume is sampled with the object’s position. 
The object’s velocity is subtracted. 

8 



[05:01] [140 seconds] 
*click* Our 3D volume is 32x16x32 texels. 
*click* Which covers about 1 meter^3 per texel. 
We had a very, very strict time budget for simulation and other wind processing on 
the GPU. 
So our resolution is mostly tailored to fit this budget. 
We opted for a uniform 3D volume out of simplicity, instead of a complicated 
hierarchical volume. 
Our volume also needed to be large enough in world space to contain the player 
interactions such as throwing the axe. 
Since our game takes place mostly on a horizontal game plane, we opted for more 
resolution horizontally than vertically. 
But we still wanted enough vertical resolution to encompass trees that the player can 
walk past, or interact with via the axe throwing. 
Try throwing the axe directly up, the leaves will be affected by it! 
*click* We have 5 iterations of diffusion each frame. 
Diffusion can be tightly packed and highly performant, so we went with 5 iterations. 
There’s no real reason why we picked 5 specifically, we just felt we got a good 
quality/performance ratio with it. 
*click* We have several different types of motors, which are used to inject velocity in 
to the volume. 
Some motor types were specifically crafted for certain scenarios in the game. 

9 



*click* We have full forward and reverse advection. 
These really do compliment each other well, I highly recommend taking the time to 
have both, and avoid preferring one over the other. 
This is one of the shortcuts I mentioned earlier. 
*click* We also used to simulate pressure, which was eventually scrapped. 
Some of the FX artists didn’t like the way particles were moving, we deduced it to 
pressure. 
We turned pressure off for the whole studio, nobody complained. 
Simulating pressure was actually one of the more difficult simulations to implement, 
since it’s a finite quantity and cannot go negative. 
I was more than happy to remove it. 
But for the sake of this presentation, I will include Pressure as a demonstration that 
you can add extra attributes fairly easily. 

9 



[07:21] [45 seconds] 
*click* We have separate 3d volume textures for each attribute. 
I might just point out velocity is considered a 3 dimensional attribute, so we have 
separate textures for each axis. 
This actually proved to be incredibly beneficial for performance. 
You can see we have a very slim number of attributes. 
This was mostly enforced by our tight timing budget. 
But we also weren’t really willing to dive in to any of the more exotic fluid simulation 
attributes such as heat. 
*click* In order to properly execute the simulation, we needed to double buffer each 
of the textures. 
*click* Combining all the textures needed for simulation, we ended up with about 
384KB worth of storage. 

10 



[08:06] [60 seconds] 
We ended up swizzling the way we access the 3D textures. 
Textures have restrictions on their width and height, notably they must be a multiple 
of 4. 
However 3D textures are able to have finer control on the amount of slices (aka 
depth) they have. 
Originally we took the naiive approach and had world X and Y slices along the Z axis. 
But we preferred having our world X and Z axis be treated uniformly, and we wanted 
finer control over the Y axis. 
So this meant the texture restrictions lead our 3D volume to actually be world X and Z 
slices, along the world Y axis. 
You can see this in the diagram on the right, the texture is 2D slices along world Y, of 
world X and Z dimensions. 
The shader code needed to be adjusted in order to sample and write to the textures. 
I’ve provided some demonstration code for this. 

11 



[09:06] [42 seconds] 
*click* Diffusion is the step to spread the attributes with neighboring cells over time. 
Think of it as a blur. 
You can also think of it as a mechanism to bring a fluid simulation to an equilibrium. 
It’s used to transfer energy between neighboring cells, as they directly effect one 
another due to proximity. 
*click* Diffusion requires double buffering, as you’re diffusing one iteration at a time 
in to a separate buffer. 
Multiple diffusion steps can simply ping pong between the double buffers. 
*click* We found that by separating our velocity attribute in to 3 separate textures, 
we were able to achieve incredibly efficient performance with diffusion. 
 

12 



[09:48] [21 seconds] 
While the overall bandwidth is the same regardless if you separate the axis or not, we 
can achieve faster iterations with the separation. 
Without the separation, you would need to wait for the first diffusion iteration to 
completely finish before you can start the second. 
Instead, this now only occurs per axis. 

13 



[10:09] [51 seconds] 
Your shader ends up dealing with less bandwidth per thread, caused by less data per 
thread, which means fewer VGPR’s per thread, which means better occupancy 
potential. 
Having fewer VGPRs is also highly preferred for shaders that want to run 
asynchronously. *click* 
You can schedule the first diffusion iteration of the x axis *click*, queued behind it is 
the first iteration of the y axis *click*, behind that the z axis. 
Behind that *click*, the second iterations start. *click*. 
The second iteration of the x axis *click* only has to wait for the first iteration of the 
x axis to complete. 
We’re able to fully utilize the GPU, and minimize any stalling between iterations. 
You absorb the stalls between iterations, by doing work on the other axis. 
 

