
VALVE CONFIDENTIAL

Getting There in Style
A brief introduction to interpolation
and control systems

Fletcher Dunn

For more info

Free 800-page
math book!

gamemath.com

gamemath.com/gdc2021

Interactive demos
Stuff that wouldn’t fit here

Common task: animate something from raw input

UI element is highlighted Y/N

Angle to targeted enemy

Actual HP

Ideal camera position

WASD key state

Goals
Smoth over “pops”
Make it look cool

Intensity of highlight

HP bar length in HUD

Camera position

Character velocity

Angle of arms / turret

Raw Input Output

Door open/closed Door position

Discrete-valued input

Continuous-valued input

Transition vs control system

Timed Transitition

Fixed duration or finish time

Inactive most of the time

Control System

Indefinite duration

Active even in steady state

Where are we going?

Timed transitions

Basic lerp

Smoothstep

Chase transitions

Control systems

First-order lag

PD controller

Review of lerp() function
Linear Interpolation

1 ‒ t and t are blend weights
(“barycentric coords”)

start + t(end ‒ start)

lerp(start, end, t)

(1 ‒ t)(start) + t (end)

t is fraction of delta to apply

t = .25 t = .5 t = .75

Vec cur;

float t; // 0 ... 1
Vec start; // Starting pos

// Initialize transtion from
// current position
void Begin() {
start=cur;
t=0.0;

}

// Normalize to get fraction of total
// transition consumed this frame
dt /= kTransitionDuration;

// Advance time. Transition done?
t += dt;
if (t>=1.0) { cur=target; return true; }

// Set new position
cur = lerp(start, target, t);
return false; // Transition not complete

}

// Update transition towards target.
// dt is simulation timestep (seconds)
// Return true if transition finished
bool Update(Vec target, float dt) {

Lerp transition - Basic implementation

Lerp transition - Behaviour

Position

Speed

Lerp transition exhibits “lurch”

Instantaneous change in velocity.
Infinite acceleration is non-physical.

We would like velocity
to be continuous.

Position

Speed

We’re on our way

Timed transitions

Basic lerp

Smoothstep

Chase transitions

Control systems

First-order lag

PD controller

Smoothstep – Remap unit interval

Smoothstep – Discovering

What form? Let’s try polynomial.

Goals
s(0) = 0 s(1) = 1
s′(0) = 0
s′(1) = 0

Algebra go brrrrr......

s(t) = 3t2 ‒ 2t3
“The smoothstep function”

“Hermite form”

“Monomial form”

s(t) = at3 + bt2 + ct + d

Vec cur;
float t;
Vec start;
void Begin() {
start=cur; t=0.0;

}
bool Update(Vec target, float dt) {
dt /= kTransitionDuration;

// Advance time. Transition done?
t += dt;
if (t>=1.0) { cur=target; return true; }

// Set new position
cur = lerp(start, target, t);
return false; // Transition not complete

}

Transition using lerp Transition using smoothstep
Vec cur;
float t;
Vec start;
void Begin() {
start=cur; t=0.0;

}
bool Update(Vec target, float dt) {
dt /= kTransitionDuration;

// Advance time. Transition done?
t += dt;
if (t>=1.0) { cur=target; return true; }

// Set new position
cur = lerp(start, target, 3*t*t-2*t*t*t);
return false; // Transition not complete

}

Smoothstep transition - Behaviour

Position

Speed

Smoothstep

Lerp

Remapping the unit interval is fun!

Try other
functions here iquilezles.org/www/articles/functions/functions.htm

Next stop

Timed transitions

Basic lerp

Smoothstep

Chase transitions

Control systems

First-order lag

PD controller

Moving targets – It works....sort of

Moving targets – The target approacheth

Moving targets – Jump around

Moving targets – Understanding the Problem

Lerp is “blending” start & target

We are blending the motion, too!

start

target

blended result

“Chase-style” transition
Standard interpolation transition

Remember where we started

Chase-style transition

Only know where we are now

What fraction of total displacement should
have been consumed at the current time?

What fraction of remaining displacement
should we consume during this timestep?

Vec cur;
float t;
Vec start;
void Begin() {
start=cur; t=0.0;

}
bool Update(Vec target, float dt) {
dt /= kTransitionDuration;

// Advance time. Transition done?
t += dt;
if (t>=1.0) { cur=target; return true; }

// Set new position
cur = lerp(start, target, t);
return false; // Transition not complete

}

Vec cur;
float t;

Standard lerp Chase-style lerp

return false; // Transition not complete
}

// Consume fraction of remaining error
cur += (target-cur) * frac;

// Advance time. Transition done?
t += dt;
if (t>=1.0) { cur=target; return true; }

void Begin() {
t=0.0;

}
bool Update(Vec target, float dt) {
dt /= kTransitionDuration;
float frac = dt/(1-t); // Frac to consume

Chase-style transitions in action

If target doesn’t move, same result

Look better when target moves?
You decide

Always moves towards target
Speed is more variable

Doesn’t “run away”

Motion always continuous

Are we there yet?

Timed transitions

Basic lerp

Smoothstep

Chase transitions

Control systems

First-order lag

PD controller

First-order lag – You’ve probably used it before

Ever seen code like this?

