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Agenda

● Problem statement
● History / prior approaches
● What we wanted to improve vs prior approaches
● Overview of Indy
● Lessons learned during development and use in 

production
● What’s next / future plans
● Questions

This talk is a postmortem of a tool we 
created called Indy.

It's designed for bulk data transfer 
and build distribution.

Here's our agenda:



Why we need a tool

Single Studio Development

● One location

● Single fast LAN network

Large Scale Distributed Development

● Multiple physical locations

● Multiple LAN networks connected by 

bandwidth-limited WAN

<click> In classic game dev, the 
game is developed at a single studio, 
with very fast LAN network

<click> With recent Activision 
games, this was becoming less and 
less true. We had one “lead” studio 
with 2-4 helper studios, and another 
2-3 sites of QA testers. In addition, 
we were simultaneously developing 3 
games in leap-frog. Each year, a 
different game was shipping, with a 
different "lead" studio.



Continuous Testing - Compass

GDC 2018 - Automated Testing and Profiling

for 'Call of Duty'

Activision has a continuous testing 
tool called Compass. My coworker 
Jan van Valburg did a GDC 2018 talk 
about it that you can find in GDC 
Vault.

For each check in, Compass will 
compile the game, bake a test map, 
and then run the game



Continuous Testing DAG

1. Build All Code

2. Bake Game Data

3. Run Game

Simple Test

Bake Game Data

Build Game Code

Run Game

Build Tools Code

Run Game

Run Game

Our DAG

In a simple implementation of this, 
you have a single task run on a 
single worker. It builds all the code, 
bakes the game data, and then runs 
the game.
This works, and it keeps all the 
artifact data local. However, it 
doesn't scale very well.

<click>

So we break up the test into multiple 
tasks that can run on multiple 



workers in parallel. This allows us to 
better utilize our servers, and run tests 
faster.

However, there is no free lunch. By 

splitting up the test into multiple tasks, 

we now have to transfer all the artifacts 

between servers.



Simple and Fast Storage

Switch

CI ServersCI DevkitsDeveloper PCs

File 

Share

When there is only a single studio, 
this wasn’t a big problem. Compass 
was originally designed to use a 
single file share server like SMB or 
NFS to store the artifacts from each 
task.

This is simple, and works relatively 
well when everything is on the same 
LAN network.



Latency is Killer

70 ms
140 ms

130 ms

180 ms

However, as mentioned before, our 
projects are no longer being 
developed at a single studio. We 
have multiple studios and multiple 
QA sites.

So where do we put the file share? 
We have studios spread out across 
the US, in Australia, Shanghai, and 
QA sites in Europe
If we put it in California <click>, the 
latencies to the other studios can end 
up being immense. <click> This isn’t 



slow network connections. It’s just the 
speed of light. It's just physics



File Share Performance with High Latency

Location Upload Time [s]

California 2

Australia 2,463

Canada East Coast 772

Europe 312

With a single file server, any workers 
not in the same physical area or 
network as the file share are 
guaranteed to have poor 
performance.

In this graph, I tested transferring a 
1GB file containing random data to 
one of our file shares in California, 
from various locations.
Transferring from within the same 
data center is only a few seconds.
But as the latency increased, the 



bandwidth drops drastically. Not just a 
few seconds more, but hundreds or 
thousands of seconds more.

So if the file share was in California, and 
a studio on the East Coast added 
workers to Compass. Awesome! Yay! 
More workers to churn through tasks! 
But actually, the workers ended up being 
not very useful, because any tasks run 
on those workers are much slower, for 
startup / finish just due to artifact 
transfer bandwidth being 
much much slower.



Scaling and Fault Tolerance

+ $$$ =

The last two issues with file shares 
are scaling and fault tolerance.

<click> If the current file share can’t 
keep up with load, <click> your only 
options are to buy a bigger and more 
powerful server. Or perhaps figure 
out a way to shard your data across 
multiple file shares.

But the other issue is that there is no 
fault tolerance. <click> If the server 
dies, or needs maintenance, or 



someone trips on the power cord, oops, 
now the entire CI system is having an 
outage.