14 



[10:09] [51 seconds] 
Your shader ends up dealing with less bandwidth per thread, caused by less data per 
thread, which means fewer VGPR’s per thread, which means better occupancy 
potential. 
Having fewer VGPRs is also highly preferred for shaders that want to run 
asynchronously. *click* 
You can schedule the first diffusion iteration of the x axis *click*, queued behind it is 
the first iteration of the y axis *click*, behind that the z axis. 
Behind that *click*, the second iterations start. *click*. 
The second iteration of the x axis *click* only has to wait for the first iteration of the 
x axis to complete. 
We’re able to fully utilize the GPU, and minimize any stalling between iterations. 
You absorb the stalls between iterations, by doing work on the other axis. 
 

15 



[10:09] [51 seconds] 
Your shader ends up dealing with less bandwidth per thread, caused by less data per 
thread, which means fewer VGPR’s per thread, which means better occupancy 
potential. 
Having fewer VGPRs is also highly preferred for shaders that want to run 
asynchronously. *click* 
You can schedule the first diffusion iteration of the x axis *click*, queued behind it is 
the first iteration of the y axis *click*, behind that the z axis. 
Behind that *click*, the second iterations start. *click*. 
The second iteration of the x axis *click* only has to wait for the first iteration of the 
x axis to complete. 
We’re able to fully utilize the GPU, and minimize any stalling between iterations. 
You absorb the stalls between iterations, by doing work on the other axis. 
 

16 



[10:09] [51 seconds] 
Your shader ends up dealing with less bandwidth per thread, caused by less data per 
thread, which means fewer VGPR’s per thread, which means better occupancy 
potential. 
Having fewer VGPRs is also highly preferred for shaders that want to run 
asynchronously. *click* 
You can schedule the first diffusion iteration of the x axis *click*, queued behind it is 
the first iteration of the y axis *click*, behind that the z axis. 
Behind that *click*, the second iterations start. *click*. 
The second iteration of the x axis *click* only has to wait for the first iteration of the 
x axis to complete. 
We’re able to fully utilize the GPU, and minimize any stalling between iterations. 
You absorb the stalls between iterations, by doing work on the other axis. 
 

17 



[10:09] [51 seconds] 
Your shader ends up dealing with less bandwidth per thread, caused by less data per 
thread, which means fewer VGPR’s per thread, which means better occupancy 
potential. 
Having fewer VGPRs is also highly preferred for shaders that want to run 
asynchronously. *click* 
You can schedule the first diffusion iteration of the x axis *click*, queued behind it is 
the first iteration of the y axis *click*, behind that the z axis. 
Behind that *click*, the second iterations start. *click*. 
The second iteration of the x axis *click* only has to wait for the first iteration of the 
x axis to complete. 
We’re able to fully utilize the GPU, and minimize any stalling between iterations. 
You absorb the stalls between iterations, by doing work on the other axis. 
 

18 



[10:09] [51 seconds] 
Your shader ends up dealing with less bandwidth per thread, caused by less data per 
thread, which means fewer VGPR’s per thread, which means better occupancy 
potential. 
Having fewer VGPRs is also highly preferred for shaders that want to run 
asynchronously. *click* 
You can schedule the first diffusion iteration of the x axis *click*, queued behind it is 
the first iteration of the y axis *click*, behind that the z axis. 
Behind that *click*, the second iterations start. *click*. 
The second iteration of the x axis *click* only has to wait for the first iteration of the 
x axis to complete. 
We’re able to fully utilize the GPU, and minimize any stalling between iterations. 
You absorb the stalls between iterations, by doing work on the other axis. 
 

19 



[10:09] [51 seconds] 
Your shader ends up dealing with less bandwidth per thread, caused by less data per 
thread, which means fewer VGPR’s per thread, which means better occupancy 
potential. 
Having fewer VGPRs is also highly preferred for shaders that want to run 
asynchronously. *click* 
You can schedule the first diffusion iteration of the x axis *click*, queued behind it is 
the first iteration of the y axis *click*, behind that the z axis. 
Behind that *click*, the second iterations start. *click*. 
The second iteration of the x axis *click* only has to wait for the first iteration of the 
x axis to complete. 
We’re able to fully utilize the GPU, and minimize any stalling between iterations. 
You absorb the stalls between iterations, by doing work on the other axis. 
 

