
Embedded Scripting with
Zero Overhead
in Final Builds

Arturo Cepeda
Senior Engine/Game Programmer

Deck13 Interactive

About me
● Working in the industry since 2013
● Deck13 Interactive

2014 2017 2019

(PC, PS4, Xbox One) (??, ??, ??)

????

1

Embedded scripting language
● Software library
● Compatible with a certain programming language
● Code parser
● Can load scripts written in that language
● Code interpreter
● Can execute the loaded statements

● Host application
● Includes the library in the project
● Binds types and functions
● Loads/reloads scripts
● Retrieves script values
● Executes script functions

2

Embedded scripting language
● Pros
● Hot-reloading
● Changes can be tested immediately
● More agile workflow
● Accessibility to Game Design and Art
● Scripts are part of the content

● Cons
● Memory footprint
● Scripting environment
● Loaded scripts
● Run-time overhead
● Look-ups
● Heap allocations
● Garbage collection
● Execution (interpreted code)

3

Scripting in the Fledge engine
● In-house engine: Fledge
● Prior to “The Surge 2”
● Code scripting
● Based on Lua (v5.1) + tolua
● Only used for basic queries (e.g. “current level name?”)

● “The Surge 2”
● New scripting system built from scratch
● Based on Lua (v5.3)…
● …and sol2 (https://github.com/ThePhD/sol2)

4

https://github.com/ThePhD/sol2

Scripting in the Fledge engine
● “The Surge 2”: post-mortem
● Scripting intensively used
● Literally, thousands of lines of code

● Tech dependency → Tech support

5

Scripting in the Fledge engine
● “The Surge 2”: post-mortem
● Dissatisfaction with Lua
● People are rather used to C-style syntax these days
● C#, Javascript

● Parser not particularly helpful in many situations
● Wasted development time because of typos

Lua C++

Modification of constants No constants Compiler error

Undeclared variable OK! Compiler error

Function call with unexpected type OK! Compiler error

Function call with wrong number of arguments OK! Compiler error

6

Scripting in the Fledge engine
● “The Surge 2”: post-mortem
● Memory footprint
● Critical on the consoles!
● Run-time overhead
● Parsing
● Look-ups
● Interpreted code
● Heap allocations
● Garbage collection

7

Scripting in the Fledge engine
● “The Surge 2”: post-mortem
● Memory footprint → one only Lua state
● Critical on the consoles!
● Run-time overhead
● Parsing → bytecode
● Look-ups → cache
● Interpreted code → “unsafe path”
● Heap allocations → preallocated buffer + TLSF allocator
● Garbage collection → incremental, based on steps

7

Scripting in the Fledge engine
● “The Surge 2”: post-mortem
● Run-time overhead
● Manually ported the most often called functions into C++
● Laborious
● Error-prone
● The advantages of using a scripting system go away
● Need to keep code in sync
● Only suitable for stable code

● Automatization considered

8

Fledge “Next”
● Reflection
● Scripts no longer need to be modified in final builds
● Scripting has only advantages as a development tool
● Ideal situation: all scripts are part of the C++ code
● Keep the scripting system only for development builds
● Tool to port scripts into C++ automatically?
● Willing to implement such a tool at first
● Desire to replace Lua with another solution

9

Fledge “Next”
● Reflection
● “What about writing scripts directly in C++?”
● “What about getting the compiler compile our scripts into

native machine code?”
● No need to even consider porting scripts into C++
● As fast as it gets “for free”
● “Is C++ friendly enough as a scripting language?”
● High-level code should look familiar to people used to a C-style syntax

10

Fledge “Next”
● Wishes
● Keep the good things from Lua
● Cross-platform
● Lightweight
● No external dependencies
● Free of charge

● No budget allocated for scripting in the project
● C++ syntax
● Use an interpreter in development builds

● Keep the hot-reloading feature
● Compile the scripts into native machine code in final builds

11

Fledge “Next”
● Options
● C++ interpreter (Cling)
● A whole set of C++ standard features
● Too much for the use case
● (“Lightweight, no external dependencies”)

● Runtime Compiled C++
● https://github.com/RuntimeCompiledCPlusPlus
● Open source (zlib)
● Somewhat invasive
● Only beneficial for the Tech department

12

https://github.com/RuntimeCompiledCPlusPlus

Fledge “Next”
● Options
● Live++
● https://liveplusplus.tech
● Used in the industry (e.g. Unreal Engine)
● Suscription required for commercial projects
● Only beneficial for the Tech department
● Custom solution…?