NOTES: Maybe talk a bit more about the 
fact that maintenance happens a lot. 
Even with hotswapping. And failures 
happen a lot



Deduplication

Bake Game Data

Build Game Code Run Game

Build Tools Code

Run Game

Run Game

Lastly, let's talk about deduplication 
of data. <click> This is the task DAG 
that we talked about a few slides 
ago. The arrows show the 
dependencies of the tasks

Let's instead swap the arrows to 
show the artifact data flow

<click>



Deduplication

Bake Game Data

Build Game Code Run Game

Build Tools Code

Run Game

Run Game

File 

Share

The code build tasks will upload their 
compiled executables to the file share 
<click>

Then the Bake game task will 
download those, <click> and use it 
to bake the game maps. <click>

When finished it will upload the 70GB 
of map data to the file share. <click>

And finally each run game test will 
download the game executable 



*and* the 70GB of data from the file 
share.



Deduplication

Build 123

In the original Compass setup, each 
“build” stored its artifacts in a new 
folder on the file share.
<click>
So one build will bake all the maps, 
and store the 70GB of data in a 
folder.

<click>



Deduplication

Build 123 Build 124

Then the next build will bake all the 
maps, and store *its* 70GB of data 
in a new folder.

Even if the only change between the 
two builds was a single texture, we 
had to transfer all 70GB *to* the file 
share for storing, and then transfer 
the whole 70GB *from* the file share 
when we ran the game test.

As an addedum, file shares *can* 
and *do* have block-level 



deduplication on the server itself. So the 
70GB of data *may* be deduplicated 
somewhat in the server storage. But we 
still need to *transfer* all the data to 
and from the server. Storage is cheap, 
but bandwidth is a precious commodity. 
So, it’s bandwidth savings that we care 
about the most.



Deduplication

One last thing is that in the previous 
slides, we were only looking at the 
artifacts from a single build type. We 
also have other builds, like a nightly 
build that builds ALL the maps, 
instead of just 1-3.
Again, there will be a huge amount of 
data that will be identical, not only 
between builds of the same type, but 
also builds of different types.

So it's clear that we need a solution 
that can generically deduplicate data, 



no matter what the source of the data is.



Deduplication

Our games are really big!

The 70GB number I used isn’t just a 
random number. Our games and 
maps are really big.

A CI run might bake 1 to 3 maps. We 
don’t do the hardcore compression 
like we do for ship, because that 
takes too long.

So the data output from the baking 
can be anywhere from 70-100GB, 
depending on the maps included.

That’s a lot of data!



10 * 70 * 5 = 3.5 TB = 84 TB

10 * 70 * 5 * 3 * 2 = 21 TB = 504 TB

Let’s do some quick back of the 
envelope math
• Let’s assume there are 10 commits 
per hour. <click>

• Each CI run builds 3 
maps, totaling 70GB. <click>

• Let’s assume we build for PC, XB3, 
XB4, PS4, and PS5. That’s 5 
platforms <click>

That means we're generating 3.5 TB 
of data per hour. <click> And 84 TB 



of data per day. <click>
But that's only how much we generate. 
We still need to use this data.

So let's do some more math for how 
much data is *downloaded* from the 
server.
• We again assume 10 commits per hour, 
70GB of data, and 5 platforms <click>

• For every build we test 3 maps <click>
• And for each map, we run two tests, 
one for profiling, and one for logging, 
screenshots, etc. <click>

If we total this up <click>, for each build 
we're downloading 21TB of data per 
hour, and <click> 504 TB of data per 
day.



~ 8 Gbps upload to file share

~ 45 Gbps download from file share

That’s a lot of data!

Looking from the file share’s 
standpoint, that’s about 8 Gbps 
sustained upload to the server. And 
about 45 Gbps sustained download 
from the server.
And this is only looking at the main 
CI. We also have presubmit builds, 
manual builds, package builds, and 
builds on a release branch. So in 
reality, the upload and download 
numbers would more than likely be 2 



or 3 times higher.

If this was all on the same LAN, it 
*might* be possible with a really fast 
networking setup. But given that we 
have workers spread across the world, 
supporting this amount of data 
bandwidth across the WAN is not feasible 
or cost effective.

NOTE: Maybe dedicated slide – Really 
hammer home that this is just CI. Real 
life is 3x or 4x higher.



Clean Up

Don't Script that walks the filesystem

The last problem we wanted to tackle 
was clean up. With traditional ad-hoc 
artifact systems, there are generally 
two approaches:

<click> First, just don’t do any clean 
up all all.
You may laugh, but if you have semi-
infinite storage or storage is cheap 
and the amount of data you're 
storing is small, this is actually a 
decent plan. It's very simple, and you 
can just nuke everything when the 



project is done. However, as we saw in 
the previous slides, the amount of data 
we generate is not small. It would fill up 
any system in a week or less. Also, as an 
industry, we are quickly moving to a 
world where a project is never done; it 
continues on, with new content, and new 
patches.

