
Even Faster Math Functions

Robin Green

Programmer, Pacific Light & Hologram

Time for an update

• Since we last talked at GDC 2002, numerical
research has progressed

• Error analysis has greatly improved,
we now aim for “good to the last bit”

• Tools have improved, become open source
and free

• Frankly, we are all quite a bit older now

https://basesandframes.wordpress.com/2016/05/17/faster-math-functions/

The last time we talked about implementing math functions at GDC
it was 2002

Research has progressed in the last 10 years, especially “last bit”
accuracy with the aim of standardizing math functions

Much of this research has happened as open source, available to
anyone interested in using them

So it’s time for an update

And if you have the slides (oh hai!) check out the unobtrusive links
at the bottom-right for the original sources and refences

Why care about FPGA?

• FPGA is the coming storm

• FPGA enables wide parallelism and expects bit-level computation

• Floating point is a compressed memory encoding for place-value bit strings

• Even in FP code, once you have range reduced you’re doing fixed point

Where there was no libm, we made our own

With FPGA you start with no operators

𝑥 = ෍

𝑖=−𝑝

𝑁−1

𝑥𝑖2𝑖
23 22 21 20 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10242526

1 0 0 1 1 0 0 1 1 0 0 1

In the teaser for this course I mentioned FPGA as being an area of
interest

Why on earth should game devs care about the world of hardware?

Because FPGA is the coming storm

- You want to make magical things with your conference badge?

- Simulate 32-bit graphics hardware on-chip for a handheld?

- Costs are coming down, soft SOCs are being generated from
open source projects

IEEE754 floats are a compressed memory storage format for bit
strings

Fixed point being used for AI training has led to a resurgence in
interest for math functions the cover the full dynamic range to the
last bit

Thinking in gates

• Let’s examine calculating the quadratic discriminant 𝑑 = 𝑏2 − 4𝑎𝑐

• Converting CPU ops into circuitry is simple enough

×

×
×

𝑥−

𝑏

𝑎

𝑐

4 d

A quick thought experiment, a simple translation of the quadratic
discriminant into FPGA would take the ops, fit to standard vendor
libraries and gain a little parallelism.

But we can do a LOT better – stop thinking in CPU ops

Thinking in gates

• Squaring is a special case of multiplication

𝑥2

×
×

𝑥−

𝑏

𝑎

𝑐

4 d

Squaring is a special case of multiplication

2321
x 2321

2321
46420
696300
4642000
5387041

Thinking in gates

• Squaring is a special case of multiplication

𝑥2

×
×

𝑥−

𝑏

𝑎

𝑐

4 d

Looking at the long form of the multiplication there is symmetry
along this diagonal

2321
x 2321

2321
46420
696300
4642000
5387041

Thinking in gates

• Squaring is a special case of multiplication

𝑥2

×
×

𝑥−

𝑏

𝑎

𝑐

4 d

2321
x 2321

2321
46400
690000
4000000

Thinking in gates

• Squaring is a special case of multiplication

𝑥2

×
×

𝑥−

𝑏

𝑎

𝑐

4 d

We keep the first digit ...

2321
x 2321

4641
92400

1290000
4000000

Thinking in gates

• Squaring is a special case of multiplication

𝑥2

×
×

𝑥−

𝑏

𝑎

𝑐

4 d

Double the remaining digits ...

2321
x 2321

4641
92400

1290000
4000000
5387041

Thinking in gates

• Squaring is a special case of multiplication

𝑥2

×
×

𝑥−

𝑏

𝑎

𝑐

4 d

...then sum with carry

Computer Science books often show examples like this in base 10 to
justify algorithms (HATE this)

So is algorithm true? Let’s follow an on-paper experiment using bits

1. to illustrate the raw size of a naïve multiply unit

2. to get comfortable with this bit visualization
it will come in handy later

Squaring in binary

1 100100010001
0 000000000000.
0 000000000000..
0 000000000000...
1 100100010001....
0 000000000000.....
0 000000000000......
0 000000000000.......
1 100100010001........
0 000000000000.........
0 000000000000..........
1 100100010001...........

00000000010100100011001100100001 = 5387041

Let’s do the calculation in binary

We all learned that multiplies are just stacks of shifted additions

1. Rows only appear when the multiplier has a 1-bit otherwise they
are zero

2. We sum columns - with carry - into the result

Immediately you can see that a multiply is faster if you sort the
value by number of 1-bits

Let’s check out this symmetry idea

Squaring in binary

1 100100010001
0 00000000000..
0 0000000000....
0 000000000......
1 10010001........
0 0000000..........
0 000000............
0 00000..............
1 1001................
0 000..................
0 00....................
1 1......................

Removing the duplicate bits below the diagonal line leaves us with a
triangle of bits

Squaring in binary

1 100100010001
0 00000000000..
0 0000000000....
0 000000000......
1 10010001........
0 0000000..........
0 000000............
0 00000..............
1 1001................
0 000..................
0 00....................
1 1......................

Squaring in binary

1 100100010001
0 00000000000..
0 0000000000....
0 000000000......
1 10010001........
0 0000000..........
0 000000............
0 00000..............
1 1001................
0 000..................
0 00....................
1 1......................

So the algorithm says we keep the digits on the diagonal

and double the remaining bits

Squaring in binary

1 10010001000.1
0 0000000000.0..
0 000000000.0....
0 00000000.0......
1 1001000.1........
0 000000.0..........
0 00000.0............
0 0000.0..............
1 100.1................
0 00.0..................
0 0.0....................
1 1......................

Well, times two, that’s just a shift left

Squaring in binary

1 1001000100001
0 000000000000..
0 00000000000....
0 0000000000......
1 100100001........
0 00000000..........
0 0000000............
0 000000..............
1 10001................
0 0000..................
0 000....................
1 01......................

And we fill the spaces with zeros

Squaring in binary

1 1001000100001
0 000000000000..
0 00000000000....
0 0000000000......
1 100100001........
0 00000000..........
0 0000000............
0 000000..............
1 10001................
0 0000..................
0 000....................
1 01......................

00000000010100100011001100100001 = 5387041

You can check that it gives the same result.

A more interesting test is to try the result with 2-s compliment
signed values to show that squaring always produces a positive
result - plus an overflow flag

We have seen that

- multiplication can be viewed as repeated addition

- looking at the bits can lead to smaller, faster results

Thinking in gates

• In fixed point multiplication by four is just wiring, not even a gate

• In floating point × 4 is simply adding 2 to the exponent

𝑥2

× 4
×

𝑥−

𝑏

𝑎

𝑐

d

So with the new information

We can see that “times 4” is just a simple shift

- In fixed point it’s not even a gate, it’s just wiring

- In float it’s a “plus-2” to the exponent

Thinking in gates

• If both operands of an ADD/SUB are the same sign, we can make the op smaller

• The cancellation case never happens, saving 1 large leading-zero-counter + 1 shifter

• For example 𝑥2 + 𝑦2 guarantees this

𝑥2

× 4
×

𝑥−

𝑏

𝑎

𝑐

d

Even simple additions can be optimized if we can guarantee
constraints on the operands

If they have the same sign we can remove the circuitry that
supports the cancellation case

Not useful here, but comes into play for vector length calculations

Thinking in gates

• If the range of the input is small, we can approximate with a low degree poly

• New fixed point methods for SQRT we will look at later

𝑥2

× 4
×

𝑥−

𝑏

𝑎

𝑐

d

If we know that the input range is low, we can approximate with a
table or low degree polynomial

TAKEAWAY: Arithmetic in the FPGA world is very different

Some of these ideas can directly convert to fixed-point techniques
on CPU, which we will be looking at

1. Function Approximation

2. Range Reduction

3. Function Approximation

4. Recip, Sqrt, InvSqrt

5. Bitheaps and FPGA

6. Lookup Tables

7. Periodic Evaluation

8. Summary

Here’s the running order of the talk

I went overboard but there are so many interesting things

Resources

• Cephes libm
https://github.com/jeremybarnes/cephes/blob/master/single/tanf.c

• Sun MUSL libm
https://github.com/runtimejs/musl-libc/blob/master/src/math/atanf.c

• Apple libm
https://opensource.apple.com/source/Libm/Libm-315/Source/ARM/tanf.h.auto.html

• Intel Math Kernel Library (MKL)
https://software.intel.com/en-us/mkl-developer-reference-c-performance-enhancements

• Jean-Michel Muller “Elementary Functions, Algorithms and Implementation,
3rd Ed”, Birkhauser, 2016

• Henry S Warren Jr, “Hacker’s Delight, 2nd Ed”, Addison Wesley, 2013

• W. Cody & W. Waite "Software Manual for the Elementary Functions",
Prentice-Hall, 1980

In researching this, I finally bought “Elementary Functions” and it
contained overviews of almost everything I had been researching.

So don’t be me and buy a copy first.

Also, the “Hacker’s Delight” is a timeless, invaluable exploration of
bit twiddling and hackery

- All options are explored and caveats are explained

- It’s a masterpiece of bit-level techniques

Often you’ll see references to “Cody & Waite” – an out of print, hand
typeset book from the 1980s.

Almost everyone I know who has a copy is using a pile of
photocopied pages.

