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Physics Solver in Roblox
Computes the motion of constrained rigid bodies.



Support for Complex Mechanisms



Typical Physics: PGS Solver



Roblox Physics: LDL-PGS Solver



Symbolic Phase
Once per mechanism

Numeric Phase
Every frame

LDL Decomposition 
Program

Mechanism Structure

LDL Decomp

Mechanism State

N-1 iterations of 
PGS

Constraint Impulses



Constraint Examples

Ball In Socket Hinge



Constraint Examples
• Ball in Socket
• Hinge
• Rod (Distance Constraint)
• Prismatic
• Cylindrical
• Angular limit
• Positional limit
• Rope
• …



Constraint𝑜𝑎

𝑝𝑎 Γ𝑎 ≔ (𝑝𝑎, 𝑜𝑎)
𝑝𝑏

𝑜𝑏

Γ𝑏 ≔ (𝑝𝑏 , 𝑜𝑏)

Coordinates:
1. Position
2. Orientation

𝑜𝑎 , 𝑜𝑏: 
• rotation matrices 
• quaternions

Differentiable function of coordinates:
𝑐 Γ𝑎, Γ𝑏 , … ∈ ℝ𝑑

Bodies respect the constraint if:
𝑐 Γ𝑎, Γ𝑏 , … = 0

Must be regular on the zero locus: 
Jacobian has full rank  d = number of DOF removed

ℝ𝑑 = Constraint Space
𝑑 = Degree

…



Constraint Function:
𝑐 Γ𝑎, Γ𝑏 = 𝑝𝑎 + 𝑜𝑎𝑥𝑎 − 𝑝𝑏 + 𝑜𝑏𝑥𝑏 ∈ ℝ3

𝑥𝑎

𝑥𝑏

Body a

Body b

𝑥𝑎 in world 𝑥𝑏 in world

Same Location in 
World Space

Ball in Socket

𝑥𝑎- pivot in local space of a
𝑥𝑏- pivot in local space of b



Hinge

Constraint Function: 

𝑐 Γ𝑎, Γ𝑏 =

𝑝𝑎 + 𝑜𝑎𝑥𝑎 − 𝑝𝑏 + 𝑜𝑏𝑥𝑏

𝑜𝑎𝑣𝑎 ⋅ 𝑜𝑏𝑢𝑏

𝑜𝑎𝑣𝑎
′ ⋅ 𝑜𝑏𝑢𝑏

∈ ℝ5

𝑢𝑏

Body a

Body b

𝑣𝑎
𝑣𝑎

′

𝑢𝑏 ⊥ 𝑣𝑎, 𝑣𝑎
′

in world space

Ball in Socket



Velocity Space Constraint: Jacobian

Take the derivative of the constraint:

𝑑

𝑑𝑡
𝑐 Γ𝑎, Γ𝑏 , … = 𝒥𝑐 ⋅

𝒱𝑎

𝒱𝑏

⋮

𝒱𝛽 =
𝑣𝛽

𝜔𝛽

Linear Velocity

Angular Velocity

Jacobian: 𝑑 × 6𝑛
matrix



Jacobian:

Body Space 
Velocities 

Constraint Space
Velocities

Jacobian

𝒞 Γ𝑎, Γ𝑏 , … = 0 ⇒ 𝒥𝒞

𝒱𝑎

𝒱𝑏

⋮
= 0

No Motion In 
Constraint Space



Jacobian: Ball in Socket

𝑐 Γ𝑎, Γ𝑏 = 𝑝𝑎 + 𝑜𝑎𝑥𝑎 − 𝑝𝑏 + 𝑜𝑏𝑥𝑏

𝑑

𝑑𝑡
𝑐 = 𝑣𝑎 − 𝑜𝑎𝑥𝑎 × 𝜔𝑎 − 𝑣𝑏 − 𝑜𝑏𝑥𝑏 × 𝜔𝑏

= 𝐼𝑑 − 𝑜𝑎𝑥𝑎
× −𝐼𝑑 𝑜𝑏𝑥𝑏

×

𝑣𝑎

𝜔𝑎

𝑣𝑏

𝜔𝑏

𝑥𝑎

𝑥𝑏

Body a

Body b

𝒥𝑐

𝒥𝑐
(𝑎) 𝒥𝑐

(𝑏)

