
Scalable Real-time Global Illumination 
for Large Scenes

Anton Yudintsev

Gaijin Entertainment



Lighting in Enlisted

●Highly dynamic environments
● Full time of day

● Huge change in climates and seasons

● Weather conditions

● Dynamic scenes
● Millions of entities

● Large area (16..64 sq. km)

● Destructible environments

● Buildable fortifications

● Big scale



Time of Day and weather condition



Detail scale for 64 sq km locations



Challenges

●Time of day, weather

●Need for correct lighting that looks right

●Immersion of the player

●Light needs to be ‘right’ everywhere

●Large range in conditions across a single map, with 

interiors and exteriors



Challenges
●Huge scale + time of day + weather 

conditions

●Unable to pre-bake everything

●64sq km * (at least) 4 time of days * 4 weather 

conditions = at very least 8 Gb of compressed light data,

●with inability to change scene 

●Correct lighting affects gameplay

●Especially in indoors

●Making screen-space approach unacceptable



History and overview
●Lightmap/Static probes (or Volume maps) - pre-baked for single time/weather

●G-buffer probes, different approaches (usually pre-baked) - sparse/low-detail, 

static scenes, significant time of iteration

●Voxel Cone Tracing Global Illumination - thin walls pass light, usually - one 

bounce (otherwise expensive), limited number of light sources (otherwise too 

expensive).

●Virtual Point Lights/RSM/Imperfect shadows – performance cost increases with 

light count, one bounce

●Light Propagation Volumes Global Illumination - one bounce, limited number of 

light sources and light types

●Shared g-buffer “surfels” per probe – static scenes, heavy pre-compute



Initial approach

●We have tried a few existing techniques first:

●Voxel Cone Tracing Global Illumination,

●Light propagation volumes,

●Dynamically placed light probes,

●in combination with screen space techniques



Initial approach

●Voxel Cone Tracing was the closest thing, but suffered from 

few drawbacks:

●Single bounce

●Limited light count(performance cost)

●Thin walls bleed the light (or darkness)

●Tricks to voxelize scene correctly (see “Tomorrow children”/VXGI)

●Performance is acceptable in ¼ or 1/16 resolution, temporal SSAA (requires 

denoising)



Lighting in Enlisted: observation
●Light and weather changes slowly

●Even ‘cinematographically’ scaled is 2-4 real hours for full day-night cycle 

●"Short-time” GI effects are usually still minutes long

●Except for highly dynamic lights (moving or blinking)

●Camera movements speed is limited

●Character movement is limited to 20km/h

●Ground vehicle movements is <70km/h

●Dynamic scene changes are infrequent

●Destruction happen may be once per 10 seconds at least



Lighting in Enlisted: observation

●A lot of data is available in g-buffer

●The most important part of the world is where player look now (or recently)

●And in gbuffer for environment light probes

●While ‘general lighting information’ is also important, it doesn’t 

have to be very detailed.

●While we still keep “fair play”

●screen space only solutions improves details, but can’t capture that



Our solution – in one page
●Voxel representation of a scene (like Voxel Cone Tracing)

●Initially voxelized lit scene around the camera as good as 

reasonably can, be as fast as possible

●Collision geometry

●lower LoDs of entities

●Heightmap data

●Feedback voxelized lit scene from screen gbuffer!

●Visible irradiance volmap is (partially) recomputed each 

frame, with a honest brute-force raycasting (no light leaking)



●Multiple bounce with indirect shadowing!

●Average performance cost is only <1.6msec on Xbox One in 

medium quality, 0.7 msec on low quality or asynced!