The advice inside is starting to look a little dated, but it’s a
fascinating historical artifact of the pre-IEEE754 mainframe days

Function Approximation

• There’s a pretty standard model of function approximation

1. First Range Reduction

e.g. sin 𝑥 = sin 𝑦 + 𝑘
𝜋

2
or exp 𝑥 = exp 𝑦 + 𝑘 ln

𝜋

2

2. Second Range Reduction

e.g. a table lookup like C = − cos
𝜋

2
𝑖𝑓 𝑘 mod 4 = 2

3. Approximation

e.g. a polynomial like sin 𝑧 = 𝑧 − 0.166665739 𝑧3 + 0.008298676 𝑧5

4. Reconstruction

e.g. sin 𝑥 = sin 𝑧 𝐶 − cos 𝑧 𝑆

We can EVALUATE a square root, but we can only APPROXIMATE
arcsine

Quick recap of the previous “Faster Math Functions” talk

Approximation for trig, exponential and logarithm functions take a
pretty standard form:

- First range reduction – reduces arbitrary arguments to
something periodic like 0..2PI or 1..2

- Second range Reduction – often reduces the range to
incorporate precomputed elements from a table

- Approximation – fill in the tiny remaining range with an
optimized polynomial

- Reconstruction – assembles the approximated and
precomputed pieces along with sign and quadrant values

Approximating tanf()

All the beginner texts start with Sine and Cosine

Both well behaved functions, let’s try something different – TAN

Approximating tanf()

• This is not how it’s done.

This piece of code is not ... optimal

But at least it was inline for extra speed

Approximating tanf()

Lets look at some of the identities we can exploit to reduce the
amount (range) of function we need to approximate

Approximating tanf()

• tan −𝑥 = −tan(𝑥)

All the negative values can be constructed from the positive side

We can use an ABS to remove half of the number line and
reconstruct it later

Approximating tanf()

• tan −𝑥 = −tan(𝑥)

Saved 50% of the number line, BOOM

Approximating tanf()

• tan −𝑥 = −tan(𝑥)

• We have a repeating pattern over 0, 𝜋

Next the pattern repeats every PI units

Approximating tanf()

• tan −𝑥 = −tan(𝑥)

• We have a repeating pattern over 0, 𝜋

Approximating tanf()

• tan −𝑥 = −tan(𝑥)

• We have a repeating pattern over 0, 𝜋

• A simple reverse and negate at Τ𝜋 2

The range at PI/2 is a reverse and negation of the first PI/2

Approximating tanf()

• tan −𝑥 = −tan(𝑥)

• We have a repeating pattern over 0, 𝜋

• A simple reverse and negate at Τ𝜋 2

Approximating tanf()

• tan −𝑥 = −tan(𝑥)

• We have a repeating pattern over 0, 𝜋

• A simple reverse and negate at Τ𝜋 2

• The range Τ𝜋 4 , Τ𝜋 2 is
1

tan Τ𝜋 4−𝑥

Math identities tell us that the range [PI/4, PI/2]

is the reciprocal of [0, PI/4]

Approximating tanf()

• tan −𝑥 = −tan(𝑥)

• We have a repeating pattern over 0, 𝜋

• A simple reverse and negate at Τ𝜋 2

• The function
𝜋

4
,

𝜋

2
is

1

tan
𝜋

4
−𝑥

This is about the only time math books mention cotangent COT

Approximating tanf()

• tan −𝑥 = −tan(𝑥)

• We have a repeating pattern over 0, 𝜋

• A simple reverse and negate at Τ𝜋 2

• The function
𝜋

4
,

𝜋

2
is

1

tan
𝜋

4
−𝑥

• If we have a reciprocal,

we only need to approximate 0,
𝜋

4

So we only need to approximate the first [0, PI/4] of the function

We can reconstruct the rest from just that

Approximating tanf()

• tan −𝑥 = −tan(𝑥)

• We have a repeating pattern over 0, 𝜋

• A simple reverse and negate at Τ𝜋 2

• The function
𝜋

4
,

𝜋

2
is

1

tan
𝜋

4
−𝑥

• If we have a reciprocal,

we only need to approximate 0,
𝜋

4

It’s also an uncomplicated function that we can fit a polynomial to

We can go further using precomputed tables, but this is deep
enough for this simple example

Let’s apply the range-reduce-approximate-reconstruct model we
talked about

First Range Reduction

• Copy the sign and set 𝑥 = 𝑥

• Break the parameter 𝑥 into repeating

chunks of 0,
𝜋

4

𝑘 = 𝑥
4

𝜋

𝑦 = 𝑥 − 𝑘
𝜋

4

This is the Additive Range Reduction method

K is the INTEGER FLOOR of X-times-4-over-PI

which tells us how many copies of Pi/4 are inside X

We then subtract that many copies from X to get a range reduced
value Y

First Range Reduction

• Copy the sign and set 𝑥 = 𝑥

• Break the parameter 𝑥 into repeating

chunks of 0,
𝜋

4

• Subtract 𝑘 copies of Τ𝜋 4 from 𝑥 until 𝑥 < Τ𝜋 4

• 𝑘 is an integer, handy for quadrant tests

𝑘 = 𝑥
4

𝜋

𝑦 = 𝑥 − 𝑘
𝜋

4

𝑘

𝑦

Plotting Y and K shows us the driving functions we can use to
construct our approximation

K is an integer that can be used to tell us which quadrant we are in

Y is a parameter we can send to our polynomial for [0, Pi/4]

Second Range Reduction

• Some functions use tables, here we use
bithacks and symmetry

𝑘 mod 4 = 0,1,2,3

Second Range Reduction

Since we wimped out of table-based range reduction here
(which would go here)

We will exploit symmetry

Using the K variable we can codify the repeating pattern

Second Range Reduction

• Some functions use tables, here we use
bithacks and symmetry

𝑘 mod 4 = 0,1,2,3

𝑧 =

𝑦 𝑘 mod 4 = 0
Τ(𝜋 4) − 𝑦 𝑘 mod 4 = 1

−𝑦 𝑘 mod 4 = 2

𝑦 − Τ(𝜋 4) 𝑘 mod 4 = 3

K MOD 4 is the same as a bitwise K AND 3

Second Range Reduction

• Some functions use tables, here we use
bithacks and symmetry

𝑘 mod 4 = 0,1,2,3

𝑧 =

𝑦 𝑘 mod 4 = 0
Τ(𝜋 4) − 𝑦 𝑘 mod 4 = 1

−𝑦 𝑘 mod 4 = 2

𝑦 − Τ(𝜋 4) 𝑘 mod 4 = 3

Each section is reversed or negated separately...

Second Range Reduction

• Some functions use tables, here we use
bithacks and symmetry

𝑘 mod 4 = 0,1,2,3

𝑧 =

𝑦 𝑘 mod 4 = 0
Τ(𝜋 4) − 𝑦 𝑘 mod 4 = 1

−𝑦 𝑘 mod 4 = 2

𝑦 − Τ(𝜋 4) 𝑘 mod 4 = 3

...which reverses and reflects the driving functions

for the polynomial

Approximation

• Using the driver variable 𝑧 we can approximate tan 𝑥 over 0,
𝜋

4
using

a minimax polynomial

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑧 + 0.333331568548 𝑧3 +
0.133387994085 𝑧5 +
0.0534112807 𝑧7 +
0.0244301354525 𝑧9 +
0.00311992232697 𝑧11 +
0.00938540185543 𝑧13

Absolute error = tan 𝑥 − 𝑓(𝑥)

Here is an approximation to tan(x) over [0, Pi/4] using a minimax
polynomial.

We’ll be looking closer at those later.

Polynomials can be evaluated way more efficiently than this raw
expression.

This poly has ~10e-8 accuracy which is OK for a approximation to
binary32 float accuracy (24-bit mantissa)

Not good enough to guarantee final bit correctness, but this is a
basic demo. We can get into the weeds later

Reconstruction

• We need to apply reciprocals in the sections
where 𝑘 mod 4 = {1, 2}

Here is the result of driving the Y function through the polynomial

We still need to apply the reciprocals

Reconstruction

• We need to apply reciprocals in the sections
where 𝑘 mod 4 = {1, 2}

These two sections are where we reciprocate

Reconstruction

• We need to apply reciprocals in the sections
where 𝑘 mod 4 = {1, 2}

• We can use a bit test on 𝑘

𝑖𝑓 𝑘 + 1 mod 2 = 2
𝑡ℎ𝑒𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 = Τ1 𝑟𝑒𝑠𝑢𝑙𝑡

We can pick them out using a bithack on the K variable

Approximating tanf()

• We need to apply reciprocals in the sections
where 𝑘 mod 4 = {1, 2}

• We can use a bit test on 𝑘

𝑖𝑓 𝑘 + 1 mod 2 = 2
𝑡ℎ𝑒𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 = Τ1 𝑟𝑒𝑠𝑢𝑙𝑡

After applying the reciprocal...

Reconstruction

• We need to apply reciprocals in the sections
where 𝑘 mod 4 = {1, 2}

• We can use a bit test on 𝑘

𝑖𝑓 𝑘 + 1 mod 2 = 2
𝑡ℎ𝑒𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 = Τ1 𝑟𝑒𝑠𝑢𝑙𝑡

We have one cycle of TAN correctly approximated

Reconstruction

• We need to apply reciprocals in the sections
where 𝑘 mod 4 = {1, 2}

• We can use a bit test on 𝑘

𝑖𝑓 𝑘 + 1 mod 2 = 2
𝑡ℎ𝑒𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 = Τ1 𝑟𝑒𝑠𝑢𝑙𝑡

However, negative numbers are still messed up

Reconstruction

• We need to apply reciprocals in the sections
where 𝑘 mod 4 = {1, 2}

• We can use a bit test on 𝑘

• And finally, restore the sign

𝑖𝑓 𝑘 + 1 mod 2 = 2
𝑡ℎ𝑒𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 = Τ1 𝑟𝑒𝑠𝑢𝑙𝑡

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑠𝑖𝑔𝑛 × 𝑟𝑒𝑠𝑢𝑙𝑡

If we restore the sign bit we copied off earlier...