Relative velocity of 
the two pivots

Relative positions 
of the two pivots

𝑣×: cross-product 
matrix



Mechanism

It’s a collection of Constraints and Bodies:

𝒞 =
𝑐0

𝑐1

⋮
, ℬ = 𝑎, 𝑏, …

𝑑

𝑑𝑡
𝒞 Γ𝑎 , Γ𝑏 , … =

𝒥0

𝒥1

⋮

𝒱𝑎

𝒱𝑏

⋮
= 𝒥𝒞𝒱ℬ

Each constraint: 
2 or 3 bodies

Each row: 12 or 18 
non-zero entries

Global Constraint



𝒥𝒞 =

𝒥0
(𝑎)

0 0 𝒥0
(𝑑)

𝒥1
(𝑎)

𝒥1
(𝑏)

0 0

0 𝒥2
(𝑏)

𝒥2
(𝑐)

0

0 0 𝒥3
(𝑐)

𝒥3
(𝑑)

𝑐0

𝑐1 𝑐2

𝑐3

𝑐0

𝑐1

𝑐2

𝑐3

𝑎 𝑏 𝑐 𝑑



Euler Integration Step
𝒱0 ≔ Velocities at 𝑡 = 0

Velocities next time step:
𝒱1 = 𝒱0

+𝒲 ⋅ External Forces ⋅ 𝑑𝑡
+𝒲𝒥𝑡Λ

Solver: finds Λ such that:
𝒥𝒱1 = 0

Lagrangian Multipliers
aka Impulses

𝒲 =

𝑚0
−1𝐼𝑑

𝐼0
−1

⋱
𝑚𝑛−1

−1 𝐼𝑑

𝐼𝑛−1
−1

D’Alembert’s Principle



Linearized Constraint Equation

𝒦Λ = ℛ

𝒦 ≔ 𝒥𝒲𝒥𝑡 ℛ ≔ −𝒥(… )

- Symmetric 
- Positive semidefinite

Valid only for 
equality constraints



PGS Solver

Collisions and 
Friction

Inequality 
Constraints

Equality 
Constraints

Projected Gauss-Seidel Gauss-Seidel



LDL-PGS Solver

Collisions + 
Friction

Inequality 
Constraints

Equality 
Constraints

Projected Gauss-Seidel

Sparse 
LDL

Block GS



LDL-PGS Solver

Collisions + 
Friction

Inequality 
Constraints

Equality 
Constraints

Projected Gauss-Seidel

Sparse 
LDL

Block GS

Only for 1 iteration



Solving 𝒦Λ = ℛ : (Projected) Gauss-Seidel

Λ = Estimate

Λi ← Λi + 𝒟𝑖
−1𝛿ℛ𝑖

(Project Λi)

𝑖 = rows

𝛿ℛ𝑖 = ℛ𝑖 − 𝒦𝑖Λ

Residual

Bottleneck: many 

non-zero terms!

Diagonal 

element



Faster Calculation of 𝒦𝑖𝛬
Constraint Equation:

𝒦Λ = ℛ
𝒥𝒲𝒥𝑡 Λ = ℛ

𝒥 𝒲𝒥𝑡Λ = ℛ

In Gauss-Seidel replace:
𝒦𝑖Λ ↔ 𝒥𝑖𝛿𝒱

𝛿𝒱

Associativity of matrix 

multiplication

Velocity Changes

Only 12 (or 18) Terms!



Impulse Solver (Kaczmarz Method)

Λ = Estimate, δ𝒱 = 𝒲𝒥𝑡Λ

Λ𝑖 ← Λ𝑖 + 𝒟𝑖
−1(ℛ𝑖 − 𝒥𝑖𝛿𝒱)

(Λ𝑖 = Project 𝛬𝑖 )

𝛿𝒱𝑎𝑖
+= 𝒲𝑎 𝒥𝑖

𝑎 𝑡𝛿Λ𝑖

𝛿𝒱𝑏𝑖
+= 𝒲𝑏 𝒥𝑖

𝑏 𝑡
𝛿Λ𝑖

Only 50 Float 
Operations

Update 𝛿𝒱 using 
solution changes 𝛿Λ𝑖

𝑖 = rows



Block Structure
Row partition:

𝜋 = 𝜋0, 𝜋1, …

𝜋𝑖 = 𝜋𝑖,0, 𝜋𝑖,1, …

𝒥𝜋 =

𝒥𝜋0

𝒥𝜋1

⋮

, 𝒥𝜋𝑖
=

𝒥𝜋𝑖,0

𝒥𝜋𝑖,1

⋮

List of rows for each 𝑖



Partitioned Constraint Matrix

𝒦 =

𝒥𝜋0
𝒲𝒥𝜋0

𝑡 𝒥𝜋0
𝒲𝒥𝜋1

𝑡 ⋯

𝒥𝜋1
𝒲𝒥𝜋0

𝑡 𝒥𝜋1
𝒲𝒥𝜋1

𝑡 ⋯

⋮ ⋮ ⋱

=
𝒩0 ℰ01 ⋯
ℰ10 𝒩1 ⋯

⋮ ⋮ ⋱

Symmetric Matrices Transposed

𝒩 for “Node” Matrix
ℰ for “Edge” Matrix



Block Impulse Solver

Λ = Estimate, δ𝒱 = 𝒲𝒥𝑡Λ

Λ𝜋𝑖
← Λ𝜋𝑖

+ 𝒩𝑖
−1(ℛ𝜋𝑖

− 𝒥𝜋𝑖
𝛿𝒱)

𝛿𝒱 += 𝒲𝒥𝜋𝑖
𝑡 𝛿Λ𝜋𝑖

𝑖 = elements of 
partition

Block solver doesn’t 
support projection.

Inverse of a square 
matrix



We need to solve:
𝛿Λ𝜋𝑖

= 𝒩𝑖
−1𝛿𝑟

Small dimensions => easily invert 𝒩𝑖

Ex: natural partition based on constraints:
• a ball-in-socket (dim = 3x3)
• a hinge (dim = 5x5)
• a cylindrical (dim = 4x4)
• …
𝒩𝑖 are invertible because constraints are regular



Idea: group all equality constraints together

𝜋0 ∶ rows of all equality constraints
𝜋1, 𝜋2, … ∶ other individual rows

ℋ ≔ 𝒩0 = 𝒥𝜋0
𝒲𝒥𝜋0

𝑡

constraint matrix of equality constraints.

H for holonomic



Potential issues with ℋ:
1. Not invertible
2. Large dimensions
3. Large dense submatrices

Solutions:
1. Regularize: add compliance
2. Use a sparse method
3. Increase sparsity: split bodies

How to evaluate?
ℋ−1(… )



Compliance and Regularization
ℋ is symmetric positive semidefinite.
It may be not be invertible, but

෩ℋ ≔ ℋ +
𝜖0

𝜖1

⋱
Is invertible for any 𝜖0, 𝜖1, … > 0
Use a scaled diagonal:

𝜖𝑖 = 𝜖 ⋅ ℋ𝑖,𝑖 for small 𝜖 > 0

Adds compliance to constraints!

𝜖𝑖 are not unit free, 
scale dependent 



Compliance and Regularization
Traditional PGS engines also use compliance to stabilize 
solutions

PGS for ෩ℋΛ = ℛ

PGS for ℋΛ = ℛ
with Λ𝑖 ← 1 + 𝜖𝑖

−1Λ𝑖

for each row

CFM in Bullet/ODE
(Constraint Force 

Mixing)



Sparse Methods



Sparse Methods

#𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = 50
𝐷𝑖𝑚 ℋ = 246

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ℋ = 12%
Sparse Cholesky LDL:

𝐹𝑙𝑜𝑝𝑠 = 90𝑘
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝐶𝑜𝑟𝑒 𝑖9) = 70𝜇𝑠



Cholesky LDL Decomposition
Any Symmetric Positive Definite matrix can be 
decomposed as

𝒜 = ℒ𝒟ℒ𝑡

Where
ℒ − lower triangular with 1s on diagonal
𝒟 − diagonal

This is useful because both ℒ−1 and 𝒟−1 can be efficiently 
evaluated.



Useful to compute 𝒜−1𝑣:
𝒜−1𝑣 = (ℒ−𝑡𝒟−1ℒ−1)𝑣

= ℒ−𝑡(𝒟−1(ℒ−1𝑣))
Where

ℒ−1(⋅), ℒ−𝑡(⋅)
Computed by back-substitution and

𝒟−1(⋅)
Are scalar products.



