
Gotta Go Fast
Graphics Optimization For Tech Artists

Garrett Stevens

Technical Artist - Funomena

1

Who is This Guy

Garrett Stevens - Technical Artist, Prototyping, etc.

Currently at Funomena, recently shipped Luna: Moondust Garden for Magic Leap
Also part of a small 3 person dev team as Polymath
Previously at Apple doing things
Before that on the prototyping and demos team at Meta AR
Before that spent a few years at intel Prototyping for experimental hardware

Spent a lot of time trying to get things to run faster on things that are underpowered,
and overheated.
Not many people can say they’ve written a shader that made hardware actually
explode.

2

Don’t Panic

As a tech Artist, particularly as a new tech artist, optimization can sound pretty scary
There is a lot of information (and misinformation) out there at every level

- from outdated info
- hunches and superstition
- just plain crazy theories (Reddit, Forums)

3

Scope of this Talk

NOT about
• Low Level GPU optimization
• Lots of rendering math / counting every instruction
• A tutorial for one of 50 profilers

Is about
• An approachable intro to graphics optimization
• Making shaders and post effects run faster
• Becoming more aware of your various resources
• Basic Tips and Tricks

I’m not smart enough to teach anyone about deep shader optimization
- This is for entry level to intermediate Tech artists
- Who want an intro or a survey of optimization basic

4

Know Your Enemy

Understand the limitations of your target hardware

• PC
• Ballpark your min spec

• Will you have multiple quality settings?

• Test on Nvidia, AMD, and Intel GPUs

• Console + Mobile
• Specific hardware means specific debuggers

• Emulation will only get you so far

PC
- If you’re simultaneously releasing on multiple platforms, test on

them early. Maybe have a dedicated toaster machine or a few
crappy android tablets with various releases. You don’t have to build
to these all the time, but a sanity check might save your bacon.

- If you have dedicated time and people to port later, don’t leave
them a huge mess (relying heavily on unsupported features, weird
unreadable over-optimization)

- Are you targeting toasters or aircraft carriers?
- What color is the gpu in your dev machine? Are you testing on red

and blue ones too?

Console
- Mention Playstation, Xbox, Switch equivalents

Mobile
- Be constantly testing. Lots of things just behave differently or are
unsupported on Android.

5

CPU GPU

Jokingly exaggerate separation of the gpu vs cpu “ I write all my code on the gpu, I
ripped out my cpu years ago” etc

Reiterate our focus on GPU profiling. Suggest working closely with an engineer
familiar with cpu
Profiling.

6

CPU or GPU

Here we’re focusing on the GPU, though in production it might not be
so easy to talk about them separately.

• Try to partner with an engineer for CPU optimization

• Identify CPU waits in the GPU profiler

• Not an exact science

- Kind of a “you got your peanut butter in my chocolate” situation

7

Tools

Lots of profilers and tools I wont mention
A whole host of AMD and Intel tools
Various degrees of support and usefulness
We’re going to survey A range of tools from General -> Specific

8

RenderDoc https://renderdoc.org/

• Open Source! https://github.com/baldurk/renderdoc

• Supports all major graphics APIs (Including Vulkan)

• Unreal & Unity Integration

First up is Renderdoc
My favorite for desktop profiling
Unity will detect your Renderdoc install!
Unreal has a native plugin that can be enabled!

9

Renderdoc capture of an unreal profiling frame
- Inspecting steps of the deferred rendering pipeline
- We’ll return to this later

10

Nvidia Tools https://developer.nvidia.com/tools-overview

• Nsight Graphics
• Many Nsight series tools (Systems, Compute, VS/Eclipse integration)

• Tegra Debugger
• Specific debug bridge provided by platform partner

• nvProf
• https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/

• Command-line profiler, CUDA support

Most time spent with the tegra debugger
There are just as many AMD tools, as well as PIX, and various Console specific tooling
used with dev kits.

