March 21-25, 2022
San Francisco, CA

Abolish Points:
Using Specifications Grading in

Game Courses

SELIEVAL ETLENY
Associate Professor of Practice
University of Southern California

#GDC22

Hello, and welcome!

Before | start, please remember to silence your phones. Also, after the talk please fill
out your session evaluations.

My name is Sanjay Madhav and I’'m an Associate Professor of Practice at the
University of Southern California. Today I’'m going to talk about every educator’s
least favorite topic — grading. I've spent the last couple of years revamping the way |
do grading in my game courses, and I’'m going to cover how you can do this, too!

My examples today are all from my video game programming course, but the
principles could easily apply to any discipline.

Why Specifications Grading?

o |s results-focused
 Injects iteration into the grading process

o Gets students to think about the quality of their work

March 21-25, 2022 | San Francisco, CA #GDC22

Before | dive into the details, here are what | think are the best qualities of
specifications grading

* It’s focused on making sure students get results and complete their work

* |t requires students to iterate on their work if they want to getan A

* |t gets students thinking about concerns beyond simply meeting the requirements

March 21-25, 2022
San Francisco, CA

The Problem With Points

We used to grade assignments using point rubrics, but there were a lot of issues we
noticed over time

- Complexity and grading time

2 Pant code check Possible [Earned [Note]
3
4 Background ro 1
5 LoadLewl() - Loads blocks for chars 'A'to 1" s 1 I
& Player Class and Constructor yes 1 1 1TP Game = - X
7 Playeove Class and Constructar yes 1 |
8 0 - Spawn Player at P yes. 1
s no 2
n gravay calcudates are correct yes 3
11 Player collides and appli Blocks Yo 3
12 Blog heck for mYSpeed > 0] |yes 1
13 Input logk detects keading edge carrectly yes. 3
1& Player can jump ss expected o 2

Plaper can't doukie or triple juma (only allow jump when |00 1
15 minAr s false]

Player can't walk off ccge 3nd Jume In 3 (detect not collding [no 1
Ll Lo —
17 Player doesn't float when Fitting bottom of a block =3 1

o 1

15 Game is loading Level1.txt
»

20 [FARISE

SpriteCompanent::Draw cormerts to Screen Space before [yes
drawing
Camera position updstes to folow Player yes

decreases (siways moving to the right}

1017 10N I O [1O O 100 0 Y [M

26 Camera.x can't go kower than O (can't see to bt of start o) [no.
21 G Class and Constructor yes
i Goembatdove Class and Constructor s
Goombas a3a/remove from Game vector in ves
29 Constroctor/Destroctor
30 Spswner Class and Constructor yes.
11 Sowwmer spawrs Goomias if s-datance & less than 600 yes
12 Spuwners creatod whan a 'Y exists in ke file yes
15 Goombas move correctly =3

%8

[Mario can stomp Gocembas from the top

Mario can st [2 des
36 Stompte Goembas change testures and sLop moving
31 Stomeed Gocebas 5 saconds

March 21-25, 2022 E #GDC22

Here’s an example of an old rubric. The assignment is to program the first level of
Super Mario Bros.

This rubric may seem extreme, but one of the reasons it was so granular was to
ensure fairness since we had multiple graders. It also served to head off grading
complaints from students.

Clearly, breaking down a detailed rubric like this just means that the graders must
spend a lot of time verifying each individual item to tabulate the score.

Contesting points is a feature, not a bug

‘Phoenix I I ‘?
I got 3 out of 5 points but it should be 4!

March 21-25, 2022 | San Francisco, CA #GDC22

Unfortunately, it’s a feature of points-based grading systems that students will argue
for points.

Even with very detailed rubrics, you will consistently have students who want 1 or 2
points here or there. And the problem is exacerbated if the rubric are less granular
and/or you have several graders.