Reconstruction

• We need to apply reciprocals in the sections
where 𝑘 mod 4 = {1, 2}

• We can use a bit test on 𝑘

• And finally, restore the sign

𝑖𝑓 𝑘 + 1 mod 2 = 2
𝑡ℎ𝑒𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 = Τ1 𝑟𝑒𝑠𝑢𝑙𝑡

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑠𝑖𝑔𝑛 × 𝑟𝑒𝑠𝑢𝑙𝑡

We get the function correct across the whole numberline

Additive Range Reduction

• Taking an input 𝑥 and reducing it to a smaller range, e.g. −𝜋

2
, 𝜋

2
by

subtracting 𝑘 copies of the whole range 𝐶

• Note the cancellation problem when 𝑥 is close to 𝑘𝐶, e.g. 𝑥 = 22

𝑅 = 𝑥 − 𝑘𝐶 where 𝑘 = 𝑥
1

𝐶

In the TANF example we just used additive range reduction

There is also multiplicative range reductions used for exp() and
log() functions

If you plot what range reduction does, it generates extremely
detailed features from values on the number line

Under floating point, this detail is going to break down the further
you get from zero

Cody & Waite Additive Range Reduction

• To get additional accuracy, we can break 𝐶 into multiple values

• The first value should be exactly machine representable, e.g.

• The reduction calculation is then

𝑅 = 𝑥 − 𝑘 × 𝐶1 − 𝑘 × 𝐶2

𝐶 = 𝐶1 + 𝐶2

𝐶1 =
201

64
= 3.140625

𝐶2 = 𝜋 − 𝐶1 = 9.67653589793 × 10−4

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.9012&rep=rep1&type=pdf

For additional accuracy, we can split the constants into two floating
point values and subtract them from largest to smallest

Called Cody & Waite reduction

Two stage range reduction will take you up to 2^64 = 1.8*10^18

For values larger than 2^64 there are large number techniques

(e.g. binary64 and binary128 libraries will require these)

Double Residue Modular Range Reduction

• Using an analogy, let’s say we need 372 mod 7

• We can break 372 into bits

• Make a table of 𝑖 mod 𝑀 = 7 as a signed residuals

372 = 1011101002

= 256 + 64 + 32 + 16 + 4

𝑚𝑖
+ = 2𝑖 mod 𝑀

𝑚𝑖
− = 2𝑖 mod 𝑀 − 𝑀

There is a more interesting idea “Double Residue Range Reduction”

We can inspect the parameter and break it into bits

We can tabulate what each power-of-2 is mod 2PI

These are the residuals

Double Residue Modular Range Reduction

• Starting with 𝑅 = 0 we visit each non-zero bit in the table summing

• For the example of 372 = 1011101002 mod 7 = 1

𝑅𝑖+1 = 𝑅𝑖 + 𝑚𝑖
∗ where 𝑚𝑖

∗ = ൝
𝑚𝑖

+ if 𝑅𝑖 < 0

𝑚𝑖
− if 𝑅𝑖 ≥ 0

𝑏𝑖𝑡 8 = 1 𝑅 = 0 𝑚7
− = −3

𝑏𝑖𝑡 6 = 1 𝑅 = −3 𝑚6
+ = 1

𝑏𝑖𝑡 5 = 1 𝑅 = −2 𝑚5
+ = 4

𝑏𝑖𝑡 4 = 1 𝑅 = 2 𝑚4
− = −5

𝑏𝑖𝑡 2 = 1 𝑅 = −3 𝑚2
+ = 4

𝑅 = 1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Initialize R = 0

Visit each non-zero bit in the parameter

Look up the residual in the table (based on sign of R)

Sum into R

Following this algorithm, the value of R is guaranteed to stay within
the modular bounds, in this case +/- 2PI

Double Residue Modular Range Reduction

• We can tabulate 𝑥 mod 𝜋 in the same way producing fractional entries

• No matter the size of 𝑥, the value of 𝑅 is guaranteed to stay within ±𝑀

• One additional iteration used to correct the sign of the final result

0 1 -2.14159265359 1.00000000
1 2 -1.14159265359 2.00000000
2 4 -2.28318530718 0.85840734641
3 8 -1.42477796077 1.71681469282
4 16 -2.84955592154 0.292036732051
5 32 -2.55751918949 0.584073464102
6 64 -1.97344572539 1.1681469282
7 128 -0.805298797182 2.33629385641
8 256 -1.61059759436 1.53099505923
9 512 -0.0796025351362 3.06199011845
10 1024 -0.159205070272 2.98238758332

http://rnc7.loria.fr/villalba.pdf

We can do the same calculation with floats

Summing the FP residuals into R

One additional iteration to ensure the correct sign.

Wait, what?

• You transformed a single multiply-subtract into a loop with table lookups?!

Wait.

You just turned a simple multiply-subtract into a loop?

With table lookups?

Wait, what?

• You transformed a single multiply-subtract into a loop with table lookups?!

• Remember, in FPGA land multiplies are repeated additions.

m+ m-

mux

adder

sum carry

Xi

FPGA land doesn’t think of loops as a problem

Wait, what?

3
-
2

C
S
A

m+ m-

X
i

We can take the basic idea and unroll the loop...

Loop unrolling

3
-
2

C
S
A

m+ m-

3
-
2

C
S
A

m+ m-

3
-
2

C
S
A

m+ m-

X
i

3-2 CSA – Carry Save Adder that sums three inputs into two

But now we’ve have too many copies of the tables

The paper shows how to calculate the next table value from the
previous one ...

Loop unrolling

3
-
2

C
S
A

3
-
2

C
S
A

m+ m-

3
-
2

C
S
A

nextnext next

E
X
P

m
a
n
t
i
s
s
a

m+

m-

3
-
2

C
S
A

next

X1

0

So we only need one table

This unrolled model gives us last-bit range reduction in about the
same tree depth as a large multiply-add (but more area)

TAKEAWAY: Things that look dumb and expensive in CPU land may
turn out way cheaper in FPGA land.

Payne & Hanek Reduction

• To reduce extremely large angles > 264 = 1.8 × 1018 into [0, 2𝜋]

• Think of a floating point number as a bit string on the number line

• The question becomes, how many bits of 𝜋 do we need to store?

https://www.csee.umbc.edu/~phatak/645/supl/Ng-ArgReduction.pdf

These techniques work for angles less than 2^64 = 1.8*10^18

There is a cutoff point where additive range reduction stops working

To get past these points, there is Payne & Hanek reduction

Uses a precalculated table with hundreds of bits of PI but only uses
a small number of them

The proof is worth reading for it’s bit-centric thinking

Taylor series suck

• I want you to be deeply suspicious of any tutorial using Taylor series

• Taylor series are approximations around a point, not a range

• Chebyshev described the optimal polynomial approximation

The error of an order 𝑁 polynomial approximation will:

1. Cross the 𝑥 = 0 line 𝑁 + 1 times

2. Approach the ± maximum error 𝑁 + 2 times

Be suspicious of any ADVANCED tutorial using Taylor series

They suck for numerical accuracy for all but the smallest delta

Instead, demand accuracy across the whole range

MINIMIZE the MAXIMUM error

Taylor series suck

• e.g. Approximating 𝑒𝑥 where 𝑥 ∈ −1,1 with an order 3 Taylor series:

𝑡 𝑥 = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6

Approximating exp with an order-3 Taylor series

Shows that it’s accurate at a point, not at across a range

Exponentially inaccurate any distance from the point.

Taylor series suck

• e.g. Approximating 𝑒𝑥 where 𝑥 ∈ −1,1 with an order 3 Taylor series:

• The same with a order 3 minimax polynomial:

𝑡 𝑥 = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6

𝑚 𝑥 = 0.994572447541 +
0.996302027975 𝑥 +
0.542986901612 𝑥2 +
0.178688719292 𝑥3

Using exactly the same number of terms, we can get 10x
improvement in accuracy over the range

The optimal order-N polynomial approximation:

Crosses the x=0 axis 4 times (N+1)

Approaches max error 5 times (N+2)

Taylor series suck

• e.g. Approximating 𝑒𝑥 where 𝑥 ∈ −1,1 with an order 3 Taylor series:

• The same with a order 3 minimax polynomial:

𝑡 𝑥 = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6

𝑚 𝑥 = 0.994572447541 +
0.996302027975 𝑥 +
0.542986901612 𝑥2 +
0.178688719292 𝑥3

Here is the abs error plot on the same scale

Minimax Polynomials

• How to calculate the magic polynomial coefficients?

• Mathematica includes an approximations package not included by default

• Add Needs["FunctionApproximations`"] to your workbook

• Maple has the numapprox package that provides

• Add using(numapprox); to import the whole library

• Sollya contains an interactive environment for numerical approximation

• Build and install under Linux or WSL for Windows 10 Pro, requires additional libraries

• Start on the bash command line using rlwrap -A sollya for an interactive UI

https://sollya.gforge.inria.fr

To calculate accurate polynomial, you need special software
designed to go beyond machine accuracy

Mathematica, Maple and the open source Sollya all have the
necessary code for generating coefficients to arbitrary accuracy

So you want to make a minimax poly

• You get the package, you dive right in and make an approximation

p = RationalInterpolation[Sin[x], {x,5,0}, {x,0,2Pi}]

Let me give you a taste of the process

This really is an art more than a mechanical process

And it can be frustrating as hell

You want a 5th order polynomial approximation of sine

We use the RationalInterpolation function to optimize absolute error

(Minimax optimizes for relative error)

You press the button and ...