Block LDL
Suppose 𝒜 is SPD and has a block structure:

𝒜 =

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗
∗

∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗
∗
∗

∗ ∗ ∗ ∗ ∗ ∗



Block LDL
It can decomposed as

𝒜 = ℒ𝒟ℒ𝑡

𝒟 =

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗

, ℒ =

1
1

∗ ∗
∗ ∗
∗ ∗

1
1

1
∗ ∗ ∗ ∗ ∗ 1

𝒟 and ℒ inherit the block structure from 𝒜. 
Block LDL vs LDL? 
Performance: block operations faster than scalar!



LDL: Algorithms
There are at least 2 algorithms:
• Gaussian Elimination
• Doolittle Algorithm

we’ll use this one



𝒩 0
0 𝒮 − ℰ𝒩−1ℰ𝑡

𝒩 ℰ𝑡

ℰ 𝒮

Schur Complement
Multiply first 

row by ℰ𝒩−1on 
the left

Subtract from 
second row

𝒩 ℰ𝑡

0 𝒮 − ℰ𝒩−1ℰ𝑡

Multiply first 
column by 𝒩−1ℰ𝑡

on the right

Subtract from 
second column

Eliminated

Eliminated



= 𝐼𝑑
ℰ𝒩−1 𝐼𝑑

𝒩 0
0 𝑆 − ℰ𝒩−1ℰ𝑡

𝐼𝑑 𝒩−1ℰ𝑡

𝐼𝑑

𝒩 ℰ𝑡

ℰ 𝒮

Schur Complement

Lower Triangular Block Diagonal Upper Triangular

Block Gaussian Elimination = Recursive Schur complements



𝒩0 ℰ10
𝑡 ℰ20

𝑡 ⋯

ℰ10 𝒩1 ℰ21
𝑡 ⋯

ℰ20 ℰ21 𝒩2 ⋯
⋮ ⋮ ⋮ ⋱

=
𝒩0 ℰ∗,0

𝑡

ℰ∗,0 𝒮0

=
𝐼𝑑

ℰ∗,0𝒩0
−1 𝐼𝑑

𝒩0 0

0 𝒮0 − ℰ∗,0𝒩0
−1ℰ∗,0

𝑡
𝐼𝑑 𝒩0

−1ℰ∗,0

𝐼𝑑

Block Gaussian Elimination

ℰ∗,0
𝒮0

ℰ∗,0
𝑡



⋱ 0 0
0 𝒩𝑖 ℰ∗,𝑖

𝑡

0 ℰ∗,𝑖 𝒮𝑖

𝐼𝑑
𝐼𝑑
ℒ∗,𝑖 𝐼𝑑

⋱
𝒩𝑖 0

0 𝒮𝑖 − ℰ∗,𝑖ℒ∗,𝑖
𝑡

𝐼𝑑
𝐼𝑑 ℒ∗,𝑖

𝑡

𝐼𝑑

Schur Complement:
1. Invert 𝒩𝑖

2. Compute:
ℒ∗,𝑖 = ℰ∗,𝑖𝒩𝑖

−1

3. Reduce:
𝒮𝑖 ← 𝒮𝑖 − ℰ∗,𝑖ℒ∗,𝑖

𝑡

Block Gaussian Elimination

ℒ∗,𝑖 ℒ∗,𝑖
𝑡

Elementary Matrices

𝒮𝑖−1

Block 
Diagonals

Already 
Eliminated



Block LDL

𝒟 =
𝒩0

⋱
𝒩𝑛−1

ℒ = ℒ∗,0 ℒ∗,1 ⋯ ℒ∗,𝑛−2 =

1
↑ 1

↑ ⋱
ℒ∗,0 ℒ∗,1 ⋱

↓ ↓ ℒ∗,𝑛−2 1

ℋ = ℒ𝒟ℒ𝑡



Inverse Operator

ℋ−1𝑣 = ℒ−𝑡 𝒟−1 ℒ−1𝑣

ℒ−1 = −ℒ∗,𝑛−2 ⋯ −ℒ∗,1 −ℒ∗,0

ℒ−𝑡 = −ℒ∗,0
𝑡

−ℒ∗,1
𝑡

⋯ −ℒ∗,𝑛−2
𝑡

𝒟−1 =
𝒩0

−1

⋱
𝒩𝑛−1

−1
Computed 

during 
elimination

Don’t evaluate 
these products. 