20 



[11:00] [71 seconds] 
*click* Motors are the main source of generating wind in our volume. 
*click* Various motor types were supplied to the designers, some were tailor made 
for certain scenarios. 
Most of the motors were applied as analytical shapes. 
*click* The directional motor simply generates wind in a certain direction at a 
specified strength. 
*click* Omni behaves radially from a central point, and can be outwards or inwards. 
*click* Vortex behaves sort of like a tornado, wind is generated around an axis. 
*click* A moving motor generates wind purely based on its movement. 
The direction of wind generated is a cone shape in the direction of movement, and 
the strength is scaled from the movement speed. 
*click* The cylinder was a very custom shape with multiple functions. 
The radius at both ends of the cylinder were customizable. 
The direction could be either unprojected, that is it’s parallel to the cylinder axis. 
Or the direction was projected, and would deviate from the cylinder axis based on 
the change of radius, sort of like a perspective projection matrix. 
*click* A pressure motor simply injected or withdrew directly from the pressure 
attribute, it could create nice explosion effects, but was unfortunately dropped with 
the whole pressure simulation. 
*click* We had some aliasing problems along the way, very similar to aliasing 
problems commonly found in rasterization. 
 

21 



[12:11] [40 seconds] 
Designers were creating very small motors which the large 1 meter^3 resolution of 
the wind volume couldn’t properly handle. 
We had a few options to help this scenario, but we ended up keeping the simple 
aliased version for performance and continuity reasons. 
One solution we proposed was to simply scale the intensity of the motor the further 
away it was from the texel center. 
But the preferred solution, which we will likely adopt in the future, is to estimate how 
much of each texel is contained within the motor and scale the intensity based on 
that. 
Here I’ve supplied some sample code of our wind motors. 
 

22 



[12:51] [70 seconds] 
Advection is the process of transferring energy based on velocity, in this case 
between texels. 
You “advect” all the attributes by the velocity attribute, including advecting velocity 
by itself. 
Using advection, velocity pushes the energy of the attributes around your simulation, 
and behaves like momentum. 
We can do similar performance tricks on advection like we did on diffusion, 
We’re able to run the advection through separation of axis, and keep register 
pressure low. 
Both forward and reverse are important to our simulation quality. 
But both forward and reverse advection require being able to read-write to multiple 
texels in one iteration, and this causes contention. 
Contention means multiple threads are trying to access the same resource at the 
same time. 
Solving this on a single threaded CPU is fairly trivial, solving this on a multithreaded 
GPU is difficult. 
In our case, we have potentially multiple threads trying to write to the same texel at 
the same time. 
How to resolve these writes is case specific, but in our case we simply need to sum 
the results. 

23 



[14:01] [21 seconds] 
Unfortunately the hardware doesn’t let us do atomic arithmetic on floating point 
values. 
So the first solution I came up with was to spin on a compare and exchange 
instruction. 
While not ideal, this did work, and the performance actually surprised me a bit, it 
wasn’t too bad. 
I would consider the performance to be shippable. 

24 



[14:22] [25 seconds] 
You can see in the example code, *click* the first attempt is guessing the current 
value of 0, *click* adding our value, and *click* attempting a compare and exchange 
to update the value in memory. 
If the compare and exchange fails, *click* we can use the old value it gave us as our 
new current value, *click* add again, *click* and compare and exchange again. 
But by borrowing some old-school technique, we can do better. 
 

25 



[14:47] [54 seconds] 
As I said in the previous slides, the hardware doesn’t allow atomic arithmetic on 
floating point values. 
Floating point. 
So why not try fixed-point? As suggested by our tech director Florian Strauss. 
*click* We used 16.16 fixed point format, which gave us plenty of precision in both 
the upper and lower end. 
*click* All of the shader ALU ops would still behave in floating point, *click* but when 
it came to storing and loading the values to memory we would do the conversion to 
and from fixed point. 
*click* While this wouldn’t decrease the contention itself, that’s out of our hands 
here, but we were able to reduce the overhead of trying to store these scatter-writes. 
*click* We saved approximately 40 microseconds right off the top, and noticed we 
got significant improvements in cases where we expect lots of contention, 
approximately 130 microseconds worth. 
*click* These time savings proved well worth the precision loss, which wasn’t even 
noticeable. 

26 



[15:41] [12 seconds] 
On store, *click* we would simply scale our floating point values by the precision we 
needed, *click* convert to integer, *click* then use the atomic integer add available 
to us. 
It worked great! 

