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Embedded scripting language
● Software library
● Compatible with a certain programming language
● Code parser
● Can load scripts written in that language
● Code interpreter
● Can execute the loaded statements

● Host application
● Includes the library in the project
● Binds types and functions
● Loads/reloads scripts
● Retrieves script values
● Executes script functions
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Embedded scripting language
● Pros
● Hot-reloading
● Changes can be tested immediately
● More agile workflow
● Accessibility to Game Design and Art
● Scripts are part of the content

● Cons
● Memory footprint
● Scripting environment
● Loaded scripts
● Run-time overhead
● Look-ups
● Heap allocations
● Garbage collection
● Execution (interpreted code)
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Scripting in the Fledge engine
● In-house engine: Fledge
● Prior to “The Surge 2”
● Code scripting
● Based on Lua (v5.1) + tolua
● Only used for basic queries (e.g. “current level name?”)

● “The Surge 2”
● New scripting system built from scratch
● Based on Lua (v5.3)…
● …and sol2 (https://github.com/ThePhD/sol2)
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Scripting in the Fledge engine
● “The Surge 2”: post-mortem
● Scripting intensively used
● Literally, thousands of lines of code

● Tech dependency → Tech support
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Scripting in the Fledge engine
● “The Surge 2”: post-mortem
● Dissatisfaction with Lua
● People are rather used to C-style syntax these days
● C#, Javascript

● Parser not particularly helpful in many situations
● Wasted development time because of typos

Lua C++

Modification of constants No constants Compiler error

Undeclared variable OK! Compiler error

Function call with unexpected type OK! Compiler error

Function call with wrong number of arguments OK! Compiler error
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Scripting in the Fledge engine
● “The Surge 2”: post-mortem
● Memory footprint
● Critical on the consoles!
● Run-time overhead
● Parsing
● Look-ups
● Interpreted code
● Heap allocations
● Garbage collection

7



Scripting in the Fledge engine
● “The Surge 2”: post-mortem
● Memory footprint → one only Lua state
● Critical on the consoles!
● Run-time overhead
● Parsing → bytecode
● Look-ups → cache
● Interpreted code → “unsafe path”
● Heap allocations → preallocated buffer + TLSF allocator
● Garbage collection → incremental, based on steps
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Scripting in the Fledge engine
● “The Surge 2”: post-mortem
● Run-time overhead
● Manually ported the most often called functions into C++
● Laborious
● Error-prone
● The advantages of using a scripting system go away
● Need to keep code in sync
● Only suitable for stable code

● Automatization considered
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Fledge “Next”
● Reflection
● Scripts no longer need to be modified in final builds
● Scripting has only advantages as a development tool
● Ideal situation: all scripts are part of the C++ code
● Keep the scripting system only for development builds
● Tool to port scripts into C++ automatically?
● Willing to implement such a tool at first
● Desire to replace Lua with another solution
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Fledge “Next”
● Reflection
● “What about writing scripts directly in C++?”
● “What about getting the compiler compile our scripts into 

native machine code?”
● No need to even consider porting scripts into C++
● As fast as it gets “for free”
● “Is C++ friendly enough as a scripting language?”
● High-level code should look familiar to people used to a C-style syntax
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Fledge “Next”
● Wishes
● Keep the good things from Lua
● Cross-platform
● Lightweight
● No external dependencies
● Free of charge

● No budget allocated for scripting in the project
● C++ syntax
● Use an interpreter in development builds

● Keep the hot-reloading feature
● Compile the scripts into native machine code in final builds
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Fledge “Next”
● Options
● C++ interpreter (Cling)
● A whole set of C++ standard features
● Too much for the use case
● (“Lightweight, no external dependencies”)