Use as is.



Sparse Block LDL

ℋ =

𝒩0 ℰ10
𝑡 ℰ20

𝑡 ⋯ 0

ℰ10 𝒩1 0 ⋯ ℰ𝑛−1,1
𝑡

ℰ20 0 𝒩2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ℰ𝑛−1,1 0 ⋯ 𝒩𝑛−1

Where some ℰ𝑖𝑗 ’s are 0.

Can we reduce the operation count in the Gaussian 
Elimination?

Constraints



Yes absolutely! Here is how:
• Sparse matrices  Graphs
• Gaussian elimination  Process on graphs
• Pack the sparse matrix data in memory 



Body Graph
• Nodes: Rigid Bodies
• Edges: Constraints

Constraint Graph
It is the Edge Graph of the Body Graph:
• Nodes: Constraints
• Edges: Common bodies between constraints

Constraint Graph = Graph of the Constraint Matrix



Constraint Graph

Constraint Matrix Constraint Graph

Diagonal block 𝒩𝑖 Node n𝑖

Off-diagonal block ℰ𝑗𝑖 Edge eji between n𝑖 and n𝑗

Gaussian Elimination Graph Elimination



Body Graph Constraint Graph

BodyWheels Wheels

Knuckles

Steering 
Rack



`

0

2

4 1

3

0

2

4 1

3Eliminating 0

Gaussian Elimination on Graphs

0

2

4 1

3

4 new edges

no new edges

𝑛𝑖 is called the Pivot.
Schur Complement of 𝑛𝑖:
1. Add edges between neighbors of 𝑛𝑖

2. Eliminate edges with node 𝑛𝑖



`

0

2

4 1

3Eliminating 0

Gaussian Elimination on Graphs

0

2

4 1

3

1 new edge

no new edges

0

2

4 1

3

Schur Complement of 𝒩𝑖 on Graph:
1. Add edges between neighbors of 𝑛𝑖

2. Eliminate edges with node 𝑛𝑖



`

Gaussian Elimination on Graphs

0

2

4 1

3

A perfect elimination order for this graph is:
[1, 3, 0, 2, 4]

Does not always exist!

Elimination Game: minimize the number of 
new edges

Finding such ordering is NP-Complete.
There are good heuristics!





Gaussian Elimination on Graphs

Heuristics for Graph Elimination:
• Minimum Degree Algorithm (MDA)

• Fast but generates mediocre ordering
• Minimum Edge Creation Algorithm (MECA)

• More expensive but better ordering
• We only need to compute this once!



Gaussian Elimination on Graphs

Minimum Edge Creation Algorithm (MECA):
At each step, eliminate the pivot that creates a minimum 
number of new edges… 



Gaussian Elimination on Graphs
Graph Elimination gives us:

1. An ordered sequence of nodes (pivot sequence): 
𝑃𝑖𝑣𝑜𝑡𝑠 = 𝑛0, 𝑛1, …

2. For each pivot 𝑛𝑖 a sequence of eliminated edges (edge 
sequences): 

𝐸𝑙𝑖𝑚 𝑛𝑖 = 𝑒𝑗0,𝑖 , 𝑒𝑗1,𝑖 , …

These sequences should be sorted in pivot order: 
𝑛𝑗0

< 𝑛𝑗1
< ⋯



Sparse Block Matrix Memory Layout

ℰ20

ℰ40

𝒩0

𝒩1

𝒩2

ℰ21

ℰ31

ℰ51

ℰ42

𝒩3

𝒩4

𝒩5

ℰ32

ℰ52

ℰ43

ℰ54ℰ53

0

4

1

3

2

5

0

7

3

6

4

8

1 2

5

109 11

Blocks in Column Major Elements of blocks in Row Major

Edge Matrices

Fill ins (created edges 

by elimination)