Our solution – first results



Irradiance map

●We store irradiance in nested volume maps around the 

camera (3d-clipmap)

●Each cascade is ~64x32x64

●Cell size is 0.45m*3^i (or 0.9m*3^i on low-end devices, i – cascade no)

●We have chosen HL2 Ambient Cube basis

●Non-orthogonal basis

●But very GPU friendly to sample from

●Can be easily changed to other basis’



Irradiance map: Sponza



Basic scene parametrization

●We store scene in nested volume map around the camera 

(3d-clipmap)

●Each cascade is 128x64x128

●Cell size is 0.25m*3^i (or 0.5m*3^i on low-end devices, i-cascade no)

●We store either completely lit results, or lighting+albedo in two volume textures



Scene parametrization: Sponza



Initial scene fill

●When camera moves, we ‘fill-in’ new voxels ‘toroidal way’ 

(similar to texture WRAP)

●We fill this new voxels with Heightmap data, and either 

collision geometry (vertex colored) or low-level LODs of 

entities.

●We immediately light this new voxels with sun, indirect light 

irradiance and most important lights in the area



Scene feedback loop

●On a medium settings the scene is constantly updated with 

stochastically chosen 32k g-buffer pixels

●For each stochastically selected g-buffer pixel, we lit it, using 

it’s albedo, normal and position with both direct light and 

indirect irradiance map

●We update voxelized scene representation with this new lit 

color using moving average



Scene feedback loop
●This provides feedback loop, as we update scene voxels with 

relit g-buffer pixels them using current irradiance volume map;

and irradiance volume map is updated with current scene 

voxels

●It is not only gives multiple bounce, but also solves 

voxelization issues (walls thinner then 2 voxels and accuracy)

●Additionally, environmental probes (when they are rendering) 

provide more data which wasn’t captured by ‘main’ camera



Irradiance map initialization

●When camera moves, we fill-in new texels (probes)

●For finer cascades we copy data from coarser ones

●For “scene-intersecting” and coarsest cascade map, we trace 

64 rays to get better initial approximation

●We mark their temporal convergence weight with magic (“not-

really-computed”) value, so they will be relit as soon as they 

get visible



Irradiance map – computation loop

●We stochastically choose several hundred visible ‘probes’ 

(positions) in our irradiance volume map

●The probability of selection depends on visibility of the ‘probe’ 

and convergence factor of probe (how much it changed during 

last time)

●For selected ‘probes’ we raycast 1024-2048 rays (depending 

on settings) within our scene, accumulating results with 

moving average 



Sponza: result



Irradiance map - computation queues

●In order to converge fast, it is important to have different 

queues for different “probes” in irradiance map

●First-seen, never-computed to be computed asap, even with 

less quality. We use 256 rays, but queue of 4096 probes

●Non-intersecting scene probes not participating in light 

transfer, but we still need to compute them for dynamic 

objects, volumetrics, and particles. We use 1024 rays, and 

queue size of just 64-128 probes.



Initial lighting – chicken-and-egg problem
●When camera teleports, all cascades around it is invalid. So 

we can’t really light initial scene with irradiance (for second 

bounce) and we can’t calculate initial irradiance without initial 

scene.

●We do that in two passes.

●Voxelize scene, lit it only with direct light

●Calculate irradiance for sky light and second bounce, than re-

voxelize scene

●Rarely happen (cut-scenes)



Rendering with irradiance map

●Choose the best possible cascade

●Sample three out of six irradiance volume map textures 

based on sign of normal (see HL2 Ambient Cube).

●On border blend it with next cascade

●Same in deferred and forward passes (and volumetric 

lighting)



Rendering diffuse with irradiance map



Environment Specular/Reflections:
●GI scene can be darker than nearest environment probe. 

Without adjustment, this will lead to incorrect 

reflections/specular.

●The simple fix is proposed in “Volumetric Global Illumination 

at Treyarch”
float maxSpecular = diffuseGILum * maximumSpecValue;

float3 reflection = cubeMapSample *

adjustedMaxSpec / (maxSpecular + luminance(cubeMapSample) );

● good on rough surfaces



Environment Specular/Reflections:
●We can also make Voxel Cone Tracing for smoother 

surfaces.

●Although that is significantly slower than the simple approach 

above, we only need that at “smooth enough” pixels and 

where SSR failed.

●Voxel Cone Tracing for Specular is way faster than for Diffuse 

because just one cone is probably sufficient.

●“Highest” settings only.



Honest raytracing = no light leaking?

