Machine Learning for
Optimal Matchmaking

Tom Minka, Ryan Cleven, Josh Menke
GDC 2020
Online Game Technology Summit

Microso ft Researc h

What is matchmaking?

Matchmaker

Team 1 Team 2

Name Bob
Skill 1677

Ping 35
Party Size 2
Streak 1

What is Machine Learning?

/i - 4 ¥
uumouoﬂgéb%%b% .S €
\0011 1110

Q

“01111001110001001 101 QRGN

o
10101001011 L00MMMOP

Machine Learning and Matchmaking

)'9‘ Matchmaking algorithms are traditionally tuned by hand

fil

Machine learning lets us tune them automatically from data

State of the Art Today

m =

HOPE FOR THE BEST WAIT SETTLE FOR SOMETHING
POSSIBLE MATCH WORSE

State of the Art Today: Skill

MATCHMAKER LOOKS FOR WAITS SETTLES FOR IMBALANCE
SAME-SKILLED PLAYERS

% KING OF THE HILL Less than 2 min ﬁ KING OF THE HILL Less than 2 min

<®, COMPARING SKILL RATINGS 259 (W

> EVALUATING MATCH QUALITY @fg

Real-time matchmaking

Time

v

Player 1 Player 2 Player 3 Player 4

.

Player 1 Player 2
Player 3 Player 4

If matchmakers knew what
was coming, they could
create optimal matches
using combinatorial
optimization.

So let's use machine
learning to predict what's
coming and be more
optimal.

Zuun

W

Y

:"1 b a __{;,’,P — ’* l A
s Qonventl al Matchmaker

—

f

Need min and max of 8 players: as 2 teams of 4

Allowed Latency: grows 50ms to 200ms

Allowed Skill gap: grows 1 to 10

Build Versions must match

Playlists must match

Example Configuration

"Rules": [
"MatchmakingQueue": { {
"Name": "Standard4v4TeamsQueue", "Type": "TeamDifferenceRule",
"MinMatchSize": 8, "Attribute": {
"MaxMatchSize": 8, "Path": "Skill",
"ServerAllocationEnabled": false, "Source": "User"
"Teams": [},
{ ["Difference”. 0.2,

"Name": "Red", "DefaultAttributeValue": 0.5,
"MinTeamSize": 4,
"MaxTeamSize": 4

7

{
"Name": "Blue",
"MinTeamSize": 4,
"MaxTeamSize": 4

}

’I|\

Matchmaker Receives Requests

Time

Player 1 Player 2 Player 3 Player 4

]

o
==

Creation time
Player id
Skill rating (0-40)
Latency table (ping to each datacentre)
(East US: 40)(West Europe: 100)(Brazil: 200)
Can be summarized as Region = East US
Playlist id
Build version

Name
Skaill
Region
Creation
Build
Playlist

Checking Each Rule

Bob

27

UsS
16:27:32
15283
Slayer

—
—
—
—

Skill gap < 107

Name
Skill
Region
Creation
Build
Playlist

Alice

32

EU
16:26:23
15283
Slayer

Name
Skaill
Region
Creation
Build
Playlist

When all Rules pass

Bob

27

UsS
16:27:32
15283
Slayer

&

Skill gap < 107

Name
Skill
Region
Creation
Build
Playlist

Alice

32

EU
16:26:23
15283
Slayer

Same thresholds across regions

s :,.. \\ '
. >

- p-"’ .\"
4 “ 4 .

/ e/ - b

5

—
h —
e

g
s m&::... n%.- - .

o

S
65 £ TR

) . . : . " . :‘,.! +' £ 2 ”~ ;”‘ .
—‘-\ a ﬂ c\ — | A ":' ’.‘h“”{‘:. { ..’. "v;..‘_‘. ,'3""; o i »'-"r" ’
. Lf-\’.:\ ' . ' A 4 (o ¥ I “w ‘: A

ekl
“a o TR
- .—‘. ‘ e Y - -

(@)
—

Predictability

How often the better team wins
Primary measure of fairness

50% would be perfect fairness

Players per second

0.6

0.5+

0.4+

0.3

0.2

0.7+

ArrivalRate us vs Time of day

Time of day

Wait Time [s]

20+

WaitTime vs Window index

Window index

Fredictabilig [

921

751

714

Predictability vs Time of day

Time of day

Excess Fing [ms|

Excess Latency vs Time of day

12 1

Time of day

Fredictabiliny

B0%

5%

56%

54%

52%

Predictability vs Average wait time for threshold on skill gap

1234 263
HLorerage wait time (seconds)

Conventional Takeaway

Result

Long wait times
Realtime Incoming Request Rate or

Realtime Skill distribution: Anyone good around? Matches we know are Bad

Realtime region distribution Is EU playing now? (Large skill gaps)

More Optimal Approach

Utility Function
Put a number on optimal

Real-time statistics
(arrival rate and skill distribution)

Machine learning

Optimizer

Defining Optimal

This is the ideal male body. You may not . . .
like it, but this is what peak performance DESIQ nerS pUt Welg htS On.
looks like

facebook.com/DfficialHaloMemes

= Walt time

= Skill gap

= Equal win rates (by skill)
= Latency

Original image credit: Pixelflare
~Regret

o TTIN

N~
(V|

igh-level Comparison

Tuning Manual Automatic

Tuning rate Monthly (typical) By minute
Granularity of tuning Worldwide By region and skill
Predictions No By region and skill
Monitoring, alerting No Yes

e Gears of War 5 launched with TrueMatch
 Halo 5 switched over to TrueMatch
* Potential to make it a standard service