The results are... not great

• You get the package, you dive right in and make an approximation

• And it’s not very good

https://sollya.gforge.inria.fr

p = RationalInterpolation[Sin[x], {x,5,0}, {x,0,2Pi}]

0.01319276537537299604760700 +
0.8458094025961083462524744 x +
0.3147340016962934654709353 x^2
-0.4156756303503054556247339 x^3 +
0.09126294154354638019581689 x^4
-0.005809979307104837925728709 x^5

... it’s not very good

1% accuracy over the range

Where are the magical numbers this is supposed to produce?

Reduce the range

• So we reduce the range to ± Τ𝜋 2 and try again

p = RationalInterpolation[Sin[x], {x,5,0}, {x,-Pi/2,Pi/2}]

Let’s try reducing the range to a quarter of a cycle

Weird tiny coefficients

• So we reduce the range to ± Τ𝜋 2 and try again

• Better, abs error = 0.0001342

p = RationalInterpolation[Sin[x], {x,5,0}, {x,-Pi/2,Pi/2}]

-1.616857579657283071911919*10-43 +
0.9999115283796038359707554 x +
2.012779134050306582614705*10-43 x2

-0.1660200042589469732671930 x3

-5.691132864681688705622663*10-44 x4 +
0.007626662151177758312164798 x5

Meh, better

Still not magical – we can match that accuracy with a LERP table

Weird tiny coefficients

• So we reduce the range to ± Τ𝜋 2 and try again

• Better, abs error = 0.0001342

• But we have weird tiny coefficients

p = RationalInterpolation[Sin[x], {x,5,0}, {x,-Pi/2,Pi/2}]

-1.616857579657283071911919*10-43 +
0.9999115283796038359707554 x +
2.012779134050306582614705*10-43 x2

-0.1660200042589469732671930 x3

-5.691132864681688705622663*10-44 x4 +
0.007626662151177758312164798 x5

... plus now we have these weird tiny constants

Every second power

• Looking at the Taylor series for sin 𝑥 it has odd powers

• So we need a minimax polynomial of the form

• Solving for 𝑃 with a single variable gives us

sin 𝑥 ≈ 𝑥 −
𝑥3

6
+

𝑥5

120
−

𝑥7

5040
+

𝑥9

362880
+ ⋯

sin 𝑥 ≈ 𝑥 − 𝑥3𝑃(𝑥2)

𝑃 𝑦 = −
1

𝑦
+

sin 𝑦

𝑦 Τ3 2 where 𝑦 = 𝑥

Check the Taylor series to get some insight

Sine starts with a 1.0 * X and uses every other power

So we need to create a polynomial of the form P(X^2)

Substitute Y = SQRT(X) and solve for P(Y) we get this weird rational

Every second power

• We code a solution with a post reconstruction

a = Sin[x] – x-x^3*P[x^2];
b = Expand[Simplify[a/x^3]];
c = ReplaceAll[b, {x^2->y, x->Sqrt[y]}];
d = Expand[c + P[y]];
f = RationalInterpolation[d, {y,1,0}, {y, -(Pi/2)^2, (Pi/2)^2 }];
g = ReplaceAll[f, {y->x^2}];
h = Expand[x + x^3 * g];

We plug this into the solver ...

Every second power

• We code a solution with a post reconstruction

• NOTE: Sollya is purpose designed for this kind of approximation

• Allows you to control the powers explicitly in the minimax parameters

a = Sin[x] – x-x^3*P[x^2];
b = Expand[Simplify[a/x^3]];
c = ReplaceAll[b, {x^2->y, x->Sqrt[y]}];
d = Expand[c + P[y]];
f = RationalInterpolation[d, {y,1,0}, {y, -(Pi/2)^2, (Pi/2)^2 }];
g = ReplaceAll[f, {y->x^2}];
h = Expand[x + x^3 * g];

> remez(sin(x), [|0,2,4|], [|-pi/2, pi/2|], absolute);

NOTE: Sollya has specific controls for generating arbitrary powers

The tools in Mathematica and Maple are starting to look old

Looks good, performs bad

• We code a solution with a post reconstruction

a = Sin[x] – x-x^3*P[x^2];
b = Expand[Simplify[a/x^3]];
c = ReplaceAll[b, {x^2->y, x->Sqrt[y]}];
d = Expand[c + P[y]];
f = RationalInterpolation[d, {y,1,0}, {y, -(Pi/2)^2, (Pi/2)^2 }];
g = ReplaceAll[f, {y->x^2}];
h = Expand[x + x^3 * g];

x - 0.16701898465403695152 x^3 + 0.0081482599129579983812 x^5

Polynomial looks good!

Performance looks bad

A tenth of the accuracy of the every-power version.

Reduce the range again

• Let’s try a smaller range, this time Τ𝜋 8

a = Sin[x] - x-x^3*P[x^2];
b = Expand[Simplify[a/x^3]];
c = ReplaceAll[b, {x^2->y, x->Sqrt[y]}];
d = Expand[c + P[y]];
f = RationalInterpolation[d, {y,1,0}, {y, -(Pi/8)^2, (Pi/8)^2 }];
g = ReplaceAll[f, {y->x^2}];
h = Expand[x + x^3 * g];

OK, deep breath, we reduce the range further

We can make up the difference with a larger table
in Second Range Reduction

Reduce the range again

• Let’s try a smaller range, this time Τ±𝜋 8

a = Sin[x] - x-x^3*P[x^2];
b = Expand[Simplify[a/x^3]];
c = ReplaceAll[b, {x^2->y, x->Sqrt[y]}];
d = Expand[c + P[y]];
f = RationalInterpolation[d, {y,1,0}, {y, -(Pi/8)^2, (Pi/8)^2 }];
g = ReplaceAll[f, {y->x^2}];
h = Expand[x + x^3 * g];

x - 0.16667131080141501286 x^3 + 0.0083806041024044387360 x^5

Looking better, getting somewhere

Abs Error around 0.6 X 10^-8

Relative error looking pretty biased positive

Reduce the range some more!

• Let’s try the half range 0, Τ𝜋 8

a = Sin[x] - x-x^3*P[x^2];
b = Expand[Simplify[a/x^3]];
c = ReplaceAll[b, {x^2->y, x->Sqrt[y]}];
d = Expand[c + P[y]];
f = MiniMaxApproximation[d, {y, { 0, (Pi/8)^2 }, 1,0 }];
g = ReplaceAll[f, {y->x^2}];
h = Expand[x + x^3 * g];

Switching to Minimax Approximation to optimize for relative error

Let’s only approximate the positive half of the function

Reduce the range some more!

• Let’s try the half range 0, Τ𝜋 8

• Minimax/Remez can’t handle zeros in the range

a = Sin[x] - x-x^3*P[x^2];
b = Expand[Simplify[a/x^3]];
c = ReplaceAll[b, {x^2->y, x->Sqrt[y]}];
d = Expand[c + P[y]];
f = MiniMaxApproximation[d, {y, { 0, (Pi/8)^2 }, 1,0 }];
g = ReplaceAll[f, {y->x^2}];
h = Expand[x + x^3 * g];

KABOOM

Minimax can’t handle zeros in the range

We could manipulate the polynomial to remove zero crossings and
add them back at reconstruction, or...

Skip the zero crossing

• Starting at 1e-10 instead of zero

a = Sin[x] - x-x^3*P[x^2];
b = Expand[Simplify[a/x^3]];
c = ReplaceAll[b, {x^2->y, x->Sqrt[y]}];
d = Expand[c + P[y]];
f = MiniMaxApproximation[d, {y, { 1*^-10, (Pi/8)^2 }, 1,0 }];
g = ReplaceAll[f, {y->x^2}];
h = Expand[x + x^3 * g];

... offset the range a tiny fraction past the zero

(Stupid hacks)

Skip the zero crossing

• Starting at 1e-10 instead of zero

a = Sin[x] - x-x^3*P[x^2];
b = Expand[Simplify[a/x^3]];
c = ReplaceAll[b, {x^2->y, x->Sqrt[y]}];
d = Expand[c + P[y]];
f = MiniMaxApproximation[d, {y, { 1*^-10, (Pi/8)^2 }, 1,0 }];
g = ReplaceAll[f, {y->x^2}];
h = Expand[x + x^3 * g];

x -0.16666607646888027215 x^3 + 0.0083027716433449299798 x^5

Looking good!

Well formed polynomial, relative and absolute errors about the
same

Moar accuracy!

• How about adding another power

a = Sin[x] - x-x^3*P[x^2];
b = Expand[Simplify[a/x^3]];
c = ReplaceAll[b, {x^2->y, x->Sqrt[y]}];
d = Expand[c + P[y]];
f = MiniMaxApproximation[d, {y, { 1*^-10, (Pi/8)^2 }, 2,0 }];
g = ReplaceAll[f, {y->x^2}];
h = Expand[x + x^3 * g];

Let’s crank up the powers

A 7th order polynomial (after reconstruction)

Moar accuracy!

• How about adding another power

a = Sin[x] - x-x^3*P[x^2];
b = Expand[Simplify[a/x^3]];
c = ReplaceAll[b, {x^2->y, x->Sqrt[y]}];
d = Expand[c + P[y]];
f = MiniMaxApproximation[d, {y, { 1*^-10,(Pi/8)^2}, 2,0 }];
g = ReplaceAll[f, {y->x^2}];
h = Expand[x + x^3 * g];

x -0.16666666635050979363 x^3 + 0.0083332964926239037349 x^5 -0.00019777591579068317932 x^7

Finally where we want to be

Machine coefficients

• We have exquisite coefficients, now we need to turn them into code

Q: What happens when we take these finely balanced
coefficients and truncate them to machine numbers?

