
Porting Your VR Game to Oculus Quest
Lessons Learned from Porting Creed: Rise to Glory 
 
ALEX SILKIN  
Co-Founder / Chief Technology Officer

Key Takeaways
1. Overcoming common pitfalls

2. Recommended workflows

3. Examples of “performant” tricks

About The Game

Understanding the Target Hardware
Capabilities & Limitations

Tiled Based Renderer

Fragment
Shader

Cache

Slow System Memory

Rough Target

● 300K Verts (shipped with ~200K)
● 100 - 150 Draw Calls (shipped with ~70)
● 13.8 ms / 72fps

Tools and Debug Environment

● OVR Metrics Tool
● RenderDoc
● SnapDragon Profiler
● Android Studio
● Set UE4 to -OpenGL -FeatureLevelES31

First Time Boot Up
Crash!!!!!????

Out of Memory?

● 2.75GB of RAM for Quest applications
● Console command “memreport -full”
● Textures were blowing us way past the budget

• Temporarily globally clamp textures to a small size
• Use ASTC compression

Break-up those messy reference chains!

● Console command “obj refs name=[object_name]”
● UMG / UI is usual culprit

• UI textures do not stream!
● Unnecessary hard references to assets
● Avoid blueprint dependencies

• Casting to a BP class is hard reference - use an interface or move
referenced function/variable to C++

Optimization Time
Let the fun begin!

Let’s Find the Bottleneck
● Console command “Stat unit”
● CPU?

• Pause the game using “pause” or keybinding
● Fill rate?

• Decrease resolution with “r.screenpercentage .1”
● Shaders?

• Disable material rendering with “show materials”
● Draw Calls?

• Hide objects using “show X” like “show staticmeshes” and show “skeltalmeshes”

Drilling Into the Stats

● Stat RHI
● Stat scenerendering
● Stat system overhead!

• Stat system affects perf,
distorts the numbers it reports
• CPU overhead can push
game thread beyond 13ms
• Stat rendering increases
draw calls

Custom Stats and Budgeting
● Lightweight slate widget

• Rendered to a rendertexture and composed on screen
using UDebugDrawService

● Average and max values
● INI defines budget for text color coding
● Existing cached engine values

• GOcclusionQueryCount
• GNumDrawCallsRHI
• GNumPrimitivesDrawnRHI

● Modified engine for additional values
• World Tick Time

CPU

● Session Fronted - “stat
startfile / stat stopfile”

● Unreal Insights in
4.23+

CPU
● Moving components

• Detach hidden/disabled scene components
• Avoid using built-in overlaps

● Ticking
• Disable ticking when not needed
• Tick interval

● Nativize as much BP logic as possible
● Actor pooling
● UMG Invalidation Box

Draw Calls

● Use Multi View
● Merge Geometry

• Manually or using Unreal’s “Merge Actors”
• Minimize material count

● Instance as much as you can
● Not all draw calls are equal!

• Complexity of mesh affects draw call cost

Merging Level Geo

● Stadium divided in 5-7 pieces

● ~3 Shared texture atlases

● D2 Textures - Diffuse and
Lightmap

GPU

● Disable Early Z Pass
● Don’t use Alpha Test
● Get rid of specular
● Disable Post Processing
● Stay away from Dynamic Lights

• Bake as much as you can

GPU

● Fake blooms and lights
• Use transparent
sprites as bloom

• Project circular
patterns in materials to
stimulate spot lights

GPU

● Use texture atlases
● Minimize texture sampling (2-3 max for environment)
● ASTC Compression
● Dependent vs. Independent Texture Reads
● Texture dimensions power of 2 (mipmap + streaming)

GPU

● Use MSAA
• Cheap(er) on Tiles Based Renderers

● Avoiding shader hitches
• r.SaveShaderCache
• PSO Caching on 4.21+

● Fixed Foveated Rendering
● Avoid long thin triangles

Memory

● Shared Bandwidth
• Be careful with memory operations, they affect CPU and GPU

● Memory stomp tracking

adb shell setprop libc.debug.malloc 1
adb shell stop
adb shell start
adb shell setprop wrap.com.survios.Creed '"LIBC_DEBUG_MALLOC_OPTIONS=fill"'
adb shell "logcat | grep malloc"

Memory
E malloc_debug: +++ ALLOCATION 0x7ef7ba6fc0 SIZE 16 HAS A CORRUPTED
REAR GUARD
E malloc_debug: allocation[16] = 0x04 (expected 0xbb)
E malloc_debug: Backtrace at time of failure:
E malloc_debug: #00 pc 00000000000441b4 data/app/com.survios.Creed-1/
lib/arm64/libOVRPlugin.so (OVR::Util::CompositorVRAPI::State::Reset()+576)

General Tips

● Load up time
• Load into an empty room first
• Break reference chains

● Audio
• AndroidAudio (Default) does not spatialize audio
• Use AudioMixerAndroid or other third party plugins

Questions?