Some students learn to fight over every little thing because they know they’ll
probably get one or two points back. It’s frustrating when the majority of your post-
assignment interaction with students is about wanting more points.

Points can get in the way of learning

I'll just skip this I can get a 60% on
- ' assignment and the final and still
The music 'S only \ make up the get an A, I'll wing
worth 5 points. points elsewhere.
I won't bother
doing it.

March 21-25, 2022 | San Fr. #GDC22

Points also lead to student min/maxing points like it’s an RPG. It seems okay to skip
certain parts of the course materials which hinders student’s learning. Students are
incentivized to care about achieving specific point thresholds more than anything
else.

And this is also not very “real world” — if your boss wants you to add a new level and
you only add half a level, they’re going to want you to finish that level eventually.

Students didn’t care about code quality

March 21-25, 2022 | San Francisco, CA #GDC22 7 GDC

Because the points rubric was solely based on functionality, the students could get
away with poor code quality. If you don’t know anything about coding — this example
is a pathological case of copying/pasting code which is a bad practice.

Although you could assign points to code quality, it’s very subjective and becomes a
big source of complaints about point deductions.

Developers recruiting graduates also consistently say that poor code quality is an easy
way to never get a callback. | felt like it was a disservice to students to say that “this is

A-quality work simply because it functions correctly.”

The grading didn’t reinforce iteration

/

Development

Test/Evaluate

March 21-25, 2022 | San Francisco, CA #GDC22

Game development is a very iterative process. But we weren’t able to achieve
reinforce that with points. Students get their points and never would touch the
project again. That’s not to say it’s impossible to add iteration with points, but with
the limited amount of grading hours we had, we were spending too much time
tabulating points in the first place.

March 21-25, 2022
San Francisco, CA

A Step Back: Thinking
About Learning Outcomes

| started thinking critically about course learning outcomes and if it would be
possible to restructure the grading to support the outcomes.

What should students get out of the class?

1. Be able to write C++ code to solve common game programming
problems as well as game-specific problems.

2. Be able to write code that is maintainable and NOT a throwaway
mess.

3. Be prepared for game programming interviews.

4. Practice being a dependable and responsible adult.

March 21-25, 2022 | San Francisco, CA #GDC22

These are our high-level goals:

Write code to solve game problems

Write quality code

Be able to intelligently answer game programming questions in the style of what a
typical interview may have

And be responsible

10

How should we assess these objectives?

1. Be able to write C++ code to solve common game programming
problems as well as game-specific problems. (Assignments)

2. Be able to write code that is maintainable and NOT a throwaway
mess. (Code Review)

3. Be prepared for game programming interviews. (Exams)

4. Practice being a dependable and responsible adult. (Due dates,
requiring complete work, in-class labs)

March 21-25, 2022 | San Francisco, CA #GDC22

Although our old system did assess #1 and #3, we didn’t really assess #2 and only
assessed half of #4

11

March 21-25, 2022
San Francisco, CA

| DR |

B E e £8 Al

SPECIFICATIONS

GRADING

Specifications Grading

#GDC22

After researching different options, | eventually stumbled across specifications
grading, which was proposed by Nilson in 2014. We’ve been using specifications
grading for a couple of years now, so I’'m going to dive into how we’ve implemented

it. | should note that what I’'m going to describe isn’t exactly like the system in the
book, but it has a lot of similarities.

12

Defining the specifications

1. The Levell.txt level file loads as expected. Mario can run and jump through the level, and collision with
the blocks/pipes works as expected.

2. Camera advances as Mario runs through the level. The camera should not go backwards, and Mario
should not be able to run off camera.

3. Goombas spawn and move as expected. They should fall when not standing on anything, and when
they hit a wall or another Goomba, they switch directions.

4. Mario can stomp on Goombas, and Mario dies if he runs into a Goomba and isn’t stomping it.
5. The animations for Mario (idle, run, jump, dead) and the Goomba (walk, dead) play as appropriate.
6. The main music plays and loops. The sound effects for jump, stomp, and bump play as expected.