A: It gets pretty ugly

https://sollya.gforge.inria.fr

So we have a set of beautifully optimal coefficients and now we
need to use them in a program

Just truncating and rounding them can undo all the work you have
done (see the ESIN instruction in PS2 in the previous talk)

Machine coefficients

• We can reform the minimax inequality to solve with machine constants

• If Mathematica says the best approximation to cos 𝑥 over 0, Τ𝜋 4 is

with an absolute error 𝜀 = 𝑐𝑜𝑠 − 𝑝 0, Τ𝜋 4 = 0.0001135879. . .

• We can optimize the polynomial as integers-over-powers-of-2

sin 𝑥 ≈ 𝐶1𝑥 + 𝐶2𝑥3 + 𝑥5𝑃(𝑥2)

𝑝 = 0.9998864206 + 0.00469021603𝑥 − 0.5303088665𝑥2 + 0.06304636099𝑥3

We can try to round the first few, most significant values to
machine numbers

Then use MINIMAX to re-fit the rest of the coefficients

This assumes our coefficients cannot be improved upon

Let’s look at the coefficients for COS

Machine coefficients

• Search for 𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℤ such that we minimize

• A naïve approach directly translates the coefficients, 𝜀 = 0.00069397. . .

• After optimization, 𝜀 = 0.0002441406250

max
0 ≤ 𝑥 ≤ 𝜋/4 cos 𝑥 −

𝑎0

212
+

𝑎1

210
𝑥 +

𝑎2

26
𝑥2 +

𝑎3

24
𝑥3

ො𝑝 =
212

212
+

5

210
𝑥 −

34

26
𝑥2 +

1

24
𝑥3

𝑝∗ =
4096

212
+

6

210
𝑥 −

34

26
𝑥2 +

1

24
𝑥3

We can try different representations of them as integers over
powers-of-2

If you directly translate the values you get about 6x error

After optimization we can find a solution that only has 2x error

Machine Optimized Minimax

• Sollya implements this and more with fpminimax

• Uses lattice basis reduction, NP-Hard solution to the Shortest Vector Problem

> t = double(pi/64);
> P = fpminimax(sin(x), [|0,1,3,5|], [|single...|], [-t;t], fixed, absolute);
> print(P);
8.3420276641845703125e-3 * x^5 + -0.166666686534881591796875 * x^3 + x
> printexpansion(P);
x * (0x3ff0000000000000 + x^2 * (0xbfc5555580000000 + x^2 * 0x3f8115a000000000))
> display=powers!;
> print(P);
34989 * 2^(-22) * x^5 + -2796203 * 2^(-24) * x^3 + x
> display=default!;
> dirtyinfnorm(sin(x)-P(x), [-pi/64;pi/64]);
3.85876994351300237302393826750487941287415650799e-13
>

http://sollya.gforge.inria.fr/sollya-3.0/help.php?name=fpminimax

https://calcul.math.cnrs.fr/attachments/spip/Documents/Journees/nov2010/N-Brisebarre.pdf

This is an area where Mathematica and Maple are falling behind

The state of the art, open source Sollya package can do this for free

Uses an NP-Hard algorithm called “LLL” after LENSTRA, LENSTRA &
LOVASZ to optimize the problem over a “lattice basis”, which I do
not pretend to understand yet.

They claim to have applied this to Intel’s “ERF” function and
replaced an order 19 polynomial with just 2 coefficients with the
same accuracy.

Recip, Sqrt, InvSqrt

• Three closely related functions

• Let’s look at reciprocal Τ1 (1 + 𝑋)

• Taylor series converges super slowly

• Minimax converges not much better

• Let’s calculate Τ1 10.378 using signed
16.16 fixed point values

New subject, reciprocals and INVERSE SQRT

Taylor series converges way too slowly

Not a good fit for polynomial approximation

We can EVALUATE it though

A worked example, 1/10.378 using 16.16 fixed point values

Recip, Sqrt, InvSqrt

• For an 𝑛-bit result we use 𝑘 = Τ𝑛 4 bit chunks

• The input X reduced to 1 ≤ 𝑌 < 2 by counting leading zeros (_lzcnt)

• Same as 𝑌 = Τ𝑋 2 Log2 𝑋

• Shift until the leading 1. 𝑛𝑛𝑛 is at the decimal point

0000000000001010.0110000011000100

0000000000000001.0100110000011000

We want an N-bit result, we break it into N/4-bit chunks

Reduce the number to [1,2] by counting leading zeros and shifting

(floats already have the mantissa stored like this)

Recip, Sqrt, InvSqrt

• We use a table to approximate the first 𝑘-bits of the reciprocal
𝐴 = 𝑌 × ෠𝑅 − 1

• ෠𝑅 is the function Τ1 𝑌 truncated to the 𝑘-th bit

• The table index comes from the first 𝑘-bits after the decimal

0000000000000001.0100101101001000

index = 4
෠𝑅 = table[4] = 0.8000

{ 1.0000000000000000, 0.9411764705882350, 0.8888888888888889, 0.8421052631578946,
0.8000000000000000, 0.7619047619047619, 0.7272727272727273, 0.6956521739130435,
0.6666666666666666, 0.6400000000000000, 0.6153846153846154, 0.5925925925925926,
0.5714285714285714, 0.5517241379310345, 0.5333333333333333, 0.5161290322580645 }

We can use a table to remove the first K-bits

A multiply by 1/K, looked up using k-bits as the index

Recip, Sqrt, InvSqrt

• 𝐴 = 𝑌 × ෠𝑅 − 1 = 1.29725 × 0.8 − 1.0 = 0.0378

• Next the function 𝐵 = 𝑓 𝐴 will approximate the Taylor series 1/𝑌

• But we know that −2−𝑘 < 𝐴 < 2−𝑘 (we cancelled the bits) so

𝐴 = 𝐴2𝑧2 + 𝐴3𝑧3 + 𝐴4𝑧4 + ⋯ where 𝑧 = 2−𝑘

𝑓 𝐴 = 𝐶𝑜 + 𝐶1𝐴 + 𝐶2𝐴2 + 𝐶3𝐴3 + 𝐶4𝐴4 + ⋯

0000000000000000.0000100110101101𝐴 =

Next we break the remaining bits into K-bit chunks

Treat them as integers

We’re going to Taylor series gives us a simple sum of powers (I
know I know)

We re-express A as the sum of small integers times 2^-k

We know that the first A is cancelled, leaving only A2, A3, A4 ...

Recip, Sqrt, InvSqrt

• Inserting 𝐴 into 𝑓 𝐴 gives us

• Expanding and removing all terms less than 2−4𝑘

𝑓 𝐴 = 𝐶0 + 𝐶1 𝐴2𝑧2 + 𝐴3𝑧3 + 𝐴4𝑧4

+𝐶2 𝐴2𝑧2 + 𝐴3𝑧3 + 𝐴4𝑧4

+𝐶3 𝐴2𝑧2 + 𝐴3𝑧3 + 𝐴4𝑧4

+𝐶4 𝐴2𝑧2 + 𝐴3𝑧3 + 𝐴4𝑧4 + ⋯

𝑓 𝐴 ≈ 𝐶0 + 𝐶1𝐴 + 𝐶2𝐴2
2𝑧4 + 2𝐶2𝐴2𝐴3𝑧5 + 𝐶3𝐴2

3𝑧6

http://ftp.cs.ucla.edu/pub/milos/RECIP/paper.pdf

Inserting this re-expressed A into the Taylor series for 1/X

Multiply through

Remove all values < 2^N (we only want an N-bit approximation)

We are left with a simple sum-of-terms

Each of the Z terms is just a shift of K-bits down the bit string

Recip, Sqrt, InvSqrt

• What are the 𝐶𝑛 coefficients? From the Taylor series…

1

1 + 𝐴
≈ 1 − 𝐴 + 𝐴2

2𝑧4 + 2𝐴2𝐴3𝑧5 − 𝐴2
3𝑧6

• For Sqrt we get

1 + 𝐴 ≈ 1 +
1

2
𝐴 −

1

8
𝐴2

2𝑧4 −
1

4
𝐴2𝐴3𝑧5 +

1

16
𝐴2

3𝑧6

• Inverse Sqrt we get
1

1 + 𝐴
≈ 1 −

1

2
𝐴 +

3

8
𝐴2

2𝑧4 +
3

4
𝐴2𝐴3𝑧5 −

5

16
𝐴2

3𝑧6

So what are the C constants?