13

https://liveplusplus.tech/

Cflat
● Embeddable scripting language with C++ syntax
● https://github.com/arturocepeda/cflat
● Development tool
● Designed with the aforementioned requirements in mind
● Experimentation and learning
● How to preprocess / tokenize / parse code
● How interpreters work

14

https://github.com/arturocepeda/cflat

Cflat
● Open source (zlib)
● Free to use for both non-commercial and commercial projects
● No need for credit!
● Compatible with the C++11 standard
● Modern, yet old enough for compatibility
● Benefiting from lambda expressions for binding functions
● Convenience features for scripting (auto, range-based for)
● No external dependencies!
● Only C++11 standard headers are included

15

Cflat
● Easy to integrate
● One only cpp file to add to the project
● Cross-platform
● If there is a C++11 compiler for the platform, Cflat can be used there
● Cflat C++
● Only a (small) subset of features from C++ are available in Cflat
● Everything from Cflat can be compiled with any C++11 compiler

16

Cflat
● Bindings
● Calling methods provided by the environment
● Convenience macros defined in Cflat

enum TestEnum
{

kFirstValue,
kSecondValue

};

Cflat::Environment env;

{
CflatRegisterEnum(&env, TestEnum);
CflatEnumAddValue(&env, TestEnum, kFirstValue);
CflatEnumAddValue(&env, TestEnum, kSecondValue);

}

17

Cflat
● Bindings
● Calling methods provided by the environment
● Convenience macros defined in Cflat

struct TestStruct
{

int var1;
int var2;

};

{
CflatRegisterStruct(&env, TestStruct);
CflatStructAddMember(&env, TestStruct, int, var1);
CflatStructAddMember(&env, TestStruct, int, var2);

}

18

Cflat
● Bindings
● Calling methods provided by the environment
● Convenience macros defined in Cflat

class TestClass
{
private:

bool mOverload1Called;
bool mOverload2Called;

public:
TestClass() : mOverload1Called(false), mOverload2Called(false) {}
void method(int pValue) { mOverload1Called = true; }
void method(float pValue) { mOverload2Called = true; }
bool getOverload1Called() const { return mOverload1Called; }
bool getOverload2Called() const { return mOverload2Called; }

};

{
CflatRegisterClass(&env, TestClass);
CflatClassAddConstructor(&env, TestClass);
CflatClassAddMethodVoidParams1(&env, TestClass, void, method, int);
CflatClassAddMethodVoidParams1(&env, TestClass, void, method, float);
CflatClassAddMethodReturn(&env, TestClass, bool, getOverload1Called);
CflatClassAddMethodReturn(&env, TestClass, bool, getOverload2Called);

}

19

Cflat
● CflatGlobal.h
● Optional helper
● Assumes that there is a global Cflat environment
● Requires the implementation of certain functions

● Included in all cpp files which access scripts
● Defines macros
● CFLAT_ENABLED to distinguish between development and final
● Can be added as a preprocessor definition in development builds

#if defined (CFLAT_ENABLED)
// Definitions for development builds
#else
// Definitions for final builds
#endif

20

Cflat
● CflatGlobal.h
● Script inclusion

#define CflatScript(pScript) <CflatHeadersPath/Cflat.h> #define CflatScript(pScript) <CflatScriptsPath/pScript>

Development Final

// Relative directory where the Cflat headers are located
#define CflatHeadersPath ./Cflat

Development

// Relative directory where the scripts are located
#define CflatScriptsPath ./scripts

Final

CflatGlobalConfig.h

CflatGlobal.h

#include <./Cflat/Cflat.h> #include <./scripts/camera.cpp>

Development Final

#include CflatScript(camera.cpp)

21

Cflat
● CflatGlobal.h
● Value retrieval → CflatGet, CflatGetArray

#define CflatGet(pType, pIdentifier) \
CflatValueAs(CflatGlobal::getEnvironment()->getVariable(#pIdentifier), pType)

#define CflatGetArray(pElementType, pIdentifier) \
CflatValueAsArray(CflatGlobal::getEnvironment()->getVariable(#pIdentifier), pElementType)

#define CflatGet(pType, pIdentifier) pIdentifier
#define CflatGetArray(pElementType, pIdentifier) pIdentifier

