GDC 2020
Writing Tools Faster

Design Decisions to Accelerate Tool Development

Niklas Gray

CTO, Our Machinery, ¥ @niklasfrykholm

Who am |?

My name is Niklas Gray, | write game engines:

Diesel In-house engine at Grin (Ghost Recon, Payday)
Bitsquid Commercial game engine (Vermintide, Helldivers)
Stingray Bitsquid rebranded by Autodesk

The Machinery Let's make another game engine!

In This Talk

e Why is writing tools so hard? (for us)
e WWhat can we do about it?

Tools: A Brief History of Failure

Bitsquid 1.0: Our Users Can Make Their Own Tools!

Bitsquid 2.0

e Let's hack together something quickly in WinForms
e Kind of ugly
e No clear overall plan, hard to maintain

File Edit Test
new_ | ixtie_end_Jos | futie_end_him
=)- Particle System * | Intialsize 0.1
(- vortex black 2
Size Seale over Hetime
Color
Matesial; Blboard
Rotation: Spin
Rotation: Nommal Box
Posttion: Box
Velocity: Box
Emiter: Rate
- vortex blue 2
Size
Color |
Material. Bilboard I s ke St i
Rotation: Spin
Rotation: Normal Box | =1/ = .
Postion; Box L) St el ey
Velocity: Box Initial height 0.1
Emiter: Rate
= snowflakes
Emiter: Rate
Size
Color
Materal: Bilboard
Posttion: Box
Rotation: Spin
Rotation: Random
Rotation: Nommal Box

100

Scale over ifetime

Material: Biboard

Rotation: Algn Box
(= dots blue 4

Eméter: Rate

Bitsquid 3.0

WPF is prettier!

Tools take longer to write

Barrier of entry: WPF, XAML, ...

Never fully completed rewrite from WinForms

bltSCILII eeeeeeeee

es/Head
.| 1013-:11-131322 non | localhost -l @

Stingray

e Web platform (in theory)
o-Platform independent
o Reuse web expertise
e Tech stack getting crazy

o C#, Lua, C++, WPF, p===
WinForms, Chromium, B
Qt, JavaScript, L
Angular, WebSockets

e Tools take even longer
 Never completed this rewrite either!

Bitsquid/Stingray Problems

1. Keep changing frameworks
2. Tools take too long to write
3. Lackluster performance

End result: Bad tools!

How do we fix it?

Why Change Frameworks?

e« Sometimes: bad decisions
e Sometimes: tech gets outdated or abandoned

o Swing, Delphi, Hypercard, Flash, NaCl, Python 2, ...
e Running on abondoned tech gets painful

Why Did Writing Tools Take So Long?

Every little thing needed an Ul (designed, coded, tested)

Features: Undo, copy/paste, serialize, drag-and-drop, ...

A deep tech stack is hard to understand
o Bug in Angular, JavaScript, WebSocket, Chromium, C#, Lua or C++?
o Complicates everything!

Only tool people understood the tool stack: silos

Why Did We Have Performance Problems?

o Standard web practices didn't always work

o Not always a performance mind set

o Game development has more stuff!
e Fixing performance often required a full rewrite
e The deep stack made the issues harder to find

How Do We Fix it?

e Automate undo, copy/paste, etc with a well-defined data model
o Less busy-work
e Minimize and own the tech stack
o Make things explicit and easy to understand
o Avoid changing frameworks
o Control performance
 Reuse Uls and generate them automatically from data
o Properties, Tree, Graph, etc
o Don't have to create an Ul for everything.

Data Model

The Truth

e Represent all data in a uniform way

e Operations (Undo, etc) can be defined on the data model

Objects with Types and Properties: (reference, subobject)

OLYECT TypP(C

mm—

| reqistesed

PROPERTY TPl
nome Stving
aqe wink 32
i beol

OBJECT
PROPERLTY VALUC
name “Niklag?