When Mario dies (either killed by a Goomba or falls in a pit), the main music stops, and the death
music plays. When Mario reaches the end of the level, the main music stops, and the victory music

plays.

March 21-25, 2022 | San Francisco, CA #GDC22

In order to use specifications grading, first you define the requirements (or
specifications) of the assignment. In this assignment, I’'m expecting the student to
program some very specific Mario behavior, so these specs are extremely detailed.

But there’s no requirement specs must be this detailed — they can be as broad or
specific as it makes sense for your course. If you have a more creative assignment like
say a level design course, you can go with much more general or broader specs. Think
about what would you consider “B” quality work, and that should be clearly defined
by the specifications.

13

Initial Grade — Are specifications met?
F — The student failed to satisfy at least half of the specs

C — The student satisfied at least half of the specs, but not all

B — The student satisfied all specs ?

March 21-25, 2022 | San Francisco, CA #GDC22

First, the grader verifies that the student met the specifications. This generally will
just require playing the game for a couple of minutes and making sure each feature

works as expected. The goal is to be able to decide within a couple of minutes
whether a student’s submission satisfies all the specifications or not.

This means that if students just choose not to implement one of the specs (like
music), then they are bucketed into a C.

I'd note here that this is a little different from Nilson’s approach which grades

credit/no credit. | would personally love to do all grading credit/no credit, but in my
experience the students do need the extrinsic motivation of getting an A.

14

Initial Grade —Is it a B or an A?

A - This work meets or exceeds the specification of the assignment.
There are no non-trivial errors. There are few or no code quality
issues. This work could be used as a classroom example.

B - This work meets the specification of the assignment. If there are
errors, they are minor. There are likely code quality issues that
should be resolved.

March 21-25, 2022 | San Francisco, CA #GDC22

If the grader confirms that the student meets all specs, the next step is to decide
whether the assignment is an A or a B.

This is how we describe the difference between an A and a B to students. | think

“classroom example” is a great way to describe an A, which should be excellence. B
means you met all the requirements but there’s still items to improve.

As part of the A requirements, we evaluate code quality with code reviews.

15

What do we look for in the code review?

o Compiler warnings

Code Quality Measurement:

o Copy-pasting code instead of making a WTFs/Minute
function 1
o Poorly named variables/functions Vg‘ e Y P W o
« Inconsistent indentation \ P/
Code Review __Cooe Review ude,
o Code that is difficult to follow (lots of e / > e
conditionals in a spaghetti-like fashion) - this shic? -
Usi ic numbers inline rather th ' M, o
. sing .maglc numbers inline rather than N - ~y wre
declaring constants
o Writing out equations for things like Good Code Bad Code
distance in code rather than using the htp: Hcommodot.com
library functions

March 21-25, 2022 | San Francisco, CA #GDC22

We see the code review as a way for the TAs (who are all former students) to impart
their wisdom on the current students. It’s a learning experience for both students and
TAs to be on either end of the code review.

This is not an exhaustive list, but it’s a good starting point and what we tell students
not to do.

Here’s a comic we show the students when talking about code quality. There is some
subjectivity when evaluating code quality, just like evaluating any creative product like
design or art.

16

Giving feedback

© -

Your Current Grade: 8

5, but has seme minor buge, minor errors in the spec t ncjor cod
qual lowing while maintaining an overall A standard of quality:
Bug:
o de
(] apil
[m] Gatv
Code Quality
L1 Ins 1 Playervove.cop 41¢ Goombatove.cop , YOU Can use fange based for lcops inslead

Warnings:

March 21-25, 2022 | San Francisco, CA #GDC22

Since we have the students submit everything on GitHub, we use GitHub issues to
give their initial grading feedback, and it’s also how the students request their
regrade if they’re going for it. Here’s an example of a grade report for a B.