Development

Final

22

Cflat
● CflatGlobal.h
● Value retrieval → CflatGet, CflatGetArray

#include <./Cflat/Cflat.h>
...
const float uiAlpha =

CflatValueAs(
CflatGlobal::getEnvironment()->getVariable("CfUI::kEnemyPreviewUIAlpha"), float);

#include <./scripts/ui.cpp>
...
const float uiAlpha = CfUI::kEnemyPreviewUIAlpha;

Development
Final

#include CflatScript(ui.cpp)
...
const float uiAlpha = CflatGet(float, CfUI::kEnemyPreviewUIAlpha);

namespace CfUI
{
static const float kEnemyPreviewUIAlpha = 0.75f;
}

Cflat (ui.cpp)

C++

23

Cflat
● CflatGlobal.h
● Function calls → CflatArg, CflatVoidCall, CflatReturnCall

#define CflatArg(pArg) &pArg
#define CflatVoidCall(pFunction, ...) \

{ \
Cflat::Environment* env = CflatGlobal::getEnvironment(); \
Cflat::Function* function = env->getFunction(#pFunction); \
if(function) \
{ \

env->voidFunctionCall(function, __VA_ARGS__); \
if(env->getErrorMessage()) \
{ \

CflatGlobal::onError(env->getErrorMessage()); \
} \

} \
}

#define CflatArg(pArg) pArg
#define CflatVoidCall(pFunction, ...) pFunction(__VA_ARGS__)

Development

Final

24

Cflat
● CflatGlobal.h
● Function calls → CflatArg, CflatVoidCall, CflatReturnCall

#define CflatReturnCall(pLValue, pReturnType, pFunction, ...) \
{ \

Cflat::Environment* env = CflatGlobal::getEnvironment(); \
Cflat::Function* function = env->getFunction(#pFunction); \
if(function) \
{ \

pLValue = \
env->returnFunctionCall<pReturnType>(function, __VA_ARGS__); \

if(env->getErrorMessage()) \
{ \

CflatGlobal::onError(env->getErrorMessage()); \
} \

} \
}

#define CflatReturnCall(pLValue, pReturnType, pFunction, ...) \
pLValue = pFunction(__VA_ARGS__)

Development

Final

25

Cflat
● CflatGlobal.h
● Function calls → CflatArg, CflatVoidCall, CflatReturnCall

#include CflatScript(gameplay.cpp)
...
float damage = 0.0f;
CflatReturnCall(

damage,
float,
CfGameplay::calculateDamage,
CflatArg(target),
CflatArg(abilityInstance),
CflatArg(abilityHit),
CflatArg(bone));

namespace CfGameplay
{
static float calculateDamage(

Fledge::Foundation::Ref p_Target,
Fledge::Foundation::Ref p_AbilityInstance,
Fledge::Foundation::Ref p_AbilityHit,
Fledge::Foundation::Ref p_Bone)

{
...

}
}

Cflat (gameplay.cpp) C++

26

Cflat
● CflatGlobal.h
● Function calls → CflatArg, CflatVoidCall, CflatReturnCall

#include <./Cflat/Cflat.h>
...
float damage = 0.0f;
{

Cflat::Environment* env = CflatGlobal::getEnvironment();
Cflat::Function* function = env->getFunction("CfGameplay::calculateDamage");
if(function)
{

damage = env->returnFunctionCall<float>(function,
&target,
&abilityInstance,
&abilityHit,
&bone);

if(env->getErrorMessage())
{

CflatGlobal::onError(env->getErrorMessage());
}

}
}

Development

#include CflatScript(gameplay.cpp)
...
float damage = 0.0f;
CflatReturnCall(

damage,
float,
CfGameplay::calculateDamage,
CflatArg(target),
CflatArg(abilityInstance),
CflatArg(abilityHit),
CflatArg(bone));

C++

27

Cflat
● CflatGlobal.h
● Function calls → CflatArg, CflatVoidCall, CflatReturnCall

#include <./scripts/gameplay.cpp>
...
float damage = 0.0f;
damage = CfGameplay::calculateDamage(

target,
abilityInstance,
abilityHit),
bone);

Final

#include CflatScript(gameplay.cpp)
...
float damage = 0.0f;
CflatReturnCall(

damage,
float,
CfGameplay::calculateDamage,
CflatArg(target),
CflatArg(abilityInstance),
CflatArg(abilityHit),
CflatArg(bone));

C++

28

Cflat
● CflatGlobal.h
● Thread safety → CflatLock, CflatUnlock

#define CflatLock() CflatGlobal::lockEnvironment();
#define CflatUnlock() CflatGlobal::unlockEnvironment();