Ry e Ub
| v eqj Steved tvue

Lock-Free Multithread Access

e Changing the data is a two phase process: write/commit
o Write creates a new copy of the object for modification
o Commit atomically switches the old copy for the new
 Readers can read the data without locking

o Old read copies eventually garbage collected

W = begin _write(O)
set _property(W, NAME, "Niklas") name

O PRoPERLTY VAWCE
wn

set _property(W, AGE, 46) Te 5
commit (W) | Femisteved | false |
W [eroreeTy VAWE

name “Niklagh

Qg e Ub
l vegisteved | false

—

On comwmic, W replaces O

Undo

e On Commit — save the old and new object versions in current undo scope

e On Undo — reinstate the old data

e An undo scope can contain multiple changes to different objects

US = create _undo_scope(T)

W = begin write(O)

set _property(W, NAME, "Niklas")
set _property(W, AGE, 46)
commit(W, US)

undo(T, US)

w

[¢ RopenTY

VALULE

name

W

Qﬁg

0

l Veqjsteved

fa‘%e.

e

PRoPERTY

VAWC

name

“ N(klus‘\

qu_

Ub

\ v eqj Steved

t“a.Ub

e

On Commic, \W replace

@

Prefabs/Prototypes

e An object can specify another object as its prototype

e "Inherits” properties, but can "override” them

US = create undo_scope(T)
OLDER_ME = create object from prototype(T, ME, US)
W = begin write(OLDER_ME)
set property(W, AGE, 47)

commit (W, US)

Plototype
—7

OLPER _ MC
PROPERLTY VALUC
name inNeri &

Ry e Uy
| Veq steved | janerie

ME
PROPERLTY VALUE
name “"Niklas®
Ty e Ub
l ALY Steved tvue

Live Collaboration

e« On commit — compute a delta between old and new object versions
o Transmit delta over wire to other collaborators

» 0:00/0:29 Ll

The Truth: Pros & Cons

e Lots of functionality "for free"
e Even advanced features: collaboration, prototyping

Cons

e« Some data is not represented well in key-value format (e.g. long text)
e The system is complex and sits at the center of everything

o No easy way for other systems to "opt-out”

o Scary to make modifications

Minimized Tech Stack

Our Stack

e Everything is writtenin C
o Very few external dependencies

APPlLICAToN

e ——

IMGU

DRAaw 2D IN PUT

vulLkanN Plareonm C'OWC
—

Draw 2D: 2D Drawing Library For Ul

stroke rect(), fill rect(), etc
Writes data directly into vertex buffer & index buffer

Entire Ul rendered in a single draw call

https://ourmachinery.com/post/ui-rendering-using-primitive-buffers/

https://ourmachinery.com/post/ui-rendering-using-primitive-buffers/

Draw 2D: Clipping

e Clip rects are written to the vertex buffer
e Pixel shader clips against rect

Draw 2D: Overlays

e Overlay images (popups) are drawn to a separate index buffer
e Concatenated before submitting draw call

e Note: overlay will be clipped to window

B DRoP PowN PoPuP OTHhEY S’TUFT-‘—)
mun ; V
Rown |® (MA:‘F‘) [Dtos’ bow v l oTHe L Stue | _ ..
Wwellc '
ldle \y, Coveu&w)l pofuP
Jume =

1% (Mﬂ“”) |orermoun | oThen. srope| ... [poroe| .-

Ul

e Immediate mode GUI — no create/destroy
e Single call to draw control and handle interaction

if (ui_api->button(ui, &(ui button t){.rect = button r, .text = "0K"}))
logger _api->printf(LOG_TYPE_INFO, "OK was pressed!");

bool cb = false;
ui_api->checkbox(ui, &(ui checkbox t){ .rect = box r, .text = "Check!" }, &cb);

e Every control is drawn every frame
e Controls don't have permanent existence, but they're identified by an ID
o \We keep track of the ID the user is hovering over or interacting with

IMGUI: Pros & Cons

More straightforward code flow (debugging, profiling)

No need to synchronize state

Redraw every frame -- expensive?
o Viewport typically wants to render every frame anyway
o Can do it just on mouse/keyboard events
o Easy to match performance to what is shown on screen

New mindset: no objects to talk to
o Can usually find ways around it

» 0:00/0:48 Ll

IMGUI Gotchas Example: Overlap

e In retained: we would just loop over all nodes

e We can'tdo: if (in_rect(mouse,r) && button down)
o Node 1 would get click that should go to Node 2

e Fix: frame delay

if (in_rect(mouse, r))
ui.next _hover = id;
if (ui.hover == id && button_down)

..;

e At end of frame: ui.hover = ui.next _hover

 Node 2 will overwrite ui.next_hover

Layouting

// No need for "layout managers" -- instead we split rects directly in code

rect_t header_r = rect split off_top(r, header_height, margin);
rect t search r = rect split off right(header r, search width, margin);
rect t footer r = rect split off bottom(r, footer height, margin);

rect_ t tree r, browser_r;
ui_api-»>splitter x(ui, &(ui_splitter_t){.rect = r}, &bias, &tree_r, &browser r);