11

Unity Optimization

• Frame Debugger
• https://docs.unity3d.com/Manual/FrameDebugger.html

• GPU Profiler
• https://docs.unity3d.com/Manual/ProfilerGPU.html

• RenderDoc Integration

• #IFs and Pragmas in shaders

• New LWRP and SRP
• Still experimental, worth looking at

- Remember all in-engine profiling may be affected by editor overhead

12

Unity Frame
Debugger

Frame Debugger
- Has its uses nice quick overview of what’s happening
- Pretty sparse

13

Unity Profiler – Default View

This is what you see by default, a generalized view

14

Unity Profiler – GPU Usage

But you can get fairly specific. The GPU Usage tab is closed by default, open that thing
up!
- Here we see a massive chunk of our rendering is our bloom effect. Even with a black
frame, screen space effects cost the same.

15

Unreal Optimization

• Console Commands
• r.ProfileGPU, r.SetRes, r.ScreenPercentage, r.ABunchOfOtherStuff

• Shortcut: “Ctrl+Shift+,” to show the GPU profiler

• While running, “stat GPU” to show Live GPU Profiler

• Material Optimization + Feature branching

• Optimization View Modes

• RenderDoc Plugin

- Remember all in-engine profilers are affected by editor overhead

16

Material Stats

• Shows Instruction Count
• Vertex Instructions

• Texture Samples

- All engine profilers are affected by editor overhead
- We’ll get to platform stats in a minute

17

Compile Time Switches

• Feature Level Switch
• Quality Switch

• r.MaterialQualityLevel

• Switch Param
• Switch + Static Bool

- All engine profilers are affected by editor overhead

18

Platform Stats

• Need platform specific compiler
• Go grab the Android Mali Compiler

- You’ll need a platform specific shader copiler to get a preview here.
-

19

Code View

• Quick check of compiled code
• Troubleshooting
• Verifying Switches

- If this is useful to you, you probably want to be rooting around in the render
pipeline source code anyway

- There’s some great write-up’s of extending the deferred shader online that I’ll link
at the end

20

Optimization Viewmodes

Quad Complexity Transparent Overdraw

View modes

There are a large number of options here, including visualizing specific gbuffers, to
lots of other super useful visualization modes.
- Lighting
- Texel density

21

When Do I
Optimize Again?

Many different mindsets here, I’m just sharing my experiences

22

Pre-Pro Optimization

• Look for content and performance guidelines for the platform
• Find out what you’re in for

• Predicting Bottlenecks is Difficult
• Especially on new hardware, a new pipeline, or a new project

• Simple tests can influence art direction and design constraints
• Custom lighting or Look Dev

• Custom pipeline or tooling

• Might be wildly off despite best intentions

What can you do to start thinking about optimization in preproduction effectively?

Platform guidelines
- what other projects are doing
- In our case it was a Tegra. Pretty decent, but not magical for VR / AR.

Lighting + lookdev
- Maybe you find out you need to use stylized lighting, or no lighting
- Maybe shadows are off limits
- Maybe you find you have room to do something unique

Pipeline + tooling
- Seeing those needs early can help set your priorities for tools
- Atlasing, batching, baking, polycount, shader complexity

23

Production Optimization

• Pre-emptive optimization lengthens iteration time
• Everything takes longer

• Features/Effects will be vital for different projects at different times
• Communicating a core gameplay idea might be worth the cost

• That one system you spent 2 weeks optimizing might go in the trash

• Spotting Pitfalls and Practicing Good habits
• Knowing when to Refactor and when to wait

• Legibility and Comments > Micro Optimization

• Periodic auditing of art resources is a good call

• If work is done preemptively and cut later, you played yourself

Easier with experience – You’ll spot your own bad habits over time

Trying to plan too far ahead can be very counterproductive
Much of the work happens, well, during the project

24

Deadline Optimization

• The project needs are definitely clearer
• You know the size of the bag (90fps, must fit on Game & Watch)
• Your to-do list + priorities are obvious

• Collect all the low hanging fruit
• Texture size
• Particle Overdraw
• Lighting and Shadow Settings
• Neuter Post Effects (4x MSAA to 2x MSAA)
• Uncheck the MakeGameSlower boolean