Development Final

#define CflatLock()
#define CflatUnlock()

29

Cflat in the Fledge engine
● Implementation details
● CflatGlobal.h included in a common header
● All cpps have access to the macros
● Types and functions are bound at startup
● C/C++ standard and engine specific → Fledge code
● Project specific → Game code
● Use cases
● Access to concrete constants
● Execution of concrete functions
● Execution of functions by name

30

Cflat in the Fledge engine
● Implementation details
● Execution of functions by name
● Use case: custom nodes for visual scripting

static float getAngleToFace(
Fledge::Foundation::Ref p_SourceEntity,
Fledge::Foundation::Ref p_TargetEntity)

{
...

}

Cflat

static Fledge::Math::Quaternion getQuaternionFromEulerAngles(
const Fledge::Math::Vector3& p_EulerAngles)

{
...

}

Cflat

31

Cflat in the Fledge engine
● Implementation details
● Execution of functions by name
● Development builds
● Retrieve the function (Cflat::Function) from the environment
● The pointer to the Cflat::Function instance can be cached
● Does not change when reloading the script

● Fill an array of arguments and call the execute method

32

Cflat in the Fledge engine
● Implementation details
● Execution of functions by name
● Final builds
● Defined a fixed function signature based on the Variant type...

● ...and a global dictionary storing the function pointers for each name

typedef Fledge::Foundation::Variant (*ScriptNodeFunction)(
const Fledge::Foundation::Array<Fledge::Foundation::Variant>&);

typedef Fledge::Foundation::Map<uint32_t, ScriptNodeFunction> ScriptNodeFunctionsMap;
static ScriptNodeFunctionsMap g_ScriptNodeFunctionsMap;

(Fledge::Foundation::Array → std::vector with a custom allocator)

(Fledge::Foundation::Map → std::map with a custom allocator)

33

Cflat in the Fledge engine
● Implementation details
● Execution of functions by name
● Final builds
● Auto-generate a wrapper for each function

static float getAngleToFace(
Fledge::Foundation::Ref p_SourceEntity,
Fledge::Foundation::Ref p_TargetEntity)

{
...

}

Cflat static Fledge::Foundation::Variant
getAngleToFace_wrapper(

const Fledge::Foundation::Array<Fledge::Foundation::Variant>& p_Args)
{
FLEDGE_ASSERT_FAST(p_Args.size() == 2u);
return getAngleToFace(

p_Args[0].as<Fledge::Foundation::Ref>(),
p_Args[1].as<Fledge::Foundation::Ref>());

}

Auto-generated C++

34

Cflat in the Fledge engine
● Implementation details
● Execution of functions by name
● Final builds
● Auto-generate a wrapper for each function
● Auto-generate wrapper registration code

...
g_ScriptNodeFunctionsMap[FledgeCompileTimeHash32(getAngleToFace)] = getAngleToFace_wrapper;
...

static float getAngleToFace(
Fledge::Foundation::Ref p_SourceEntity,
Fledge::Foundation::Ref p_TargetEntity)

{
...

}

Cflat static Fledge::Foundation::Variant
getAngleToFace_wrapper(

const Fledge::Foundation::Array<Fledge::Foundation::Variant>& p_Args)
{
FLEDGE_ASSERT_FAST(p_Args.size() == 2u);
return getAngleToFace(

p_Args[0].as<Fledge::Foundation::Ref>(),
p_Args[1].as<Fledge::Foundation::Ref>());

}

Auto-generated C++

34

Cflat in the Fledge engine
● Development environment
● Using an external code editor
● Internal documentation
● Convenience features
● Work does not get lost on editor crash
● Automatic hot-reload on script save
● Info log on success
● Error log if there are any errors
● In that case, the old version remains loaded

35

Cflat in the Fledge engine
● Development environment
● Header files included from the scripts
● Declarations for development builds (internal documentation)
● The required #include directives for final builds

● _fledge.h
● C/C++ standard functions
● Engine specific types

● _game.h
● Project specific types

#if defined (CFLAT_ENABLED)

// Declarations, used as internal documentation

#else

// #include directives for final builds

#endif

36

Cflat in the Fledge engine
● Development environment
● Visual Studio Code
● https://code.visualstudio.com/
● Open source generic code editor
● C++ extension
● Syntax highlighting
● Error highlighting
● Auto-completion
● Auto-formatting (clang-format)