» 0:00/0:06

Custom Controls

e Easy to implement custom control: draw + input interaction
e No distinction between "built-in" and "custom” controls

Color
R 0331
G 0471

B 0.132

Intensity (EV)

» 0:00/0:12

static void ui_drag number(ui o *ui, uistyle t *style, const ui_drag number_t *c, float *value)
{

ui buffers t uib = ui_api->buffers(ui);

const uint64 t id = c->id ? c->id : ui_api->make_id(ui);

if (vec2_in_rect(uib.input->mouse_pos, c->rect) && l!uib.activation->next_hover_in_overlay)
uib.activation->next_hover = id;

if (uib.activation->hover == id && uib.input->left _mouse pressed)
ui_api->set _active(ui, id);

if (uib.activation->active == id) {
const float dx = uib.input->mouse_delta.x;
*value = active->original value + dx / 50.0f * fabsf(active->original value);
if (uib.input->left _mouse_released)
ui_api->set active(ui, 9);

}

if (uib.activation->active == id || uib.activation->hover == id)
style->color = colors[UI COLOR_SELECTION];

char text[32];
sprintf(text, "%.7g", *value);
draw2d_api->draw_text(uib.vbuffer, *uib.ibuffers, style, c->rect, text, n);

In Summary

e Full control of the stack — easier to understand
o Same language/API as rest of engine, no artificial barriers

Cons:

e You start from scratch (~6 man-months of work)
o |nitial cost is soon recouperated
o Could use Dear IMGUI

e Lots of design decisions

e IMGUI requires new thinking

Generating Uls

Motivation

e Reduce the work of creating Uls for everything

Example: Properties Panel

e Our default object editor
e Loop over the properties of a focused object . -

Draw an appropriate editor for each property |[Er—""

Position

o Bool: Checkbox

Scale 1

o String: Textbox

Scene Tree Mode {no Scene Tree)

¥ Light Component

O [

Type Point

This doesn't always work (color) o

Intensity (EV)

Cast Shadows (]
Depth Bias

* Children

Custom Properties

e We can customize how objects in The Truth

behave by adding Aspects .
Add Component
. Basically a callback identified by an ID > Tt Copones
¥ Link Component
 Draw vec3 on a single line:

Rotation

Scale 1

t he_t r‘u-t h_a pi -> Set_a S peCt (Scene Tree Mode (no Scene Tree)
tt, vec3 type, TT _ASPECT _CUSTOM_PROPERTIES, Lot Component
u i_VEC 3) ; Type Point

L 4
.l

Intensity (EV)

e Objets without aspect get the default panel

Cast Shadows (]
Depth Bias

* Children

Example

static float ui_vec3(properties ui_args t *args, rect t item rect, const char *name,

{

const char *tooltip, uint64_t vec3)

const rect_t label r = rect split left(item_rect, label width, margin, 0);
const rect_t control r = rect _split left(item rect, label width, margin, 1);

private ui tooltip label(args-»>ui, args->uistyle,
&(ui_tooltip label t){ .text = name, .rect = label r, .tooltip = tooltip });

for (uint32 t 1 = 0; i < 3; ++1i) {
const rect_t component r = rect divide x(control r, margin, 3, 1i);
private ui float box(args, component r, vec3, 1i);

}

return item rect.y + item rect.h + margin;

Generated Ul: Preview

o Tab that allows preview of assets
e Controlled by a PREVIEW aspect — spawns entities, draws Ul

» 0:00/0:26

Generated Ul: Tree View

e By default, all subobjects are rendered as children
e TREE_VIEW aspect for customizing

* Blend Sets

» 0:00/1:31 Ll

Conclusion / Post-Mortem |

Creating Uls feels faster
o Not "blocked" by Ul tasks
Full engine built by two people in two years

Data model: awesome, but scary
o Each new piece adds more complexity

Aspects are a great way of customizing object behaviors

Conclusion / Post-Mortem |l

e Implementing things yourself is a lot of work
e Making a toolkit requires a lot of "functional design”
o How should things work?
e We are missing features that you would expect in a full-fledged toolkit
o Right-to-left text
o (But note: In Stingray we never even had time to start on localization)

All-in-all we're happy with the direction

Questions?

W @niklasfrykholm