27 



[15:53] [29 seconds] 
*click* The wind simulation is quite literally the first thing that is run on our GPU 
frame. 
*click* It takes about one tenth of a millisecond if it’s run on the main graphics pipe. 
*click* But it’s actually run asynchronously, at the same time as Pose Space 
Deformers, Custom Render Targets, and some Particle maintenance shaders. 
It’s run first because some of the results are required for our depth pass, which is the 
first main pass used to draw the scene. 

28 



[16:22] [107 seconds] 
Here you can see the timings of our wind simulation. 
Please note, all times were taken as if they were run on the main graphics pipe. 
That is to say, all compute work that normally runs on the Async pipes are being run 
on the Graphics pipe. 
In blue we have our diffusion steps, in red our motor application. 
In orange we setup the forward advection pass, which is just clearing the memory 
which will accumulate the forward advection results, in yellow we do the forward 
advection itself. 
In green we setup the reverse advection pass, but instead of clearing we duplicate 
the current advection results, so in cyan we perform the reverse advection. 
Finally in purple, we export the results for easy access on the GPU and CPU. 
You can see each pass has a very low amount of VGPR and SGPR pressure, ideal for 
running asynchronously. 
A reminder that the diffusion pass is 5 iterations, so the total is 43.2 microseconds, 
averages out to around 8.64 microseconds per iteration. 
You can also see the diffusion has very good scheduling, this is the separation of axis 
working for you. 
I think if we had a larger volume than our 32 x 16 x 32 size, we could better 
demonstrate some of the high performance this simulation can achieve. 
We simply don’t have enough data to process in order to properly max out the GPU. 
Hopefully the visual results of the game have proven we should consider a larger  

29 



timing budget next time around. 
In hindsight, I have realized I could’ve very easily absorbed both of the setup steps for 
advection by using a little bit more memory for an additional buffer. 
This could’ve also reduced some of the synchronization between the steps, perhaps 
saving about 10 microseconds. 

29 



[18:09] [34 seconds] 
 
Just for fun, I decided to double the resolution on each axis, giving us 8 times more 
resolution overall, and to time it to see how it pans out. 
As you can see from the results, it scales quite nicely, except for the export stage. 
The export stage is heavily bound by the Texture Addressor unit, I didn’t have much 
time to investigate this any further. 
But I suspect it’s because it’s effectively reading 3 lots of 32-bit textures, and writing 2 
lots of 64-bit textures. 
Bandwidth heavy, with very little ALU. 
Async that with some ALU heavy shader work! 

30 



[18:43] [30 seconds] 
 
Here I’ve shown the timing of our full frame. 
You can see the Wind section is tiny in comparison with the rest of the frame. 
Please note this is also with all Async compute turned off! 
I’ve done this so you can see how it all fits together. 
This is also why Post Effects shows up twice, we kick one lot of Post Effects to run on 
top of our Transparents pass. 
Speaking of Transparents, this scene had very little, which is why it’s a very small 
sliver on the timeline. 
 

31 



[19:13] [62 seconds] 
Being able to temporarily cut out the simulation, and override it with a global uniform 
vector was very useful. 
It lets us make sure that different systems responding to the wind were all visually 
relative to each other as much as possible. 
Authoring assets to portray movement at X meters per second isn’t easy. 
This helped us find assets that weren’t correctly setup, they may behave too strongly 
or weakly to the wind compared to the assets around them. 
We could also crank up the override speed and easily find assets that hadn’t been 
setup to be affected by wind at all yet. 
I wrote a small particle emission system, which would cause particles to emit directly 
in front of the camera and follow the wind. 
The goal was to mimic plucking some grass from the ground, and dropping it, 
watching how the wind affects it, like some sportsman do. 
However I don’t think anyone, ever, used it. 
Being able to lock the volume in its current position proved useful on several 
occasions. 

32 



[20:15] [70 seconds] 
 
*DO NOT PLAY* 
Being able to visualize the 3d volume as 2d slices was by far the most important 
debugging feature we had available. 
It lets me sanity check the simulation, as well as gives peace of mind for when artists 
or designers say they think something may be wrong with it. 
Designers also found the visualization useful too. 
*play* 
Here you can see the green fan in the scene, that’s a directional motor, it’s blowing 
wind in the direction it’s facing. 
We also here have a Jotunn, whose attacks are able to generate wind. 
Kratos’ axe swings also generate wind, as do his axe throws. 
As for the colours of the slices, mid-grey means zero wind, strong red means strong 
positive-x, and no red at all means strong negative-x. So red/green/blue indicate the 
x/y/z axis. 
*wait* 
We also have a second visualization mode, where we show the magnitude of the 
wind as red, the more red the larger the magnitude, and black means no wind. 