(As an implementation detail, | added some tooling to make it easy for graders to
create these reports)

17

Regrades to promote iteration

B-2>A

C->8B T*'Qr‘::i-imh

F>C

March 21-25, 2022 | San Francisco, CA #GDC22

Students have one regrade opportunity where they can increase their grade at most
one letter grade. They must submit the regrade within 4 days of their initial grade. For
F->C and C->B it’s quick to confirm.

For B->A the grader will do a sanity check to make sure the game still functions, and
then confirm that each issue brought up was fixed. It’s guaranteed to be a closed list
— meaning if the student fixes everything which was originally noted (without
breaking their game), we won’t come back with problems we didn’t notice on the
original grade report.

18

What assessments do we use this on?

« Assignments (use specifications grading)

« In-class labs (graded credit/no credit)

o Exams (graded with points)

March 21-25, 2022 | San Francisco, CA #GDC22

Ultimately, we have three main graded components of the class. Right now, we’re
only using specifications grading for the “assignments” component.

The in-class labs are graded credit/no credit because we’re simply confirming that the
student was there and made a genuine effort on the lab. We don’t grade it for
correctness.

The exams are still graded with points because we’ve not devised a good alternative.
For our course, exams make sense as they test some specific skills that we wouldn’t
be able to in the assignments. We think of this as “interview prep” for the student. If
your class doesn’t have exams, then you might be completely free from points.

19

Final Course Grades

e To getan A in the class, you need have:
e Credit (CR) on at least 9/12 in-class labs
o B or higher (after regrade) on all 12 assignments
o A (after regrade) on at least 8/12 assignments
o Average exam grade of at least 85%*

* The median exam grade is usually ~85

March 21-25, 2022 | San Francisco, CA #GDC22

Ultimately, we’re required to assign a final course grade. To get an A they do need to
get an A on most of the assignments (though it’s okay if they get a B on a few). They
also can’t just skip features they don’t feel like doing, because that would give a C on
that assignment.

Each criterion is evaluated separately and ties into our different learning outcomes.

20

March 21-25, 2022
San Francisco, CA

Outcomes

Let’s look a little bit at how things have turned out

21

What do instructors think?

« We expect more of the students
» We know students read feedback and act on it

March 21-25, 2022 | San

Students can’t just min/max their way to an A anymore

Students are writing better code overall (though it’s not perfect)

Students are more familiar with code review and iteration, which is more real world,
and we know they are implementing the feedback we give them, and our interactions
with the students about the grading are almost always about improving their work as

opposed to arguing over points.

22

What about grades/grading time?

e Course GPA is almost identical before/after

o Grading takes slightly longer than before:
o Each grader grades ~10-12 students a week
e About 20 minutes/student including all regrading

March 21-25, 2022 | San Francisco, CA #GDC22

The course GPA is almost the same — however it’s worth noting that since each
criterion is evaluated independently, students who do very poorly on the exams can’t
“make up” for it by getting straight As on the assignments.

We spend a little more time on grading, but the key thing is most of the time spent
on grading is now on giving meaningful feedback as opposed to tabulating points.

23

March 21-25, 2022
San Francisco, CA

Implementation Tips

Now I’'m going to go over some things I've learned along the way on how to
successfully launch the system.

24

Budget enough time to explain it

March 21-25, 2022 | San Fra A =GDC22

This is what your students might look like when you first try to explain the system.
Some of you look like this right now, too.

You should plan on budgeting at least one hour in the first week to go over the
grading system. And you can expect that you will have to reinforce the concepts
repeatedly.

Until you have a pipeline of previous students, your graders will also have a hard time
understanding the expectations of the grading. You will need to spend time going
over what they should be looking for especially your dividing line between a B and an
A.

As an instructor, it also takes getting used to. You can expect to iterate on the system
for a while.

25

You don’t need to change everything!