<click> The second approach is usually 
some kind of script that walks the 
filesystem. This "works". But it has a 
number of drawbacks:

First, walking the filesystem itself could 
take hours. Artifact systems have the 
ability to generate a huge number of 
files. Therefore, it's very probable that 
the file system could have trillions of files 
for this script to walk through. While 
filesystems *can* handle that number of 
files, walking the iNodes is not going to 
be fast, no matter 
what filesystem implementation that you 
use.



So, this clean up has the potential to 
death spiral. Where CI is adding files 
faster than the clean up script can index 
and delete them.

Lastly, as we found out in the previous 
slides, deduplication is very important. 
But if you have some kind of strategy for 
deduplication, how do you find out when 
a file is no longer referenced? Say you 
index all the files, and are able to do ref-
counting. How do you prevent the race 
condition where the indexing finds an 
unreferenced file, but in the time it took 
for the indexing to happen, a new 
reference was added, so that file 
*shouldn't* be deleted.

So, it's clear that any clean up system 
that we create must be an integral part 
of the artifact system as a whole, rather 
than a script tacked on at the end.



History / Prior Tools and Approaches

Hopefully now, you all can 
understand the problem we had. So, 
now we’ll move on to what existing 
tools and approaches were available 
when we first started. And exploring 
their pros and cons.



Packaging Tools

Installers Compression Tools

Container Systems

First, we have packaging tools. And 
these can be broken down into a few 
categories.

First, installers. For example, the 
Windows installer (msi) and all the 
Linux various install formats (.deb, 
.rpm, etc.)

● These bundle a group of files with 
a small script for where to put the 
files when installing and what files 
to remove when uninstalling

● Some of the formats’ install 



scripts have optimizations around 
“don’t copy the a file, if the existing 
already exists”

● But there is no download 
deduplication. You have to download 
the entire .msi / .deb bundle

Next we have compression tools. Like 
zip, tar, and 7zip

● These have the same arguments as 
installers, but now we don’t have 
*any* deduplication

Finally, we have container systems, like 
Docker

● Docker is mostly designed around 
process isolation

● That said, it also has nice file 
isolation / deduplication properties

● Each line in the Dockerfile is a 
“layer”. All files changed or modified 
in that layer are grouped, hashed, 
and thus can be deduplicated 
between images

● So, when you “pull” an image, it only 
downloads the layers that aren’t 
already downloaded



Data Transfer Tools

Local

Server

There are a bunch of open source 
data transfer tools. Or some built-in, 
like Microsoft’s robocopy. 

You give them a source directory 
<click>, and a destination file share 
path <click> and they will copy up 
files to make them identical. <click>
They have really great algorithms for 
parallel transfer to make this really 
fast. <click>

However, they have a few 



drawbacks.

First, as we know from the previous 
slides, the fastest transfer is the one you 
don't have to do.
The tools can attempt to figure which 
files are identical, the “cheap” way by 
comparing file sizes. But this isn’t 
accurate. If a single texture is re-
colored, the file size will be the same, 
but the content is completely different.
Some tools can additionally attempt to 
use file modification timestamps as an 
additional piece of comparison. But these 
also aren’t super accurate at the 
Operating System level.

The *best* way to do this comparison is 
to compare hashes. However, these tools 
are all client-side. To calculate the hash, 
we would need to download the file from 
the server, which defeats the whole 
purpose.



Next, these tools are all optimized 
around “just” the transfer. Not the long 
term state after the transfer

That is, it’s up to you the user to 
organize / deduplicate any local “builds” 
that you have downloaded. Similary, it's 
up to you to try an organize the files on 
the server so they can be deduplicated.

Lastly, these tools are all all reliant on a 
filesystem. That is, the destination has to 
be a file share of some kind, which as we 
saw before, doesn’t scale



Data Transfer Tools

Pros

• Good algorithms for parallel / fast data transfer

Cons

• All client-side

• Clean up is hard

• Hard to have exact deduplication

• Deduplication is at the “whole file” level

So here's the final list of pros and 
cons.

Historically, at Activision we used a 
mix of things.

One project hashed their files, and 
robocopied them to a central file 
share that served them downstream 
over HTTP.
But they forgot to add cleanup, and 
the script they added on at the end 



death spiraled. Oops.