33 



[21:25] [100 seconds] 
 
We also supplied two methods for sampling the volume around the camera and 
display the results on the screen. 
This was mostly used by myself, and Sean Feeley from our Tech Art department, we 
used it to validate sampling and other obscure situations. 
One method would sample the wind volume around Kratos at a specified interval, 
and draw the vectors in world space. 
*wait* 
We can also draw the magnitude of the wind as text instead of a vector, although that 
text may be a bit hard to read in this presentation. 
*wait* 
We can also change how many samples we take, as well as the spacing between 
them. 
*wait* 
The second method draws vectors in the exact locations the volumes’ cells are in. 
This can get a little overwhelming visually, you do get used to it, but it’s not really 
meant to be used by anyone other than myself. 

34 



[23:05] [67 seconds] 
There were various customers to the wind simulation results. 
*click* Most read the simulation results on the GPU in the same frame. 
Things such as Hair, Leaves, Fur, and Particles were all able to update their simulation 
immediately after the wind. 
*click* However there were a few systems on the CPU which needed the wind 
simulation results too. 
We don’t want the wind customers to have to sample the attribute textures 
individually, that’s 3 separate samples. 
*click* So we ran a shader to combine the velocity attributes in to a unified 16bit per 
channel texture, and exported it as XYZ magnitude. 
But we really had two exported textures, one for GPU in its GPU preferred tiled and 
swizzled form, and one as a double buffered linear texture for CPU accesses. 
The Audio and Cloth simulations which ran on the CPU had to read from the previous 
frames wind results, but this was acceptable to us. 
There is another GDC talk which goes in to more detail on how the hair, leaves, and 
fur behaves, I recommend you check it out. 

35 



[24:12] [37 seconds] 
The Beaufort scale was of great help to us. 
It’s generally considered a scale of zero to twelve, where zero is no wind, and twelve 
is hurricane force. 
It gives very nice descriptions of what you would expect to see visually on land and 
sea at certain speeds of wind. 
It would range from descriptions like “leaves rustle” for the Beaufort scale of 2, which 
is about 2 meters per second. 
Or “small trees begin to sway” for Beaufort 5, which is around 9 meters per second. 
If you’re going to author assets for wind, I highly recommend you check out the 
Beaufort scale. 

36 



[24:49] [48 seconds] 
 
So in conclusion, I hope I’ve convinced you of several things. 
*click* Firstly, wind is a tool you can use to help bring your world alive, and add a 
little bit more interaction between the world and the player. 
*click* It doesn’t have to cost you much either, we’ve achieved a lot in a fraction of a 
millisecond. 
*click* You can get pretty decent quality results, and also keep the simulation very 
stable. 
Forward AND reverse advection compliment each other well, please use both! 
*click* Old school techniques like fixed point will never truly ever go away, they 
always have a little niche to fit nicely in to. 
*click* Finally, having good debugging tools will make the whole thing go a lot 
smoother, especially being able to visualize the slices. 
 

37 



[25:37] [15 seconds] 
 
We’ve come a long way in 15 years. 
What was once done on the CPU, can now be easily done on the GPU. 
We have distinct advantages available to us on the GPU, it’s another tool to have on 
your belt, so use it! 
 

38 



[25:52] [58 seconds] 
 
Please go see Sean Feeley’s talk on Interactive Wind and Vegetation. 
His talk starts where mine leaves off. 
If you liked my talk and I’ve managed to convince you to have wind in your own game, 
or maybe you’re still on the fence and still need convincing, you MUST attend this talk 
too. 
Sean’s talk will focus a lot on the customers of wind which I’ve only very lightly 
covered. 
Things such as foliage, hair, fur, trees, leaves, and how they interact with the wind. 
He’ll cover things we worked on such as leveraging compute workloads to update the 
state of dynamically animated objects, and logarithmically binned flow maps. 
And go into detail on what goes on in the vertex shader for wind objects, covering 
topics such dual height field grass interaction. 
He will also speak on some miscellaneous topics such as card clustering, and big o log 
n flood fill, and a bunch of other topics. 
 

39 



[26:50] [24 seconds] 
 
Thanks everyone for attending, I’d just like to take a few moments to thank others 
who helped out in various ways. 
Big thank you to Sean Feeley, he did more work than you can imagine in making wind 
in God of War a success. 
Florian Strauss, Dale Son, and the rest of the Rendering Team. 
Jack Mulholland, and Andreas Fredriksson. 
 

40 



41 



42 