Vec cur; // state variable
void Update(Vec target) {
cur += (target - cur) * k;

}

Or maybe something like this:

void Update(Vec target) {
cur = lerp(cur,target,k);

}

With frame rate compensation?

void Update(Vec target, float dt) {
cur += (target - cur) * k*dt;

}

void Update(Vec target, float dt) {
cur = lerp(cur,target,k*dt);

}

First-order lag - Behaviour

Characteristic behaviours:

“Rubber band” feel

Target jump causes “lurch”

Decelerate as we approach

Relatively long time to “settle”

First-order lag - Math

dy = “change in y”

dy/dt = “velocity”

(“First order” because only 1st
derivatives appear in diff eq’s.)

cur += (target - cur) * k * dt

x(t) = input signal / “target”
y(t) = output signal / “cur”

y += (x - y) * k * dt

dy = k(x ‒ y) dt

dy/dt = k(x ‒ y)

First-order lag - Step response

Characteristic behaviours

Response value is continuous

But velocity is not.
There’s a “lurch”

Decellerate as approach target.
In theory never reach target!

x(t) = “step function”

y(t) = “step response”

dy/dt

Position

Velocity

First-order lag - Analysis of step response

dy/dt = k(x ‒ y)

dy/dt = ‒ky (Assume x = 0)

y(t) = y0e‒kt

y0

0

First-order lag – Choosing k using Math™

e‒kt

First-order lag - Variable frame rate

y(t) = e-kt

cur += (target-cur) * k

cur += (target-cur) * k*dt

cur += (target-cur) * (1 - exp(-k*dt))

First-order lag - Key points

Control system w/ velocity proportional to error

Characteristic behaviours:

- Step response: velocity lurch, then exponential decay.
- Never fully reaches target (in theory)

Use Math™ to understand k!

Please don’t call it “lerp”.

Last stop

Timed transitions

Basic lerp

Smoothstep

Chase transitions

Control systems

First-order lag

PD controller

PD Controller

Problem: 1st order system “lurch” jarring / non-physical

Solution: 2nd order system

d2y/dt2 = F(x, y, dy/dt) 2nd order system

d2y/dt2 = kp(x-y) + kd(dy/dt) PD controller

Proportional
Spring

Derivative
Damper

A commonly re-invented wheel!

a.k.a. “spring-damper”

PD Controller - Parameters

ζ = Damping ratio Amount of overshoot / oscillation

d2y/dt2 = kp(x-y) + kd(dy/dt
)

kp and kd not intuitive

d2y/dt2 = ω2(x-y) ‒ 2ζω(dy/dt)

ω = Natural frequency “Tightness”

PD Controller - Damping ratio ζ

ζ = 0 Overshoot, infinite oscillation

0 < ζ < 1 Overshoot, attenuating oscillation

ζ = 1 “Critically damped”

ζ > 1 Even more damped

ζ = 0.1

ζ = 0.2

ζ = 0.4

ζ = 0.6

ζ = 1.0

ζ = 2.0

PD Controller - Natural frequency ω
ζ = 0.1

ζ = 0.5

ζ = 1.0

ω = 8.0 ω = 12.0 ω = 24.0

Overall “tightness”

Similar purpose to first-order lag k

Physical meaning: frequency of oscillation for ζ = 0

PD Controller - Code
// State variables
Vec cur; // current value (y)

void Update(Vec target, float dt) {

d2y/dt2 = kp(x-y) + kd(dy/dt
)

}

// Calculate acceleration
Vec acc = k_p*(target-cur) + k_d*vel;

// Step forward in time (“Euler integration”)
vel += acc*dt;
cur += vel*dt;

Vec vel; // current velocity (dy/dt)

PD Controller - Key points

Great default method

Tune using two parameters:

Damping ratio: how much overshoot / oscillation

Critically-damped common choice

Natural frequency: how “tight” do you want the system to be?

Easy to implement

Payload Delivered
For fixed-duration transitions:

Try smoothstep if lerp feels “mechanical”

Try chase-style if target moves

No “finish time”? Use a “control system.”

First-Order Lag is a simple / solid method. Suffers from “lurch”.

PD controller is a good default method

Don’t “fiddle”. Use these well-studied methods!

Thank you
fletcherd at valvesoftware dot com

@zpostfacto

gamemath.com/gdc2021

www.valvesoftware.com/jobs

GDC 2021

t =
.25
t =
.5
t =
.75

	Getting There in Style
	For more info
	Common task: animate something from raw input
	Transition vs control system
	Where are we going?
	Review of lerp() function
	Lerp transition - Basic implementation
	Lerp transition - Behaviour
	Lerp transition exhibits “lurch”
	We’re on our way
	Smoothstep – Remap unit interval
	Smoothstep – Discovering
	Slide Number 13
	Smoothstep transition - Behaviour
	Remapping the unit interval is fun!
	Next stop
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	“Chase-style” transition
	Slide Number 22
	Chase-style transitions in action
	Are we there yet?
	First-order lag – You’ve probably used it before
	First-order lag - Behaviour
	First-order lag - Math
	First-order lag - Step response
	First-order lag - Analysis of step response
	First-order lag – Choosing k using Math™
	First-order lag - Variable frame rate
	First-order lag - Key points
	Last stop
	PD Controller
	PD Controller - Parameters
	PD Controller - Damping ratio ζ
	PD Controller - Natural frequency ω
	PD Controller - Code
	PD Controller - Key points
	Payload Delivered
	Slide Number 41
	Slide Number 43