● Settings can be saved into a JSON file and checked-in
● Scripting users don’t need to configure anything on their side

37

https://code.visualstudio.com/

Cflat in the Fledge engine
● Development environment
● Visual Studio Code
struct Camera
{

/// Returns the active camera component
static Fledge::Foundation::Ref getActiveCamera();

/// Returns a reference to the owner entity
static Fledge::Foundation::Ref getEntity(Fledge::Foundation::Ref p_Ref);

/// Returns the screen position for the given world position
static Fledge::Math::Vector2 getScreenPosition(

Fledge::Foundation::Ref p_Ref,
const Fledge::Math::Vector3& p_WorldPosition);

};

38

Cflat in the Fledge engine
● Development environment
● Visual Studio Code
struct Camera
{

/// Returns the active camera component
static Fledge::Foundation::Ref getActiveCamera();

/// Returns a reference to the owner entity
static Fledge::Foundation::Ref getEntity(Fledge::Foundation::Ref p_Ref);

/// Returns the screen position for the given world position
static Fledge::Math::Vector2 getScreenPosition(

Fledge::Foundation::Ref p_Ref,
const Fledge::Math::Vector3& p_WorldPosition);

};

38

Cflat in the Fledge engine
● Development environment
● Visual Studio Code
struct Camera
{

/// Returns the active camera component
static Fledge::Foundation::Ref getActiveCamera();

/// Returns a reference to the owner entity
static Fledge::Foundation::Ref getEntity(Fledge::Foundation::Ref p_Ref);

/// Returns the screen position for the given world position
static Fledge::Math::Vector2 getScreenPosition(

Fledge::Foundation::Ref p_Ref,
const Fledge::Math::Vector3& p_WorldPosition);

};

38

Cflat in the Fledge engine
● Workflow for Tech
● Exposing types:
● Bind code in the engine or game
● Trigger a new editor build
● Extend the corresponding header file for scripting (_fledge.h/_game.h)
● Add the declarations in the CFLAT_ENABLED block (development)
● Add the #include directives in the other block (final)

39

Cflat in the Fledge engine
●Debugging tools
● Logs
● Macros defined on the engine side, and bound for scripting
● LOG_DEBUG, LOG_INFO, LOG_WARNING, LOG_ERROR
● Logs show up on the editor’s console

LOG_DEBUG << "Hit! -- Target: '"
<< target.name()
<< "' -- Damage: "
<< damage
<< LOG_FLUSH;

Cflat

40

Cflat in the Fledge engine
●Debugging tools
● Script debugger
● Code viewer
● Breakpoint support
● Step over/into
● “Call Stack” view
● “Watch” view
● Value inspection
● Value manipulation

41

Cflat in the Fledge engine
●Debugging tools
● Script debugger
● Cflat provides an execution hook

struct CallStackEntry
{

const Program* mProgram;
const Function* mFunction;
uint16_t mLine;

CallStackEntry(const Program* pProgram, const Function* pFunction = nullptr);
};

typedef CflatSTLVector(CallStackEntry) CallStack;

typedef void (*ExecutionHook)(Environment* pEnvironment, const CallStack& pCallStack);

42

Cflat in the Fledge engine
●Debugging tools
● Script debugger
● The editor is a standalone application
● It communicates with the game through the network
● Network packets are handled in a thread
● Script execution paused and resumed using a semaphore

43

Considerations
● The Cflat parser is not the C++ compiler
● “Cross-platform” situation
● The code can compile on one platform…
● ...which doesn’t mean it also compiles for the rest (VC++ vs. Clang)
● Ultimate goal: not allowing anything a C++11 compiler would not allow
● #include directives
● Ignored in Cflat…
● Everything loaded in the environment is accessible
● Only the order in which the scripts are loaded needs to be kept in mind

● …but still required in C++!

44

Considerations
● Scripts are included as headers in final builds
● Beware of non static functions
● Including a script in more than one cpp would be a linking error
● Beware of using namespace statements
● Avoid them in the global scope!
● If used inside a block, previous included headers still matter
● The rest of the cpp is safe…
● …but there might be errors in the script code itself

● Necessity of checking compilation in final builds
● Script as a separate cpp
● Client cpp that includes the script

45

Thank you!
Email: acepeda@deck13.com

Twitter: @acepedaperez

EXCITED ABOUT WHAT’S NEXT? JOIN US!
We already have a lot of new things on our lists…

Sarah Wrensch
Human Resources Manager

jobs@deck13.com
www.deck13.com

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