● Runtime Compiled C++
● https://github.com/RuntimeCompiledCPlusPlus
● Open source (zlib)
● Somewhat invasive
● Only beneficial for the Tech department
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Fledge “Next”
● Options
● Live++
● https://liveplusplus.tech
● Used in the industry (e.g. Unreal Engine)
● Suscription required for commercial projects
● Only beneficial for the Tech department
● Custom solution…?
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Cflat
● Embeddable scripting language with C++ syntax
● https://github.com/arturocepeda/cflat
● Development tool
● Designed with the aforementioned requirements in mind
● Experimentation and learning
● How to preprocess / tokenize / parse code
● How interpreters work
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Cflat
● Open source (zlib)
● Free to use for both non-commercial and commercial projects
● No need for credit!
● Compatible with the C++11 standard
● Modern, yet old enough for compatibility
● Benefiting from lambda expressions for binding functions
● Convenience features for scripting (auto, range-based for)
● No external dependencies!
● Only C++11 standard headers are included
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Cflat
● Easy to integrate
● One only cpp file to add to the project
● Cross-platform
● If there is a C++11 compiler for the platform, Cflat can be used there
● Cflat  C++
● Only a (small) subset of features from C++ are available in Cflat
● Everything from Cflat can be compiled with any C++11 compiler
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Cflat
● Bindings
● Calling methods provided by the environment
● Convenience macros defined in Cflat

enum TestEnum
{

kFirstValue,
kSecondValue

};

Cflat::Environment env;

{
CflatRegisterEnum(&env, TestEnum);
CflatEnumAddValue(&env, TestEnum, kFirstValue);
CflatEnumAddValue(&env, TestEnum, kSecondValue);

}
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Cflat
● Bindings
● Calling methods provided by the environment
● Convenience macros defined in Cflat

struct TestStruct
{

int var1;
int var2;

};

{
CflatRegisterStruct(&env, TestStruct);
CflatStructAddMember(&env, TestStruct, int, var1);
CflatStructAddMember(&env, TestStruct, int, var2);

}
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Cflat
● Bindings
● Calling methods provided by the environment
● Convenience macros defined in Cflat

class TestClass
{
private:

bool mOverload1Called;
bool mOverload2Called;

public:
TestClass() : mOverload1Called(false), mOverload2Called(false) {}
void method(int pValue) { mOverload1Called = true; }
void method(float pValue) { mOverload2Called = true; }
bool getOverload1Called() const { return mOverload1Called; }
bool getOverload2Called() const { return mOverload2Called; }

};

{
CflatRegisterClass(&env, TestClass);
CflatClassAddConstructor(&env, TestClass);
CflatClassAddMethodVoidParams1(&env, TestClass, void, method, int);
CflatClassAddMethodVoidParams1(&env, TestClass, void, method, float);
CflatClassAddMethodReturn(&env, TestClass, bool, getOverload1Called);
CflatClassAddMethodReturn(&env, TestClass, bool, getOverload2Called);

}
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Cflat
● CflatGlobal.h
● Optional helper
● Assumes that there is a global Cflat environment
● Requires the implementation of certain functions

● Included in all cpp files which access scripts
● Defines macros
● CFLAT_ENABLED to distinguish between development and final
● Can be added as a preprocessor definition in development builds

#if defined (CFLAT_ENABLED)
// Definitions for development builds
#else
// Definitions for final builds
#endif
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Cflat
● CflatGlobal.h
● Script inclusion

#define CflatScript(pScript)  <CflatHeadersPath/Cflat.h> #define CflatScript(pScript)  <CflatScriptsPath/pScript>

Development Final

// Relative directory where the Cflat headers are located
#define CflatHeadersPath ./Cflat

Development

// Relative directory where the scripts are located
#define CflatScriptsPath ./scripts

Final

CflatGlobalConfig.h

CflatGlobal.h

#include <./Cflat/Cflat.h> #include <./scripts/camera.cpp>

Development Final

#include CflatScript(camera.cpp)
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Cflat
● CflatGlobal.h
● Value retrieval → CflatGet, CflatGetArray

#define CflatGet(pType, pIdentifier) \
CflatValueAs(CflatGlobal::getEnvironment()->getVariable(#pIdentifier), pType)

#define CflatGetArray(pElementType, pIdentifier) \
CflatValueAsArray(CflatGlobal::getEnvironment()->getVariable(#pIdentifier), pElementType)

#define CflatGet(pType, pIdentifier)  pIdentifier
#define CflatGetArray(pElementType, pIdentifier)  pIdentifier