Node Matrices



𝒟0𝒩0

ℒ20

ℒ40

ℰ20

ℰ40

Sparse Block Gaussian Elimination

𝒩1

𝒩2

ℰ21

ℰ31

ℰ51
ℰ42

𝒩3

𝒩4

𝒩5

ℰ32

ℰ52

ℰ43

ℰ54ℰ53

1. LDL decompose the pivot 
𝒩0 in-place, 𝒟0 ≔ 𝐿𝐷𝐿(𝒩0)

2. Compute ℒ∗,0 = ℰ∗,0𝒩0
−1in 

a temp buffer
3. Reduce 𝒮0 ← 𝒮0 − ℰ∗,0ℒ∗,𝑎

𝑡

4. Replace ℰ∗,0 ← ℒ∗,0

ℒ20
𝑡 ℒ40

𝑡

Pivot

𝒮0

Blocks 

touched by 

reduction

Packed

Packed

Requires 

Indexation



ℒ21

ℒ31

ℒ51

ℰ21

ℰ31

ℰ51

𝒟1𝒩1

Sparse Block Gaussian Elimination

ℒ20

ℒ40

𝒟0

𝒩2

ℰ42

𝒩3

𝒩4

𝒩5

ℰ32

ℰ52

ℰ43

ℰ54ℰ53

1. LDL decompose the pivot 
𝒩1 in-place, 𝒟1 ≔ 𝐿𝐷𝐿(𝒩1)

2. Compute ℒ∗,1 = ℰ∗,1𝒩1
−1in 

a temp buffer 
3. Reduce 𝒮1 ← 𝒮1 − ℰ∗,1ℒ∗,1

𝑡

4. Replace ℰ∗,1 ← ℒ∗,1

ℒ21
𝑡 ℒ31

𝑡 ℒ51
𝑡

Pivot

𝒮1



𝒟1

ℒ21

ℒ31

ℒ51

Sparse Block LDL Decomposition

ℒ20

ℒ40

𝒟0

𝒟2

ℒ42

𝒟3

𝒟4

𝒟5

ℒ32

ℒ52

ℒ43

ℒ54ℒ53

Already LDL 

decomposed



d

Reduction Scattering Indexation

𝑅𝑆𝐼 better use indices => less memory! 
Precompute during symbolic phase.

ℒ∗,𝒊
𝒕ℒ𝑎,𝑖

𝑡 ℒ𝑏,𝑖
𝑡 ℒ𝑐,𝑖

𝑡

ℰ∗,𝒊

ℰ𝑎,𝑖

ℰ𝑏,𝑖

ℰ𝑐,𝑖

𝒮𝒊

ℰ𝑏,𝑎

𝒩𝑎

𝒩𝑏

ℰ𝑐,𝑎

ℰ𝑐,𝑏

𝒩𝑐

k
Row of 

𝐸
Column 

of 𝐿𝒕 𝑹𝑺𝑰 [𝒌]

0 0 0 &𝒩𝑎 0,0

1 1 0 &ℰ𝑏,𝑎 0,0

2 1 1 &𝒩𝑏 0,0

3 2 0 &ℰ𝑏,𝑎 1,0

4 2 1 &𝒩𝑏 1,0

5 2 2 &𝒩𝑏 1,1

6 3 0 &ℰ𝑏,𝑎 2,0

7 3 1 &𝒩𝑏 2,0

8 3 2 &𝒩𝑏 2,1

9 3 3 &𝒩𝑏 2,2

10 4 0 &ℰ𝑐,𝑎 0,0

⋮ ⋮ ⋮ ⋮

14 5 5 &𝒩𝑐 1,1

0

1

2

3

4

5

0 1 2 3 4 5

Size of 𝑅𝑆𝐼 :
ℎ(ℎ + 1)

2
Here: 

ℎ = 5,
𝑠𝑖𝑧𝑒 = 15



Performance of Block LDL

ℒ𝑡

ℰ

𝒮

Operation count:

1. 𝐿𝐷𝐿(𝒩) : 
𝑑3

6

2. ℒ = ℰ𝒩−1 : ℎ𝑑2

3. 𝒮 = 𝒮 − ℰℒ𝑡 : 𝑑
ℎ(ℎ+1)

2

Modern processors: 
• Good at floating point operations
• Bad at memory access

Op Count

Mem Access
~𝑑

 Fastest for large 𝒅, as long as 𝒅 ≪ 𝒉

h

d

h

d
𝒩

Memory Access:

1. 𝐿𝐷𝐿(𝒩) : 
𝑑(𝑑+1)

2

2. ℒ = ℰ𝒩−1 : 2ℎd

3. 𝒮 = 𝒮 − ℰℒ𝑡 : 2hd +
ℎ(ℎ+1)

2

ℎ ≫ 𝑑

Dominant



Reduction Step: 70% CPU Time

template<uint degree>
void reduce(float* S, const float* E, const float* L, const uint* rsi, uint height)
{

for (uint i = 0; i < height; i++)
{

for (uint j = 0; j <= i; j++)
{

S[ *rsi ] -= dotProduct<degree>(E + i*Dim, L + j*Dim);
rsi++;

}
}

}

Loop Unroll and 
Inline!

Reduction 
Scattering 
Indexation

Schur 
Complement

Edge Matrix L Matrix Edge Matrix 
Height

Edge Matrix 
Width

𝐸

degree

height



Implementation

template<uint deg> void eliminatePivot (float* S, float* LTemp, float* N, float* E,
const uint* rsi, uint height)

{
// Dense LDL decomposition of N
ldlDecompose<deg>(N);

// Compute L = E * N^-1
computeL<deg>(LTemp, N, E, height);

// Reduce S -= E * L^t
reduce<deg>(S, E, LTemp, rsi, height);

// Don’t need the Edge Matrix anymore
// Overwrite with L Matrix
copy(E, LTemp, height * deg);

}

~5% of CPU Time
No Unrolling Necessary

~25% of CPU 
Time… Unroll!

~70% of CPU 
Time



Implementation
Use switch statement:
for (const Pivot& pivot : pivots)
{

switch (pivot.degree)
{
case 0: break;
case 1: eliminatePivot<1>(…); break;
case 2: eliminatePivot<2>(…); break;
case 3: eliminatePivot<3>(…); break;
case 4: eliminatePivot<4>(…); break;
case 5: eliminatePivot<5>(…); break;
case 6: eliminatePivot<6>(…); break;
default: eliminatePivot(…, pivot.dimension); break; // Not templated for Degree > 6
}

}



Tracked Vehicle

3 Components:
• Main body
• Left track
• Right track



Track

#𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = 40
𝐷𝑖𝑚 ℋ = 200

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ℋ = 7.5%
Sparse Cholesky LDL:

𝐹𝑙𝑜𝑝𝑠 = 43𝑘
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 35𝜇𝑠



Multi-Wheeled Vehicle

#𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = 20 (= 𝑛)
𝐷𝑖𝑚 ℋ = 88

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ℋ = 100%
𝐹𝑙𝑜𝑝𝑠 = 250𝑘 = 𝑂 𝑛3

There is a solution: Body Shattering



Multi-Wheeled Vehicle

#𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = 20 (= 𝑛)
𝐷𝑖𝑚 ℋ = 88

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ℋ = 100%
𝐹𝑙𝑜𝑝𝑠 = 250𝑘 = 𝑂(𝑛3)

#𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = 29
𝐷𝑖𝑚 ℋ = 142

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ℋ = 17.5%
𝐹𝑙𝑜𝑝𝑠 = 35𝑘 = 𝑂(𝑛)

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 34 𝜇𝑠

Body Shattering



Shattered Multi-Wheeled Vehicle



Dense Submatrices and Body Shattering

Body Shattering:
• Find bodies with many constraints (total degree > 20)
• Split into smaller equal shards
• Join using rigid joints
• Distribute constraints over the shards

Large dense submatrix 

Body with many constraints



Body Shattering

𝐵

𝐵0 𝐵1 𝐵2

Body Graph Constraint Graph
100% dense!

B has many 
constraints

Shatter 𝐵 into
𝐵0, 𝐵1, 𝐵2

More 
constraints 
but sparser!

Edge Graph

Edge Graph

Rigid Joints



Symbolic Phase
Once per mechanism

Numeric Phase
Every frame

Shattered Body Graph

Constraint Graph

Elimination Seq. & RSI

Body Graph

Mechanism Structure

Constraint Matrix

LDL Decomp

Jacobian & Mass Matrix

Mechanism State

N-1 iterations of 
PGS

1 iterations of Block GS

Constraint Impulses

LDL-PGS Solver
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