• You know how much time is left
• Makes it easier to throw things in the bin
• You are hopefully “feature complete”

Go through Lighting and Shadow Settings
Double check everything you can
Audit everything you can

25

Uh-Oh

• When to raise a red flag
• your producer or lead has a higher level view by design

• If something needs to be bubbled up early, don't be afraid to do so

• it's better to have a feature die earlier than later

26

Process + Priorities

Need to add oculus flowchart for troubleshooting here, “when in doubt…” the black
box method

27

Process + Prioritizing

• Understand the Problem
• Identify problem areas using the tools
• Form a hypothesis and attempt to verify
• Repeat

• Understand the Fix
• Remove the feature and look at the delta

• The fix will never be faster than that

• Is it an easy fix, or a tough fix?
• Is it worth fixing?
• Is it okay to just cut the feature?
• Is it more or less important than your other heavy hitters?

28

Effects as UI

• Effects communicate core gameplay concepts
• Success vs Failure

• Valid vs Invalid (actions, ranges, locations)

• Inventory, counts, and amounts

• Cooldowns and timing

• Modifying these effects can change player perception
• This should be an ongoing conversation

• Can be dangerous late in production

• Artists, Animators, Designers, and Producers all bring insight to the table

29

Oculus Optimization Tutorial
https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-performance-tutorial/

GPU or
CPU

Bound?

Disable All Rendering.
Did Performance

improve?

No

Yes
GPU

Bound

Vertex
or Fill

Bound?

CPU
Bound Use CPU profiler

Set render scale to
0.01

Did performance
improve?

Yes

No
Vertex
Bound

Fill
Bound

Simplify Geo
Combine Geo

Reduce Draw Calls

Simplify Shaders

If this looks very familiar to you, good. It’s a great chart.
This graph is recreated from an oculus presentation – It describes a process

30

Utilization: Vertex or Pixel shader?

• Where are your biggest hits?
• Find out if any of them are dumb mistakes
• Look for patterns

• Fluctuations over the app lifetime
• Actors or particles spawn, different levels
• Are you looking at a particularly expensive effect?

• Can you shuffle work around to even the load?
• Moving instructions from pixel to vertex shader
• Computing things offline instead of runtime

• Baking textures instead of using procedurals
• Baking lighting, using vertex color instead of ID masks

Spoiler Alert: It’s almost always the pixel shader

31

Tips + Tricks

• Shader Branching, Loops, Expensive math
• Overdraw

• Know your blend modes and passes

• Drawcalls
• Instancing, batching

• Texture Samples
• Atlasing, ID Maps
• Channel Packing and Precision Crimes

• Utilization
• It’s probably the pixel shader

• Hardware Weirdness
• Tiled Rendering paths on mobile, Android shenanigans

32

Tips + Tricks

• Channel Packing
• Substance has a great interface for this

• Be aware of various compression profiles

GAME

- In certain compression schemes various channels are discarded or compressed
more harshly

- Sometimes green is given more range, use it for something like roughness
- Be careful with normal maps
- Sub channel packing is possible, works best with masks
- Trading unique samplers for dragging everyone along for the ride, usually worth it

33

Tips + Tricks

Build a “Benchmark” for your hardware
• Add increasingly more meshes over time

• Make a bunch of unique materials that wont get instanced

• Make a spaghetti procedural mesh

• Render 10 transparent full screen quads

• Add some giant particles for flavor

• Make sure to cast lots of dynamic shadows

• Dump FPS and any relevant data to a log file

Build a stress test scene that spits out metadata and framerate. Have it be
manipulated via key press or controller, if in headset. For bonus points log everything.
Do this early, and kill some assumptions and bad intuition with COLD - HARD - DATA.

34

Example Cheesepoof
Benchmark Tool

I made this silly little guy for looking at overdraw and general shader complexity
Useful at the beginning of a project to benchmark new hardware
- Super simple, just adds a 3D array of mesh components, can cycle through an array

of materials
- Logs total Number of tris shown, FPS, The current material
- Could use particles instead, could add post process quads

35

Heres that same render doc image from before using our test benchmarking tool

- We’ve drilled down into the lighting section, where we can find the gbuffers unreal
is using to light the scene.