Development

Final
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Cflat
● CflatGlobal.h
● Value retrieval → CflatGet, CflatGetArray

#include <./Cflat/Cflat.h>
...
const float uiAlpha =

CflatValueAs(
CflatGlobal::getEnvironment()->getVariable("CfUI::kEnemyPreviewUIAlpha"), float);

#include <./scripts/ui.cpp>
...
const float uiAlpha = CfUI::kEnemyPreviewUIAlpha;

Development
Final

#include CflatScript(ui.cpp)
...
const float uiAlpha = CflatGet(float, CfUI::kEnemyPreviewUIAlpha);

namespace CfUI
{
static const float kEnemyPreviewUIAlpha = 0.75f;
}

Cflat (ui.cpp)

C++
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Cflat
● CflatGlobal.h
● Function calls → CflatArg, CflatVoidCall, CflatReturnCall

#define CflatArg(pArg) &pArg
#define CflatVoidCall(pFunction, ...) \

{ \
Cflat::Environment* env = CflatGlobal::getEnvironment(); \
Cflat::Function* function = env->getFunction(#pFunction); \
if(function) \
{ \

env->voidFunctionCall(function, __VA_ARGS__); \
if(env->getErrorMessage()) \
{ \

CflatGlobal::onError(env->getErrorMessage()); \
} \

} \
}

#define CflatArg(pArg)  pArg
#define CflatVoidCall(pFunction, ...)  pFunction(__VA_ARGS__)

Development

Final
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Cflat
● CflatGlobal.h
● Function calls → CflatArg, CflatVoidCall, CflatReturnCall

#define CflatReturnCall(pLValue, pReturnType, pFunction, ...) \
{ \

Cflat::Environment* env = CflatGlobal::getEnvironment(); \
Cflat::Function* function = env->getFunction(#pFunction); \
if(function) \
{ \

pLValue = \
env->returnFunctionCall<pReturnType>(function, __VA_ARGS__); \

if(env->getErrorMessage()) \
{ \

CflatGlobal::onError(env->getErrorMessage()); \
} \

} \
}

#define CflatReturnCall(pLValue, pReturnType, pFunction, ...) \
pLValue = pFunction(__VA_ARGS__)

Development

Final
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Cflat
● CflatGlobal.h
● Function calls → CflatArg, CflatVoidCall, CflatReturnCall

#include CflatScript(gameplay.cpp)
...
float damage = 0.0f;
CflatReturnCall(

damage,
float,
CfGameplay::calculateDamage,
CflatArg(target),
CflatArg(abilityInstance),
CflatArg(abilityHit),
CflatArg(bone));

namespace CfGameplay
{
static float calculateDamage(

Fledge::Foundation::Ref p_Target,
Fledge::Foundation::Ref p_AbilityInstance,
Fledge::Foundation::Ref p_AbilityHit,
Fledge::Foundation::Ref p_Bone)

{
...

}
}

Cflat (gameplay.cpp) C++
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Cflat
● CflatGlobal.h
● Function calls → CflatArg, CflatVoidCall, CflatReturnCall

#include <./Cflat/Cflat.h>
...
float damage = 0.0f;
{

Cflat::Environment* env = CflatGlobal::getEnvironment();
Cflat::Function* function = env->getFunction("CfGameplay::calculateDamage");
if(function)
{

damage = env->returnFunctionCall<float>(function,
&target,
&abilityInstance,
&abilityHit,
&bone);

if(env->getErrorMessage())
{

CflatGlobal::onError(env->getErrorMessage());
}

}
}

Development

#include CflatScript(gameplay.cpp)
...
float damage = 0.0f;
CflatReturnCall(

damage,
float,
CfGameplay::calculateDamage,
CflatArg(target),
CflatArg(abilityInstance),
CflatArg(abilityHit),
CflatArg(bone));

C++
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Cflat
● CflatGlobal.h
● Function calls → CflatArg, CflatVoidCall, CflatReturnCall

#include <./scripts/gameplay.cpp>
...
float damage = 0.0f;
damage = CfGameplay::calculateDamage(

target,
abilityInstance,
abilityHit),
bone);

