
Machine Learning for

Optimal Matchmaking

Tom Minka, Ryan Cleven, Josh Menke
GDC 2020

Online Game Technology Summit

What is matchmaking?

Matchmaker

Name Bob

Skill 1677

Ping 35

Party Size 2

Streak 1

Team 1 Team 2

vs

What is Machine Learning?

An algorithm

that tunes itself

using data

rather than by

hand.

Machine Learning and Matchmaking

Matchmaking algorithms are traditionally tuned by hand

Machine learning lets us tune them automatically from data

State of the Art Today

HOPE FOR THE BEST

POSSIBLE MATCH

WAIT SETTLE FOR SOMETHING

WORSE

State of the Art Today: Skill

MATCHMAKER LOOKS FOR

SAME-SKILLED PLAYERS

WAITS SETTLES FOR IMBALANCE

Real-time matchmaking
Time

Matchmaker

Player 1 Player 2 Player 3 Player 4

Player 1

Player 3

Player 2

Player 4

7

If matchmakers knew what

was coming, they could

create optimal matches

using combinatorial

optimization.

So let’s use machine

learning to predict what’s

coming and be more

optimal.

Conventional Matchmaker

9

First Configure a Set of Rules
Need min and max of 8 players: as 2 teams of 4

Allowed Latency: grows 50ms to 200ms

Allowed Skill gap: grows 1 to 10

Build Versions must match

Playlists must match

"MatchmakingQueue": {

"Name": "Standard4v4TeamsQueue",

"MinMatchSize": 8,

"MaxMatchSize": 8,

"ServerAllocationEnabled": false,

"Teams": [

{

"Name": "Red",

"MinTeamSize": 4,

"MaxTeamSize": 4

},

{

"Name": "Blue",

"MinTeamSize": 4,

"MaxTeamSize": 4

}

],

"Rules": [

{

"Type": "TeamDifferenceRule",

"Attribute": {

"Path": "Skill",

"Source": "User"

},

"Difference": 0.2,

"DefaultAttributeValue": 0.5,

"Expansion": {

"Delta": 0.1,

"Limit": 0.5,

"Type": "Linear",

"SecondsBetweenExpansions": 5

},

"Name": "TeamSkillRule",

"SecondsUntilOptional": 30

}

]

}

Example Configuration

Matchmaker Receives Requests

Time

Matchmaker

Player 1 Player 2 Player 3 Player 4

Matchmaker Request

1
3

Creation time

Player id

Skill rating (0-40)

Latency table (ping to each datacentre)

(East US: 40)(West Europe: 100)(Brazil: 200)

Can be summarized as Region = East US

Playlist id

Build version

…

Compares Requests

Checking Each Rule

Name Bob

Skill 27

Region US

Creation 16:27:32

Build 15283

Playlist Slayer

Name Alice

Skill 32

Region EU

Creation 16:26:23

Build 15283

Playlist Slayer

Skill gap < 10?

Creates a Match

When all Rules pass

Name Bob

Skill 27

Region US

Creation 16:27:32

Build 15283

Playlist Slayer

Name Alice

Skill 32

Region EU

Creation 16:26:23

Build 15283

Playlist Slayer

Skill gap < 10?

Rules Apply Globally

Same thresholds across regions

Rules Are Static

Don’t Change As Pop Waxes and Wanes

Inflexible

Conventional Consequences

Predictability

How often the better team wins

Primary measure of fairness

50% would be perfect fairness

1
9

Conventional Takeaway

Conventional Matchmaking ignores

Realtime Incoming Request Rate

Realtime Skill distribution: Anyone good around?

Realtime region distribution Is EU playing now?

Result

Long wait times

or

Matches we know are Bad

(Large skill gaps)

More Optimal Approach

Utility Function

Put a number on optimal

Real-time statistics

(arrival rate and skill distribution)

Machine learning

Optimizer

Defining Optimal
Designers put weights on:

▪ Wait time

▪ Skill gap

▪ Equal win rates (by skill)

▪ Latency

Pixelflare

TrueMatch adapts in real time to optimize metrics and matches

2
6

High-level Comparison

Conventional Matchmaking TrueMatch

Tuning Manual Automatic

Tuning rate Monthly (typical) By minute

Granularity of tuning Worldwide By region and skill

Predictions No By region and skill

Monitoring, alerting No Yes

• Gears of War 5 launched with TrueMatch

• Halo 5 switched over to TrueMatch

• Potential to make it a standard service

2
7

Wait time Skill gap

Utility

Latency Win Rates

෍

Matches

Unified objective function

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑤1𝑤𝑎𝑖𝑡 + 𝑤2𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑤3𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑤4𝑤𝑖𝑛𝑟𝑎𝑡𝑒