- Some of These gbuffers are also exposed in engine through the viewmodes, but
not all, and not with this detail.

36

Example Problem

• What’s going on here?
• We’re using Unity

• We’re on an AR Device

• Our Terrain Mesh Is taking most of the frame

• It’s drawing twice
• Its not due to stereo rendering

• It’s not a multipass shader

• There’s no duplicate components

Heres a an example problem, with some clues. I’ll show one at a time and give you a
second to think about it.

We’re on an Ar Device, We know a major hit is the scanned terrain mesh. However,
this isn’t a CPU problem.
The Terrain Come in as chunks… This is a clue
Even though the Terrain is Opaque, it’s thowing up in the transparent Queue… This is
a clue.

37

Example Problem

• Frame captured from Unity Editor

This is the default view in renderdoc after capturing a frame from the unity editor

We can see a list of any frames we’ve captured, with timestamps.
The Timeline view is currently collapsed

38

Step 1: Turn on dark mode, it makes you smarter and more powerful

Here we’ve expanded the timeline view/
We can ignore half because we know we’re using multipass stereo, so half of the
frame is a duplicate.
We can also see That about half the frame is used to draw our opaque geo and half
for our transparent geo. But we know our terrain meshes should be drawing in the
transparent queue at all, so what’s the deal?

39

With the call to draw a piece of the transparent terrain selected, lets check out what
shaders its using in the Pipeline State tab.
Hmmm.
HMMMMMMM

40

AHA! Why is our terrain mesh rendering with the cursor material?
Well, our cursor is projected onto the terrain but… Oh. Oh no.

41

SO here’s the culprit.
That box is not a bounding box.
That’s the culling volume unity’s Projector Component uses to determine…
Which meshes to DUPLICATE, and render the projector material on.

It’s currently set to 2… meters.

Early in development the magic leap meshing api brought in meshes in tiny chunks
Later they updated to large chunks… We increased the culling size to make sure the
cursor always drew on enough chunks.

42

Example Problem

• What happened?
• It wasn’t what we suspected (intuition failed)

• We thought it was the for loop used in our terrain metaballs (it wasn’t)

• We used the Unity Projector Component for the game cursor
• We enlarged the culling volume after the terrain chunks became less granular

• This was a vital feature and while we had solutions, we had no time to implement
• http://blog.wolfire.com/2009/06/how-to-project-decals

• We decided to optimize as much as we could and eat the cost
• The effect was vital feedback for gameplay

Sometimes, the correct answer is to let it be.
In this case, we found it so late in production, we had to tighten knobs everywhere
else to make room for a vital feature.
We hit our performance targets by optimizing in other areas.

43

Talking Optimization With Your Team

• Gaining Perspective
• Put your work in context by

communicating across disciplines

• Beware of the Implications
• Changing things may have consequences

Especially later in production

44

Talking Optimization With Your Team

• Artists might see a “Black Box”
• May have partial knowledge or superstitions

• Good Intentions but poor implementations

• Many dubious ways to skin a cat

• Empowering them can have a big impact
• Junior artists might be all over the place

• Senior artists might be more

conservative than necessary

45

Talking Optimization With Your Team

• Engineers have different priorities
• They may not be as focused on the gameplay or aesthetic implications

• You may need to advocate for an expensive feature

• Trust but Verify
• Don’t take a passing statement from your engineer as gospel

• Follow up with them and do your own benchmarking

46

More Stuff

• LearnOpenGL.com
• “What the heck does any of this mean?!”

• Shader and C# tutorials
• Alan Zucconi

• Catlike Coding

• Unity is a great tool for learning about shaders
• Scriptable Render Pipeline is pretty exciting

• Unreal Deferred Pipeline Breakdown
• Matt Hoffman - UE4 Rendering

Further reading and resources

47

Questions, Comments, grievances

• garrettorious@gmail.com

• @creatosaurus

Your shaders after this talk

48