For RECIP, they are all +1 or -1

For SQRT we have powers-of-2

For INVSQRT we have multiples of 1/16

Recip, Sqrt, InvSqrt

• The values for 𝐴2 and 𝐴3 are the next 𝑘-bit chunks of 𝐴

0000000000000000.0000100110101101

𝐴2 = 9 𝐴3 = 10

𝑓 𝐴 = 1 − 𝐴 + 𝐴2
2𝑧4 + 2𝐴2𝐴3𝑧5 − 𝐴2

3𝑧6

= 1 − 0.0378 + 92 × 2−4𝑘 + 9 × 10 × 2 × 2−5𝑘 − 93 × 2−6𝑘

Back to the reciprocal

We have three terms to calculate
- A2 squared

- A2 A3

- A2 cubed

For reciprocal, the constants are just a sign flip of the A2 CUBED
term

Recip, Sqrt, InvSqrt

• Looking at the bits and summing the subexpressions

0000000000000000.11110110010110111 − 𝐴 =

92 × 2−4𝑘=

2 × 9 × 10 × 2−5𝑘 =

93 × 2−6𝑘 =

0000000000000000.0000000001010001

0000000000000000.0000000000001011

0000000000000000.0000000000000010

0000000000000000.0000100110100100𝐴 =

0000000000000000.11110110101011001 − 𝐴 + 𝑓2 + 𝑓3 − 𝑓4 =

Working through each subexpression

Notice how the A2 CUBED is shifted so far down that only the top
few bits are required

We can short circuit the full multiply here to get only the top bits

We then sum each subexpression to get the bitstring at the bottom

Recip, Sqrt, InvSqrt

• To reconstruct, calculate 𝑔 𝑌 = 𝑀 × 𝑓 𝑌

• For reciprocal, 𝑀 = ෠𝑅

• For square root, 𝑀 = Τ1 ෠𝑅

• For inverse sqrt, 𝑀 = ෠𝑅

0000000000000000.1111011010101100𝑓 𝐴 =

= 0.963562011719

෠𝑅 × 𝑓 𝐴 = 0.8000 × 0.963562011719
= 0.770843505859

Final reconstruction requires a multiply by a constant

For reciprocal, this is just the value R = 1/Y we looked up in the
table earlier.

For the other functions, it’s a lookup into a separate table indexed
from the original 4-bits of A

Multiply through and …

Recip, Sqrt, InvSqrt

• Final step is to reverse the initial count-leading-zeros shift

• Note that 𝑏𝑖𝑡𝑐𝑜𝑢𝑛𝑡 can be a negative shift

• For Sqrt and InvSqrt shift by 2 Τ−𝑏𝑖𝑡𝑐𝑜𝑢𝑛𝑡 2

• This requires an additional multiply by 2 if 𝑏𝑖𝑡𝑐𝑜𝑢𝑛𝑡 is odd

෠𝑅 × 𝑓 𝐴 = 0.770843505859

෠𝑅 × 𝑓 𝐴 × 2−3 = 0.0963439941406

Τ1 10.378 = 0.0963576797071

Δ = 0.0000136855664477

0000.00011000101010101110011

0000.0001100010101010

0000.1100010101010101

The final reconstruction step is to shift the number back to where
we started (remember the Leading-Zero-Count?)

Congratulations, we reached the end!

And got last-digit accuracy for a 16-bit fractional value.

TAKEAWAY: You can’t look at decimal error values and intuit just
how well an approximation is working

What about the Magic Number InvSqrt?

• Hacker’s Delight 2nd Ed has a chapter on the Quake style InvSqrt

• Gives a rel. error of 0.0017513304

float rsqrt(float x0)
{

union { int ix; float x; };
x = x0;
float xhalf = 0.5f * x;
ix = 0x5F375A82 - (ix >> 1);
x = x * (1.5f - xhalf*x*x);
return x;

}

http://www.lomont.org/papers/2003/InvSqrt.pdf

What about the Quake INVSQRT trick?

It can be improved upon

Magic Number InvSqrt

• Changing the 1.5f in the Newton–Raphson iteration to 1.5008909f
improves rel. error from 0.00175 to 0.000892

float rsqrt(float x0)
{

union { int ix; float x; };
x = x0;
float xhalf = 0.5f * x;
ix = 0x5F375A82 - (ix >> 1);
x = x * (1.5008909f - xhalf*x*x);
return x;

}

Changing the constant in the Newton Raphson iteration from 2.0 to
this can halve the error

Magic Number InvSqrt

• Adding a second iteration reduces rel. error to -0.0000047

• This requires a different starting constant 0x5F37599E

float rsqrt(float x0)
{
union { int ix; float x; };
x = x0;
float xhalf = 0.5f * x;
ix = 0x5F37599E - (ix >> 1);
x = x * (1.5f - xhalf*x*x);
x = x * (1.5f - xhalf*x*x);
return x;

}

Adding a second NR iteration can give you really low error (in the
normal range).

Magic Number InvSqrt

• Removing the Newton-Raphson step altogether gives rel. error of 0.035

• Substantially faster, only two instructions plus a constant load for 0x5F37624F

float rsqrt(float x0)
{
union { int ix; float x; };
x = x0;
ix = 0x5F37624F - (ix >> 1);
return x;

}

If you want a dirty hack, removing the NR iteration gets you 3.5%
error

Substantially faster

FPGA sincospi

• Table-based sincospi for fixed point subdivides to Τ𝜋 64 or more

• Approximation using Taylor series

s q o A Yred

Sin/Cos table

xor

× 𝜋

Τ𝑍2 2 Τ𝑍3 6

−
× ×

× ×

−

− −

+

swap / negate

sin 𝐴 cos 𝑍 cos 𝐴 cos 𝑍 sin 𝐴 sin 𝑍 cos 𝐴 sin 𝑍

𝑍

sin 𝜋𝑋 cos 𝜋𝑋

We’ve approximated some functions, but expressing them in FPGA
sometimes involves very different thinking

Not just using parallelism, some of the latest work changes the
game.

This circuit is for a SIN-COS-PI function where the input is a value
from [-1, 1] in fixed point

Individual bits are taken off the top

S = SIGN

Q = QUADRANT

O = OCTANT

There is an “MULTIPLY-BY-PI” unit

And two units that directly calculate the Taylor sub-expressions

Z^2/2 and Z-Z^3/2

Black box sub-expressions

• Computing Τ𝑍2 2 we covered earlier,
using a squarer and a shift in the
output

• But how to calculate 𝑍 − Τ𝑍3 6
without serializing everything?

• Remember building the squarer?

Τ𝑍2 2

−

Τ𝑍3 6

𝑍

Τcos 𝑥 ≈ 1 − 𝑍2 2 Τsin 𝑥 ≈ 𝑍 − 𝑍3 6

So the problem here is to calculate these subexpressions efficiently

We know how to SQUARE, and a DIVIDE-BY-2 is just a shift, which
is just wiring.

How to calculate Z MINUS Z^3 DIVIDED BY 6

Let’s look at the bits

Bitheaps

• If you think of the multiply as a
column-of-sums

1 100100010001
0 000000000000.
0 000000000000..
0 000000000000...
1 100100010001....
0 000000000000.....
0 000000000000......
0 000000000000.......
1 100100010001........
0 000000000000.........
0 000000000000..........
1 100100010001...........

00000000010100100011001100100001

Remember the SQUARER

A bit of the result is the sum of the column of bit above

Bitheaps

• If you think of the multiply as a
column-of-sums

• And number you are multiplying by is
fixed

1 aaaaaaaaaaaa
0 000000000000.
0 000000000000..
0 000000000000...
1 bbbbbbbbbbbb....
0 000000000000.....
0 000000000000......
0 000000000000.......
1 cccccccccccc........
0 000000000000.........
0 000000000000..........
1 dddddddddddd...........

If our multiplier is constant ...

Bitheaps

• If you think of the multiply as a
column-of-sums

• And number you are multiplying by is
fixed

• If we collapse the zeros, we only need
to sum the bits in the remaining
columns

....................a...........

...................00a..........

..................0000a.........

.................000000a........

................bbbbb000a.......

...............000000b000a......

..............00000000b000a.....

.............0000000000b000a....

............ccccccccc000b000a...

...........0000000000c000b000a..

..........000000000000c000b000a.

.........dddddddddddd00c000b000a

We can TETRIS style collapse the bits

Bitheaps

• If you think of the multiply as a
column-of-sums

• And number you are multiplying by is
fixed

• If we collapse the zeros, we only need
to sum the bits in the remaining
columns

....................a...........

.....................a..........

......................a.........

.......................a........

................bbbbb...a.......

...............000000b...a......

..............00000000b...a.....

.............0000000000b...a....

............ccccccccc000b...a...

...........0000000000c000b...a..

..........000000000000c000b...a.

.........dddddddddddd00c000b...a

Removes the zeros

Bitheaps

• If you think of the multiply as a
column-of-sums

• And number you are multiplying by is
fixed

• If we collapse the zeros, we only need
to sum the bits in the remaining
columns

................................

................................

................................

....................a...........

................bbbbba..........

...............000000ba.........

..............00000000ba........

.............0000000000ba.......

............ccccccccc000ba......

...........0000000000c000ba.....

..........000000000000c000ba....

.........dddddddddddd00c000baaaa

One

Bitheaps

• If you think of the multiply as a
column-of-sums

• And number you are multiplying by is
fixed

• If we collapse the zeros, we only need
to sum the bits in the remaining
columns

................................

................................

................................

....................a...........

................bbbbba..........

.....................ba.........

......................ba........

.......................ba.......

............ccccccccc...ba......

...........0000000000c...ba.....

..........000000000000c...ba....

.........dddddddddddd00c...baaaa

by

Bitheaps

• If you think of the multiply as a
column-of-sums

• And number you are multiplying by is
fixed

• If we collapse the zeros, we only need
to sum the bits in the remaining
columns

................................

................................

................................

................................

................................

................................

....................a...........

................bbbbba..........

............cccccccccba.........

...........0000000000cba........

..........000000000000cbaaaa....

.........dddddddddddd00cbbbbaaaa

Bitheaps

• If you think of the multiply as a
column-of-sums

• And number you are multiplying by is
fixed

• If we collapse the zeros, we only need
to sum the bits in the remaining
columns

................................

................................

................................

................................