Final

#include CflatScript(gameplay.cpp)
...
float damage = 0.0f;
CflatReturnCall(

damage,
float,
CfGameplay::calculateDamage,
CflatArg(target),
CflatArg(abilityInstance),
CflatArg(abilityHit),
CflatArg(bone));

C++
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Cflat
● CflatGlobal.h
● Thread safety → CflatLock, CflatUnlock

#define CflatLock()  CflatGlobal::lockEnvironment();
#define CflatUnlock()  CflatGlobal::unlockEnvironment();

Development Final

#define CflatLock() 
#define CflatUnlock()
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Cflat in the Fledge engine
● Implementation details
● CflatGlobal.h included in a common header
● All cpps have access to the macros
● Types and functions are bound at startup
● C/C++ standard and engine specific → Fledge code
● Project specific → Game code
● Use cases
● Access to concrete constants
● Execution of concrete functions
● Execution of functions by name
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Cflat in the Fledge engine
● Implementation details
● Execution of functions by name
● Use case: custom nodes for visual scripting

static float getAngleToFace(
Fledge::Foundation::Ref p_SourceEntity,
Fledge::Foundation::Ref p_TargetEntity)

{
...

}

Cflat

static Fledge::Math::Quaternion getQuaternionFromEulerAngles(
const Fledge::Math::Vector3& p_EulerAngles)

{
...

}

Cflat
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Cflat in the Fledge engine
● Implementation details
● Execution of functions by name
● Development builds
● Retrieve the function (Cflat::Function) from the environment
● The pointer to the Cflat::Function instance can be cached
● Does not change when reloading the script

● Fill an array of arguments and call the execute method
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Cflat in the Fledge engine
● Implementation details
● Execution of functions by name
● Final builds
● Defined a fixed function signature based on the Variant type...

● ...and a global dictionary storing the function pointers for each name

typedef Fledge::Foundation::Variant (*ScriptNodeFunction)(
const Fledge::Foundation::Array<Fledge::Foundation::Variant>&);

typedef Fledge::Foundation::Map<uint32_t, ScriptNodeFunction> ScriptNodeFunctionsMap;
static ScriptNodeFunctionsMap g_ScriptNodeFunctionsMap;

(Fledge::Foundation::Array → std::vector with a custom allocator)

(Fledge::Foundation::Map → std::map with a custom allocator)
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Cflat in the Fledge engine
● Implementation details
● Execution of functions by name
● Final builds
● Auto-generate a wrapper for each function

static float getAngleToFace(
Fledge::Foundation::Ref p_SourceEntity,
Fledge::Foundation::Ref p_TargetEntity)

{
...

}

Cflat static Fledge::Foundation::Variant
getAngleToFace_wrapper(

const Fledge::Foundation::Array<Fledge::Foundation::Variant>& p_Args)
{
FLEDGE_ASSERT_FAST(p_Args.size() == 2u);
return getAngleToFace(

p_Args[0].as<Fledge::Foundation::Ref>(),
p_Args[1].as<Fledge::Foundation::Ref>());

}

Auto-generated C++
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Cflat in the Fledge engine
● Implementation details
● Execution of functions by name
● Final builds
● Auto-generate a wrapper for each function
● Auto-generate wrapper registration code

...
g_ScriptNodeFunctionsMap[FledgeCompileTimeHash32(getAngleToFace)] = getAngleToFace_wrapper;
...

static float getAngleToFace(
Fledge::Foundation::Ref p_SourceEntity,
Fledge::Foundation::Ref p_TargetEntity)

{
...