As an Equation

Always 1

How many seconds would you wait for 1ms better ping

Utility Function Use

Each title (or even each player) can weigh metrics differently

Can evaluate any change to matchmaking

Can be reverse-engineered from existing threshold values

TrueMatch algorithm

 Count requests by type

 Choose the best rules

 Measure results

 Update the model

Count

Choose

Measure

Update

3
1

TrueMatch components

Population

tracker

Metric

predictor

Optimizer

Expected utility

Rules

Population modelRequests

3
2

Population tracker
 stream of requests

-> population model

 Assumes slowly changing rate

 Simple: circular buffer

 Compact: e.g. histogram

3
3

Population model

Stores request rates

Given a request type, returns the rate of that type

(0.3 < Skill < 0.4 and Region=Brazil) => 0.01 requests per second

Metric Predictor

 Has free parameters tuned from feedback

 After rules are chosen, actual metrics are measured for
15 minutes and fed back to predictor

Metric

predictor

Average wait time

Average latency

Average predictability

Rules

Population model

Actual metrics

3
5

Metric Predictor

Has a formula to predict each metric.

Wait time, Latency, Predictability, etc.

Formulas have learned parameters that adapt over time

Simplest wait time formula

 matchable(t) = requests that can match with t

𝑤𝑎𝑖𝑡 =

σ𝑡 𝑟𝑎𝑡𝑒(𝑡)
1

2(𝑟𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒 𝑡)

σ𝑡 𝑟𝑎𝑡𝑒(𝑡)

3
7

Parameterized wait time formula

𝑤𝑎𝑖𝑡 = 𝐶

σ𝑡 𝑟𝑎𝑡𝑒(𝑡)
0.5

𝑟𝑎𝑡𝑒(𝑚𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒 𝑡)

σ𝑡 𝑟𝑎𝑡𝑒(𝑡)
+ 𝐵

Accounts for contention, cancellations,

>2 players per match

(Expect C=N-1 for N-player match)

Buffering time

3
8

Optimizer: How does it make Rules?

WE pick FORM of the rules Optimizer picks the values –

tunes the parameters

In other words: Optimizer

searches over parameter

vectors

Algorithm options:

Gradient ascent

Branch and bound

Start with Current Rules

Skill Gap

| skill1 – skill2 | < (parameter)

Find Optimal Transform

 Need to rewrite to search all curves

 Proved an equivalent, searchable, form is:

| f(skill1) – f(skill2) | < 1

 E.g. | skill1 – skill2 | < 0.5 is f(skill) = 2*skill

 Nice improvement! Scale skill instead of gap

4
2

We found it!

Searched all fs (curves)

Found the best one!

Found one almost as good, but super simple to use!

Map the skills so Wait is Constant

 Instead of doing:
| skill1 – skill2 | < (parameter)

 Map skills first:
f(skill) = (parameter)*SkillPercentile

 And then have the rule enforce:
| f(skill1) – f(skill2) | < 1

4
4

TrueMatch Rule Example

 Scale = 10, remember gap of 1 is OK

4
5

Player Skill Percentile Scaled Skill

A 0.50 0.69 6.9

B 1.00 0.84 8.4

C 1.50 0.93 9.3

Mapped vs. Conventional

1v1 matches, simulated

4
6

TrueMatch Rules

Compare skill percentiles instead of skills

Everyone sees same size pool (x%)

Scale the percentiles as pop changes

Doubly optimal! Optimal curve and Optimal Point

What about Regions?

 Every pair has an optimized rule

 Let’s walk through what that does!

5
1

EU Pool

Conventional Region Approach

5
2

Try EU first. Times out after 5 wasted minutes.

US Pool

Conventional Region Approach

5
3

Settle for US.

US Pool

TrueMatch Approach

5
4

EU Pool

FFA example

 6-player Free-for-all in Halo 5

 Request rate varies by 10x over a day

5
7

FFA example

 Oracle = Best static rules in hindsight

 Feedback = Rules tuned online

5
8

Skill gap variation

5
9

Wait time variation

6
0

TrueMatch FFA Take-away
Same Utility as Oracle during normal population hours

Cuts negative utility in half during times with less players

Drops wait time by 72% (10 min) during lower population hours

Trades off 13% predictability (fairness) for 600 seconds of wait time (seems fine!)

Matches design intent

TrueMatch Takeaway

Utility Function defines wait trade-offs

Metric Predictor can customize predicted wait times!

Optimizer uses real-time statistics and feedback to create optimal rules.

Results in real-time optimized matches

Simple Improvements

Matchmake on scaled Skill Percentiles

3-4 times per hour:

 Update Population Statistics

 Update percentile mappings (skill to %)

 Update Percentile Scale

6
3

Thank you! Questions?
Twitter:

@joshua_menke

Discord:

Zaedyn#4987