................................

................................

....................a...........

................bbbbba..........

............cccccccccba.........

.....................cba........

......................cbaaaa....

.........dddddddddddd..cbbbbaaaa

one

Bitheaps

• If you think of the multiply as a
column-of-sums

• And number you are multiplying by is
fixed

• If we collapse the zeros, we only need
to sum the bits in the remaining
columns

• This is a bitheap

................................

................................

................................

................................

................................

................................

................................

................................

....................a...........

................bbbbbaaa........

............cccccccccbbbaaaa....

.........ddddddddddddcccbbbbaaaa

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00738412v2

To make us a BITHEAP

If we label each bit with where it came from, we have everything we
need to evaluate the expression

We can also label each bit with timings. because some bits may
appear later than others

Bitheap Arithmetic and Evaluation

• The sum or product of two bitheaps is another bitheap

• By notating each bit with it’s place value position, we can collapse complex
expressions into a single bitheap

• Evaluating a bitheap is done using a Compressor Tree

https://www.epfl.ch/labs/lap/wp-content/uploads/2018/05/ParandehAfsharJan08_EfficientSynthesisOfCompressorTreesOnFpgas_ASPDAC08.pdf

(3:2) Counters (3,3;4)GPC

(5,5;4)GPC

(3,5;4)GPC

Bitheaps have an arithmetic – there are rules for sum and product
that produce bitheaps

The result is evaluated using a Compressor Tree made from General
Purpose Counters (GPCs)

Simple counters will sum a single column and produce N-bits of
output

GPCs can sum multiple columns and produce N-bit sums with place
value (e.g. the MSBs are counted as 2)

Layers of GPCs collapse the bitheap into a final sum – see the paper
for the algorithm

Flopoco

• Flopoco, an open source app for generating VHDL for math operations

• Now >10 years old, active research platform (e.g. includes Posit generators!)

• Install stable v4.1.3, as the latest v5.0 under development is a ground-up rewrite

• Installs under Linux or WSL in Windows 10

• The usual Linux find-and-compile-an-academic-library nightmare

• But if I can do it, you can do it

https://hal.inria.fr/hal-02161527/document

$./flopoco FixSinCos
FixSinCos: Computes (1-2^(-w)) sin(pi*x) and (1-2^(-w)) cos(pi*x) for x in -[1,1[, using
tables and multipliers.

lsb (int): weight of the LSB of the input and outputs
method (int): 0 for table- and mult-based, 1 for traditional CORDIC, 2 for reduced-iteration

CORDIC (optional, default value is 0)

Flopoco is an actively developed FPGA math generator

Contains routines that generate optimized VHDL for your design –
you can specify how many bits and which algorithms to use

Generates tables, entities, processes, timings and public interfaces

One of the many operators is exactly this SinCosPi generator for any
number of bits.

TAKEAWAY: If you are just plugging together vendor supplied
operators, you can upgrade to modern methods today

Flopoco SinCosPi

• To generate the SinCosPi function described above:

• Generates VHDL for the component

• Outputs the bitheaps for ΤZ2 2 and Z3/6

• Bits arrive at different times

• Hover mouse over bits in .svg figures
for more information

• 32-bit SinCosPi in 2 clocks at 300MHz

http://perso.citi-lab.fr/fdedinec/recherche/publis/2013-HEART-SinCos.pdf

$./flopoco frequency=300 target=Virtex6 FixSinCos lsb=-32 method=0
name=MyFixedPointSinCos generatefigures=1 outputfile=MyFixSinCosPi.vhdl

http://flopoco.gforge.inria.fr/bib/flopoco.html

Generates a VHDL package to any number of bits of accuracy

Can generate .svg images – hover your mouse over the bits to see
where they came from and their timings

TAKEAWAY: If you are just plugging together vendor supplied
operators, upgrade to modern methods

Bipartite tables

• Bipartite tables is a method for fitting more accuracy into less storage

• First we split a 0.5,1.0 mantissa into three sections of 𝑘-bits (where 𝑘 = 𝑛/3)

• Then we take the order-1 Taylor expansion of a function 𝑓 𝑥

• And substitute the order-0 Taylor expansion of 𝑓′ 𝑥1 + 𝑥22−2𝑘

𝑥 ≈ 𝑥1 + 𝑥22−𝑘 + 𝑥32−2𝑘

𝑥1 𝑥2 𝑥3𝑥 =

𝑓 𝑥 = 𝑓 𝑥1 + 𝑥22−𝑘 + 𝑥32−2𝑘𝑓′ 𝑥1 + 𝑥22−𝑘 + 𝜀1

𝑓 𝑥 = 𝑓 𝑥1 + 𝑥22−𝑘 + 𝑥32−2𝑘𝑓′ 𝑥1 + 𝜀1 + 𝜀2

Next we’re going to have another look into lookup tables.

For low accuracy functions, tabulating every entry in the n-bit range
is totally possible.

On FPGA you are balancing the table storage vs. the number of
gates for a full, last bit accurate calculation, and sometimes the full
table wins.

Bipartite tables were invented to squeeze fully tabulated functions
into a smaller space

Designed for parameters in [0.5, 1.0]

We divide the parameter into three K-bit chunks

Taylor expand an arbitrary function F(X)

Then substitute the derivitave term with a simpler approximation

Bipartite tables

• This gives us the Bipartite formula

where

• The error proves that a function can be approximated with 𝑛-bits of accuracy by
the sum of 2 terms looked up using Τ2𝑛 3-bit table indexes

𝑓 𝑥 = 𝛼 𝑥1, 𝑥2 + 𝛽 𝑥1, 𝑥3 + 𝜀

𝛼 𝑥1, 𝑥2 = 𝑓 𝑥1 + 𝑥22−𝑘

𝛽 𝑥1, 𝑥3 = 𝑥32−2𝑘𝑓′ 𝑥1

and 𝜀 ≤ 1

2
2−4𝑘 + 2−3𝑘 max 𝑓′′ ≈ 2−3𝑘 max 𝑓′′

http://perso.ens-lyon.fr/jean-michel.muller/MullerDevReliableComputing99.pdf

x-1 x-2 x-3 x-4 x-5 x-6

TIV TO

+

Doing this we can guarantee that the error is less than 2^-3K so it
never appears in the output

We then look up the values in two tables of size 2N/3 instead of
2^N

Sum the result

Bipartite tables

• Applying this to the reciprocal 𝑓 𝑥 = Τ1 (1 + 𝑥) over [0.5, 1.0]

• For a 12-bit table:

• Set 𝑘 = 4 to produce two tables of 256 entries = 8-bit index

• The 𝛼 table (TIV) must store 12-bit values

• The 𝛽 table (TO) has values where the most significant ~2𝑘 = 8-bits are zero

TIV TO

Apply this to the reciprocal for a 12-bit table

K = 4, producing two 8-bit tables with 256 entries

Also, the leading bits of the BETA table are all zeros, do not need to
store them

Terminology:

- TIV = Table of Initial Values

- TO = Table of Offsets

Bipartite tables

• Reconstruction produces a full tabulation of 1/(1+x) over 4096 entries

• The abs error is guaranteed to be below 2−3𝑘 max 𝑓′′ = 0.0001447

Using the two 256-entry tables we can reconstruct the full 4096
entries

The reconstruction error is guaranteed below 0.0001447

Bipartite tables

• The same exercise with 𝑓 𝑥 = 𝑒𝑥 gives us tables with error < 0.004025

TIV TO

Absolute Error

Applying the same to EXP function

We get an error below 0.004 from the two tables

(Yeah, not what’s diagrammed, I’m doing something wrong – but it
works! No really!)

Tripartite tables

• This process can generate Tripartite tables with 𝑘 = 𝑛/5 bits per section

where

• Giving us a largest table size of 3𝑛/5 address bits

𝑥1 𝑥2 𝑥3𝑥 = 𝑥4 𝑥5

𝑓 𝑥 = 𝛾 𝑥1, 𝑥2, 𝑥3 + 𝛿 𝑥1, 𝑥2, x4 + 𝜃 𝑥1, 𝑥5 + 𝜀

𝛾 𝑥1, 𝑥2, 𝑥3 = 𝑓 𝑥1 + 𝑥22−𝑘 + 𝑥32−2𝑘

𝛿 𝑥1, 𝑥2, 𝑥4 = 𝑥42−3𝑘𝑓′ 𝑥1 + 𝑥22−𝑘

𝜃 𝑥1, 𝑥5 = 𝑥52−4𝑘𝑓′ 𝑥1

and 𝜀 ≤ 1

2
2−6𝑘 + 2 × 2−5𝑘 max 𝑓′′ ≈ 2−5𝑘+1 max 𝑓′′

We can subdivide the mantissa further and produce Tripartite tables
using k = n/5 bits per section

Lower error guarantees, slightly larger tables

- Tables an OK size for binary32 functions

- Tables too large for binary64 evaluation

There is of course a generalization of the Multipartite idea to any
number of divisions, with the usual diminishing returns for the
complexity.

There is also a generalization to higher orders of Taylor series,
producing a cascaded tree of tables to be summed in parallel.

However, producing many additions to avoid a single multiplication
quickly becomes silly.