=

E.M R, Z? o

March 21-25, 2022 | San Francisco, CA #GDC22

One thing we’ve learned is to try to keep as many things as familiar as possible.

For example, our first stab at specifications grading was to use E, M, R, and Z for our
grades. This just added another layer of unnecessary complexity, so we just renamed

them to the much more familiar A, B, C, and F.

Keep in mind, you don’t have to change everything at once.

26

Thanks

o Matt Whiting
e Clark Kromenaker

e All the undergrad TAs who do the grading!

March 21-25, 2022 | San Francisco, CA #GDC22

Before | go to questions, | want to thank the other two faculty have been important in
refactoring the grading system system — Matt Whiting and Clark Kromenaker. And |
want to thank all our undergrad TAs over the past couple of years who’ve helped
make the grading system a reality.

March 21-25, , 2022
San Francisco, CA

Questions

28

March 21-25, , 2022
San Francisco, CA

Extra Slides

29

March 21-25, 2022
San Francisco, CA

What do students think?

#GDC22

I’'m not entirely sure how useful a data point it is to see what the students think, as
sometimes they will be opposed to things which are beneficial to them. But for
completeness we also have some survey results

30

Feedback

“I felt like I received useful feedback on how to
improve the quality of the code I write”
100%

90%

0%

e . .
70%
60%
50%
40%
30%
20%
10%
Now

Before Spec 1.0

m Strongly Disagree mDisagree mAgree mStrongly Agree

“Before” was the last semester we used points, and “Specs 1.0” was the first
semester we used spec grading, and now was the most recent semester (fall 2021).
The first two surveys were about the same number of responses (around 40
students), but unfortunately, we only had ~15 responses for “now”.

There definitely are more students who “strongly agree” though the number of
students who disagree isn’t quite 0.

31

Fairness

“I felt like the grading of the assignments was fair”
100%

90%
80%

70%

60%
50%
40%
30%
20%
10%
Now

0%

Before Spec 1.0

m Strongly Disagree mDisagree mAgree mStrongly Agree

This was an interesting result, as we have 10-20% of the students who don’t feel like
the assignment grading is as fair. | think in part this is just because numbers and math
inherently seem fairer. | think also some students don’t like that you can’t “make up”
poor performance in one aspect by doing especially well on another aspect, which
you could with just flat points.

32

March 21-25, , 2022
San Francisco, CA

More implementation tips

33

Adapting to code review takes time

HOW TO MAKE A
GOOD CODE REVIEW

geek & poke

AT LEAST WE
DON'T NEED TO
OBFUSCATE IT
50l

RULE 1: TRY TO FIND

AT LEAST SOMETHING
POSITIVE

By https://geek-and-poke.com/ licensed under CC-BY

March 21-25, 2022 | San Francisco, CA #GDC22

Since most classes (at least in the computer science world), don’t implement code
reviews, some of the students will be unfamiliar with the concept of not being able to
just write the code and forget about it. It will take some time for students to
understand how code review works. But over time the students become more
familiar with it and increasingly get an “A” grade on the first submission as the
semester progresses.

34

Visualizing the criteria

1 2 3 4 5 6 7 8 9 0 11 12
A B B B B | A A A A A A A | A
A- ¢ B B B B B A A A A A A
B+ z B B B B B B B A A A A
B © c B B B B B B B | A A A
B- F c G B B B B B B B B B
C+ F F & c B B B B B B B B
G F F c c c B B B B B B B
G F F F © B c B B B B B B
D F F - F © c c B B B B B

March 21-25, 2022 | San Francisco, CA #GDC22

One issue you may run into is mid-semester, students may have difficulty
understanding where they currently stand in the course. We’ve found making a table
like this helps — it basically shows the minimum required for the assignments grade to
achieve each grade. This also helps students “target” what grade they’re looking for.
For example if they’re just targeting a C+ this means they can choose to skip 2
assignments (and get Fs on them).

35