}

Cflat static Fledge::Foundation::Variant
getAngleToFace_wrapper(

const Fledge::Foundation::Array<Fledge::Foundation::Variant>& p_Args)
{
FLEDGE_ASSERT_FAST(p_Args.size() == 2u);
return getAngleToFace(

p_Args[0].as<Fledge::Foundation::Ref>(),
p_Args[1].as<Fledge::Foundation::Ref>());

}

Auto-generated C++
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Cflat in the Fledge engine
● Development environment
● Using an external code editor
● Internal documentation
● Convenience features
● Work does not get lost on editor crash
● Automatic hot-reload on script save
● Info log on success
● Error log if there are any errors
● In that case, the old version remains loaded
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Cflat in the Fledge engine
● Development environment
● Header files included from the scripts
● Declarations for development builds (internal documentation)
● The required #include directives for final builds

● _fledge.h
● C/C++ standard functions
● Engine specific types

● _game.h
● Project specific types

#if defined (CFLAT_ENABLED)

// Declarations, used as internal documentation

#else

// #include directives for final builds

#endif
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Cflat in the Fledge engine
● Development environment
● Visual Studio Code
● https://code.visualstudio.com/
● Open source generic code editor
● C++ extension
● Syntax highlighting
● Error highlighting
● Auto-completion
● Auto-formatting (clang-format)

● Settings can be saved into a JSON file and checked-in
● Scripting users don’t need to configure anything on their side
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Cflat in the Fledge engine
● Development environment
● Visual Studio Code
struct Camera
{

/// Returns the active camera component
static Fledge::Foundation::Ref getActiveCamera();

/// Returns a reference to the owner entity
static Fledge::Foundation::Ref getEntity(Fledge::Foundation::Ref p_Ref);

/// Returns the screen position for the given world position
static Fledge::Math::Vector2 getScreenPosition(

Fledge::Foundation::Ref p_Ref,
const Fledge::Math::Vector3& p_WorldPosition);

};
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Cflat in the Fledge engine
● Workflow for Tech
● Exposing types:
● Bind code in the engine or game
● Trigger a new editor build
● Extend the corresponding header file for scripting (_fledge.h/_game.h)
● Add the declarations in the CFLAT_ENABLED block (development)
● Add the #include directives in the other block (final)
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Cflat in the Fledge engine
●Debugging tools
● Logs
● Macros defined on the engine side, and bound for scripting
● LOG_DEBUG, LOG_INFO, LOG_WARNING, LOG_ERROR
● Logs show up on the editor’s console

LOG_DEBUG << "Hit! -- Target: '"
<< target.name()
<< "' -- Damage: "
<< damage
<< LOG_FLUSH;

Cflat

40



Cflat in the Fledge engine
●Debugging tools
● Script debugger
● Code viewer
● Breakpoint support
● Step over/into
● “Call Stack” view
● “Watch” view
● Value inspection
● Value manipulation
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Cflat in the Fledge engine
●Debugging tools
● Script debugger
● Cflat provides an execution hook

struct CallStackEntry
{

const Program* mProgram;
const Function* mFunction;
uint16_t mLine;

CallStackEntry(const Program* pProgram, const Function* pFunction = nullptr);
};

typedef CflatSTLVector(CallStackEntry) CallStack;

typedef void (*ExecutionHook)(Environment* pEnvironment, const CallStack& pCallStack);
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Cflat in the Fledge engine
●Debugging tools
● Script debugger
● The editor is a standalone application
● It communicates with the game through the network
● Network packets are handled in a thread
● Script execution paused and resumed using a semaphore
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Considerations
● The Cflat parser is not the C++ compiler
● “Cross-platform” situation
● The code can compile on one platform…
● ...which doesn’t mean it also compiles for the rest (VC++ vs. Clang)
● Ultimate goal: not allowing anything a C++11 compiler would not allow
● #include directives
● Ignored in Cflat…
● Everything loaded in the environment is accessible
● Only the order in which the scripts are loaded needs to be kept in mind

● …but still required in C++!
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Considerations
● Scripts are included as headers in final builds
● Beware of non static functions
● Including a script in more than one cpp would be a linking error
● Beware of using namespace statements
● Avoid them in the global scope!
● If used inside a block, previous included headers still matter
● The rest of the cpp is safe…
● …but there might be errors in the script code itself

● Necessity of checking compilation in final builds
● Script as a separate cpp
● Client cpp that includes the script
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Thank you!
Email: acepeda@deck13.com

Twitter: @acepedaperez



EXCITED ABOUT WHAT’S NEXT? JOIN US!
We already have a lot of new things on our lists…

Sarah Wrensch
Human Resources Manager

jobs@deck13.com
www.deck13.com
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