Unitied objective function

AS an tguation

Always 1

Utility = wywait + wypredictability + wilatency + wywinrate

How many seconds would you wait for Tms bette

Each title (or even each player) can weigh metrics differently

Can evaluate any change to matchmaking

Can be reverse-engineered from existing threshold values

—
o

Count requests by type
Choose the best rules
Measure results

Update the model

TrueMatch components

Requests Population model

Population Metric
tracker predictor

Expected utility

Optimizer

o
o

Population tracker

St Fream Of e q ue St S ArrivalRate vs Window index for FeedbackTest Feedback

-> population model o
Assumes slowly changing rate o A | JJ\A h | ﬁ
o VL
Simple: circular buffer W 'f\‘ ' Nj\l \ /w\lw
Compact: e.g. histogram m 4

window index

Stores request rates

Given a request type, returns the rate of that type

(0.3 < Skill < 0.4 and Region=Brazil) => 0.01 requests per second

LN
o

Metric Predictor

Average wait time
Average latency
Average predictability

Population model .
Metric

predictor

Rules

Actual metrics

Has free parameters tuned from feedback

After rules are chosen, actual metrics are measured for
15 minutes and fed back to predictor

Has a formula to predict each metric.

Wait time, Latency, Predictability, etc.

Formulas have learned parameters that adapt over time

N~
(99}

matchable(t) = requests that can match with t

1
2(rate (matchable (t)))

Y. rate(t)

Y.e |lrate(t)

walt =

c0)
o

Parameterized wait time formula
0.5

| 2 rate(t) rate(matchable(t))
wait = C - B
d..rate(t)
Accounts for contention, cancellations, Buffering time

>2 players per match
(Expect C=N-1 for N-player match)

Optimizer: How does it make Rules?

/S & Y

WE pick FORM of the rules Optimizer picks the values - In other words: Optimizer Algorithm options:
tunes the parameters searches over parameter
vectors

Gradient ascent

Branch and bound

Start with Current Rules

Skill Gap

| skill1 —skill2 | < (parameter)

Fredictabiliny

B0%

5%

56%

54%

52%

Predictability vs Average wait time for threshold on skill gap

50%

268

HLorerage wait time (seconds)

(QV|
q

Need to rewrite to search all curves

Proved an equivalent, searchable, form is:
| f(skill 1) — f(skill2) | < 1

E.g. | skill1 — skill2 | < 0.5 is f(skill) = 2*skill

Nice improvement! Scale skill instead of gap

Searched all fs (curves)

Found the best one!

Found one almost as good, but super simple to use!

q
q

Map the skills so Wait is Constant

Instead of doing:
| skill1 —skill2 | < (parameter)

Map skills first:
f(skill) = (parameter)*SkillPercentile

And then have the rule enforce:
| f(skillT) = f(skill2) | < 1

LN

TrueMatcn Rule Example
Scale = 10, remember gap of 1 is OK

Player Skill Percentile Scaled Skill
A 0.50 0.69 6.9
B 1.00 0.84 8.4

C 1.50 0.93 9.3

O
q

Mapped vs. Conventional

Predictability vs Average wait time for all players

Predictabiline

B0%

58%

567

54%

52%

50%

T T
134 268 402

HLorerage wait ime (seconds)

1v1 matches, simulated

T
536

== Region Constant'vEitTime
Region Fixed
= Region UtilityMaximizing

Compare skill percentiles instead of skills

Everyone sees same size pool (x%)

Scale the percentiles as pop changes

Doubly optimal! Optimal curve and Optimal Point

—
LN

What about Regions?

Every pair has an optimized rule

Let's walk through what that does!

Conventional Region Approach

[4
Try EU first. Times out after 5 wasted minutes. ﬁ

Conventional Region Approach

Settle for US.

TrueMatch Approach

N~
LN

-FA example

6-player Free-for-all in Halo 5
Request rate varies by 10x over a day

(©0)
LN

111111

-FA example

Oracle = Best static rules in hindsight
Feedback = Rules tuned online

=== (racle Feedback

251

——

N\

(©))]
LN

Skill gap

Faireize Pradictahbiling [% |

variation

FairwisePredictability vs Window index for Retail_Gtp_FFA_Ranked 1.5 1type

== (Jracle Fesdback
79—
75—
71—
/‘_'_

B —
63 —

T T T T T

0 5 10 15 20

Window index

()
O

Walt time variation

Wait Time [s]

825 —

704 —

483

262 —

41

WaitTime vs Window index for Retail_&p_FFA_Ranked 1.5 1typs

= (racle

Feedback

10

Window index

15

20

Same Utility as Oracle during normal population hours

Cuts negative utility in half during times with less players

Drops wait time by 72% (10 min) during lower population hours

Trades off 13% predictability (fairness) for 600 seconds of wait time (seems fine!)

Matches design intent

TrueMatch Takeaway

218 Utility Function defines wait trade-offs

B Metric Predictor can customize predicted wait times!

2% Optimizer uses real-time statistics and feedback to create optimal rules.

770 Results in real-time optimized matches

(90
O

Simple Improvements

Matchmake on scaled Skill Percentiles

3-4 times per hour:
Update Population Statistics
Update percentile mappings (skill to %)
Update Percentile Scale

Thank you! Questions?

Twitter:
@joshua_menke

Discord:
Zaedyn#4987

y

5 W /CURRENT,
= -\ MATCHMAKER