●Voxel Cone tracing can (and will) lead to light leaking on thin 

walls

●Even for specular light it can be noticeable, so we still adjust 

maximum brightness.

●Diffuse GI doesn’t suffer from light leaking, because we 

honestly trace thousands of rays, not simplified “cones”

●Almost enough…



Interiors and outdoors: trilinear filtering

●Regular grids suffer from light/dark 

bleeding between indoor and out door due 

to trilinear filtering of irradiance map.

●Normal filtering* can hide it but, some 

issues still appear (especially on corners 

of thin walls)

* see “Multi-Scale Global Illumination in Quantum Break”, Siggraph 2015



Light leaking example



Interiors and outdoors

●We add convex for indoor volumes, and this 

allow two possible enhancements:

●filtering where we sample in one set of irradiance maps

●two sets of irradiance volume maps (indoor and outdoor)

●We have chosen the first method, due to it’s 

simplicity, although filtering sample locations 

resulted in additional performance cost when 

rendering



Leaking:



No leaking with convex offset filtering:



Interiors: over-darkening

●Inflation of opaque geometry with voxelized scene, can result 

in some places to be darker (small windows can collapse).



Interiors: over-darkening

●So we add “holes/windows” volumes (which won’t be filled 

with voxels ever)



Interiors: over-darkening



Interiors: with “windows” convexes



Other tricks and enhancements

●Cluster ray directions (to reduce branch divergence in 

different compute threads)

●Use current frame occlusion to not lit completely invisible 

probes/texels of irradiance maps

●Store ‘transparency’ for “a jour” geometry – fences, foliage.

●As we keep data premultiplied by transparency, this 

additionally allows us to create volumetric lights



Using HW RT caps to improve quality

●Raycasting voxel grid suffers from inaccuracies, in both 

precision of hit location, and quality of sampling data. Using 

modern HW RT can easily enhance the quality and still keep 

performance.

●Trace available (collision or LOD) data to get correct hit 

position.

●We calculate incoming ray light using actual hit normal and 

position, and so store only albedo in scene representation.





Global Illumination: conclusion

●Consistent indirect lighting with multiple light bounces

●Adjustable quality

●From low-end PC to ultra-high-end HW support

●Yet not affecting gameplay

●Scalable detail size, as well ray-tracing quality.

●Dynamic (in a way)

●Blow up a wall, destroy a building and light needs to flood in. Build a 

fortification – and it produce reflex and indirect shadows. Rapid iteration.



Pros:

●Maximum location size – Unlimited

●Number of light bounces – Unlimited

●Number of light sources – Almost unlimited

●Types of light sources –– all that engine supports (plus some 

volumetric lights).

●No pre-bake, very small additional asset production overhead

●Day-Time changes, destruction and construction support



Limitations and requirement:

●Fast moving objects are not participated in light transfer (just 

receive light)

●Only (semi-)static lights – light can only change slowly.

●Smallest possible captured detail is limited with irradiance 

map resolution

●Deferred pipeline (at least lighting and ‘dynamic’ layers)

●Some Lower LOD/Collision data should be available on GPU



Memory footprint

Irradiance map
(3 cascades)

13.5mb

Scene representation 16.5m
(33mb with improved quality)

Temporal buffers <1mb

Total ~31Mb



Performance breakdown

Movement amortized:
0.1-1msec, but each 8-16 frame

~0.1msec

Scene feedback: ~0.02msec

Irradiance map update
• can be async computed
• or even disabled

1.2msec

Lighting additional cost
Full HD

0.3msec

Total async or 1-bounce:
Sync N-bounce:
(measured on Xbox One)

0.7msec
~1.6msec



Further improvements

●It is possible to perform per-pixel ray-tracing (especially with 

HW RT) with some temporal denoising. In our experience 

6spp is enough to achieve good quality. It is still rather slow 

(additional ~12msec on 1440p on 2080), but can be rendered 

at half res. No light-leaking, no filtering needed, way more 

detailed light.

●Or can be combined with screen space techniques.



Questions?