Multipartite tables

• The theory has been extended and generalized, e.g. here 𝛼 = 4, 𝛾 = 2

Stored values

Generated by
Symmetry

TIV

TO

Only one gradient is chosen per block of the TIV and used for each
subsection, so chose a representative one

This is SIN over [0, Pi/4] with 16 INITIAL VALUES and 4 OFFSETS,
but using symmetry to double that number

This halves the size of the TO (Table of Offsets) and only takes an
XOR on the address bits

General Multipartite tables

• General Multipartite architectures can get very interesting

TIV TO2
TO1 TO0

+

XORs

TABLE

XORs

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00542210/file/2005-TC-Multipartite.pdf

General Multipartite Tables can get wild

Here the first bit of the green integer is treated as a sign bit that
negates a section of the address and output bits to reflect the TO
points

The wins from halving the table size more than make up for the
increased circuitry

NOTE: FloPoCo can generate multipartite tables of arbitrary
functions using Sollya internally to evaluate the tables

Gal’s Accurate Tables

• By adding small deviations from the evaluation point, you can add
orders of magnitude increased accuracy for the same storage

Probably the most difficult part of this talk to explain as it’s not very
visual

When using table lookups at non-power of 2 points (e.g. multiples
of PI/64)

We approximate the function at that value and encode it into a
stored value, e.g. a float

If we were allowed to diverge slightly from the evaluation point, we
may be able to find a much better machine value to encode

Store both the new argument and the encoded value in the table

Finding these points involves a massive search and optimization
problem, but for mission critical tables the work can be valuable

Evaluating Trig at Regular Steps

• We know that cos 𝑎 + 𝑏 = cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏

• To evaluate this at regular angle steps of 𝜃

• This is the “Coupled” or “Standard Quadrature” oscillator

• It takes 4 multiplies and two add/subs. Can we do this quicker?

Precalculate S = sin 𝜃
C = cos 𝜃

Set 𝑥0 = 0, 𝑦0 = 1
Iterate:

𝑥𝑛 = 𝑥𝑛−1 ∗ 𝐶 + 𝑦𝑛−1 ∗ S
𝑦𝑛 = 𝑦𝑛−1 ∗ 𝐶 − 𝑥𝑛−1 ∗ S

Sometimes you need to evaluate sines on a grid – making sounds,
waves, modeling, etc.

There are fast ways to do this without using trig

The DSP world knows these are Discrete Oscillators

The canonical one is the Coupled Quadrature model

Biquad Oscillator

• We can use a single multiply-add:

• Produces two copies of the cosine, phase shifted by 𝜃 (e.g. one step)

cos 𝜙 + 𝜃 = 2 cos 𝜃 cos 𝜙 − cos 𝜙 − 𝜃

𝑥𝑛 = 2 cos 𝑏 𝑥𝑛−1 − 𝑦𝑛−1

𝑦𝑛 = 𝑥𝑛−1

The Biquad oscillator takes a single MULTIPLY-ADD and a swap

It generates a sine wave and another offset by one step

Digital Waveguide

• What if you want to produce both sine and cosine?

• Produces both signals in quadrature, but at different magnitudes

𝑡 = cos 𝜃 𝑥𝑛−1 + 𝑦𝑛−1

𝑥𝑛 = 𝑡 − 𝑦𝑛−1

𝑦𝑛 = 𝑡 + 𝑥𝑛−1

Want to produce both SIN and COS at the same time?

If you don’t mind them being at different amplitudes, you can get
quadrature

Staggered Update

• To fix the magnitudes we can loosen phase preconditions

• Produces unit magnitude waves offset by Τ𝜃 2 from quadrature

𝑘 = 2 sin Τ𝜃 2
𝑦𝑛 = 𝑦𝑛−1 − 𝑘𝑥𝑛−1

𝑥𝑛 = 𝑥𝑛−1 + 𝑘𝑦𝑛

You need the SIN and COS to be the same amplitude?

OK, we can get them cheaper but not at exactly 90 DEGREES offset

The Underlying Theory

• Each of these can be written in matrix form

• The preconditions for stable oscillation are:

𝑥𝑛

𝑦𝑛
=

𝑎 𝑏
𝑐 𝑑

𝑥𝑛−1

𝑦𝑛−1

𝑎𝑑 − 𝑐𝑏 = 1 which implies det 𝑀 = 1, the gain is unity

𝑎 + 𝑑 < 2 which implies 𝑀 has complex eigenvalues

C.Turner, “Digital Resonators”, comp.dsp Conference, Apr 2010

This menagerie of functions has an underlying theory

This paper from C Turner lays it all out

Every Discrete Oscillator can be rewritten in matrix form

There are two preconditions for oscillation:

1. the matrix determinant is exactly ONE

2. the matrix has complex Eigenvalues

The Underlying Theory

• Each of these can be written in matrix form

• 𝑀 can be analyzed as the product of three complex matrices A = 𝑆𝐷𝑆−1

• Successive rotation raises 𝐴𝑛 = 𝑆𝐷𝑆−1 𝑆𝐷𝑆−1 𝑆𝐷𝑆−1 …

𝑥𝑛

𝑦𝑛
=

𝑎 𝑏
𝑐 𝑑

𝑥𝑛−1

𝑦𝑛−1

C.Turner, “Recursive Discrete-Time Sinusoidal Oscillators”, IEEE Signal Processing, 2003

𝑆 =
1 1

𝜓𝑒𝑖𝜃 𝜓𝑒−𝑖𝜃 D = 𝑒𝑖𝜃 0
0 𝑒−𝑖𝜃

= 𝑆𝐷𝑛𝑆−1

Why?

Because the matrix can be expressed as the product of three
complex matrices S-D-INVERSE-S

Iterating raises this expression to an integer power

Which iterates the D matrix and leaves the S matrices untouched

See the link for a better explanation than I can give

Catalog of Oscillators

• Coupled Quadrature

• Magic Circle

• Quadrature Staggered

• BiQuad Oscillator

• Digital Waveguide

• Reinsch

𝑘 = sin 𝜃

𝑀 =
1 − 𝑘2 𝑘

−𝑘 1 − 𝑘2

𝑘 = 2 sin Τ𝜃 2

M = 1 − 𝑘2 𝑘
−𝑘 1

𝑘 = 2cos 𝜃

𝑀 =
𝑘 −1
1 0

𝑘 = cos 𝜃

𝑀 =
𝑘 𝑘 − 1

𝑘 + 1 𝑘

𝑘 = cos 𝜃

M = 𝑘 1 − 𝑘2

−1 𝑘

𝑘 = 2cos 𝜃 − 1

𝑀 =
𝑘 1

𝑘 − 1 1

• Type A

• Type B

• Type C

𝑘 = 4 sin2 𝜃/2

𝑀 =
1 − 𝑘 −𝑘

1 1

𝑘 = 2 cos 𝜃

𝑀 =
0 1

−1 𝑘

𝑘 = 4 cos2 𝜃/2

𝑀 =
𝑘 − 1 𝑘

−1 −1

C.Turner, “Oscillator Resonator Parameter Table for Goertzel Applications”, Apr 2010

From this analysis several new forms of Discrete Oscillator were
found

Some were well known to the DSP community, one was even
patented (no more).

Changing Amplitude with Auto Gain Control

• We can calculate the power 𝑃 (sum of amplitudes squared)

• If we restrict ourselves to quadrature oscillators, it simplifies to

• Apply gain to the state variables 𝑥𝑛, 𝑦𝑛 using convergence factor 𝑞

𝑃 =
𝑥𝑛

2 −
𝑏
𝑐

𝑦𝑛
2 − 2

−𝑏
𝑐

𝑥𝑛𝑦𝑛 cos 𝜙

sin2 𝜙

𝑃 = 𝑥𝑛
2 −

𝑏

𝑐
𝑦𝑛

2

𝐺 =
𝑃0

𝑞

𝑃𝑞 ≈ 1 + 𝑞 − 𝑞
𝑃

𝑃0

Evaluating the oscillator over time, errors can accumulate and
appear as rising or falling amplitude

So for long-term use (e.g. software synths) we need to apply AUTO
GAIN CONTROL

The full expression for amplitude is hairy

Assuming quadrature oscillation simplifies it a lot

And of course there’s a Taylor Series approximation that’s cheaper
than raising to a power

Changing Frequency

• To change frequency, you update 𝑘 and recalculate 𝑀 for each change in 𝜃𝑖

• Doing this leads to the problem of amplitude change

• Assuming quadrature oscillation, we combat this using AGC:

1. Update the state variables 𝑥𝑛, 𝑦𝑛

2. Update the matrix M for the new frequency 𝜃𝑖

3. Calculate power 𝑃 using the updated variables 𝑏, 𝑐
4. Use the Automatic Gain Control to re-normalize the state variables 𝑥𝑛 , 𝑦𝑛

Changing frequency is a matter of updating the Matrix term and re-
applying it next iteration

Doing this can lead to amplitude change

So couple it with AUTO GAIN CONTROL to keep your oscillator stable

Hyperstable Quadrature Oscillator

• Changing frequency only works for frequencies up to 1/4 sampling rate

• Martin Vicanek published a quadrature oscillator that takes two half-steps:

• This remains stable from VLF to KHz rates independent of sampling rate

https://vicanek.de/articles/QuadOsc.pdf

𝑘1 = tan Τ𝜃 2
𝑘2 = sin 𝜃 = Τ2𝑘1 (1 + 𝑘1

2)
𝑤𝑛 = 𝑥𝑛−1 − 𝑘1𝑦𝑛−1

𝑦𝑛 = 𝑦𝑛−1 + 𝑘2𝑤𝑛

𝑥𝑛 = 𝑤𝑛 − 𝑘1𝑦𝑛

Most oscillators can only handle frequencies up to 1/4 of SAMPLING
RATE before becoming unstable

A new form of double-step oscillator was recently proposed

Stable from VLF to KHz frequencies

Almost independent of sampling rate