Another project sharded their work 
across multiple file shares, so there was 
a smaller blast radius.
But they still had all the downsides of file 
share performance and scaling.



Goals for the new tool

• Single binary CLI tool

• Data deduplication, with file chunking

• Automatic clean-up of old data

• The server components must be horizontally scalable and 

fault tolerant

• As much as makes sense, utilize the hard work done by the 

web community

So, now that we understand the 
problem statement and we’ve 
explored the pros and cons of 
existing tools, let’s go over our goals 
for our new tool.

<click> First, we want the tool to be 
a single binary. As much as possible, 
it should be statically linked. So 
someone can download just the 
single file and be able to run it 
without any dependencies.



<click> Next, the tool needs to support 
data deduplication. The tool must be 
able to break files up into “chunks”, 
because deduplication at the whole file 
level will not work due to our large map 
file sizes.

<click> Next, the system must support 
automatic clean up of old data. Both 
locally and on the server.

<click> The server components must be 
horizontally scalable and fault tolerant. 
Especially storage

<click> Finally, as a “bonus” goal, as 
much as makes sense, the system 
should utilize the hard work done by the 
web community. The technology of the 
web has exploded in the last decade. The 
people in that ecosystem are 
exceptionally smart and are solving very 
difficult problems similar to us. So rather 
than trying to re-invent what they've 
done, we should utilize their discoveries 



and tools.



Let's Design a New Tool

Executable

File 

Share

So given those goals, let's think 
about what we need.

First, the obvious one, we'll want a 
local command line program. <click> 
This will do all the "heavy lifting" for 
a user. It will have a nice clean set of 
commands, that can also be used by 
scripting.

The tool will upload to a remote 
server. <click> But we've learned 
that file shares aren't great. So let's 



swap out the file server for an HTTP 
Object Store. <click>



Let's Design a New Tool

Object

Store

Executable

Metadata / 

Orchestration

Great. HTTP is highly scalable, works 
across all platforms, and in the last 
two decades, there has been a huge 
amount of tools and infrastructure 
work by the community to make 
HTTP fast and easy.

Lastly, we learned from file transfer 
tools like robocopy that we need 
some kind of server component 
<click>
This will orchestrate data 
deduplication and data cleanup.



And that's basically what we did!



Introducing Indy

• Local binary - indy.exe

• Metadata server - Ark

• Object Storage Server - WebDAV

So with no further ado, let me 
introduce our tool called Indy.

The Indy ecosystem is made up of 
three components:

1.The indy binary itself
2.The metadata server called Ark
3.An Object Storage Server

We'll explore each of these in a series 
of examples



Using Golang

• Familiar syntax to C

• Native cross-compiling

• Fantastic standard library

• For everything else, there's probably a library for that

• Metrics / telemetry

• Web server path routing

• Terminal Progress bars

• Etc

As a very small tangent, we chose to 
use golang to create our tool and 
server components.

This was for a few reasons:

<click> First, golang has a very 
familiar C-like syntax, which made it 
very easy for co-workers to learn
<click> Second, it has native cross-
compiling for all the major operating 
systems
<click> Third, it has a fantastic 



standard libary. Http, sha1 hashing, 
string manipulation, all included.
<click> And for anything that *isn't* 
included in the standard library, there's 
probably an open source library for it. 
For example:
• Metrics and telemetry
• Fancier web path routing
• Terminal progress bars
• And more



Overview of Indy

• Everything is structured an "image"

• An image is:

• Bundle of files

• Optional ENV variables

• Optional commands to be run with files / ENV

Back to Indy. 

<click> In the Indy ecosystem, 
everything is structured around an 
“image”.

<click> An image is a bundle of files 
with optional ENV variables and 
commands to be run with those files.



The Image "Flow"

Object

Store
Ark

Client A

Indy build ...

Client B

Indy mount ...Indy push ... Indy pull ...

Ark - Metadata
Object Store - Storage

Let's look at a high level diagram 
showing how images are created, 
moved around, and used.

We have two clients, A and B. And 
we have the Ark metadata server, 
and the Object Store.

<click> First, client A creates an 
image by using the `indy build` 
command. I'll go into more details in 
a second how this works. But for 
now, just think of build as bundling 



up all the files into a black box.
Client A wants to share the image with 
other machines. <click> To do that, 
client A uses the `indy push` command. 
This will contact Ark to figure out what 
data it needs to upload, and then will 
upload that in parallel to the Object 
Store.

So now Client B wants to download the 
image. <click> It does this by using the 
`indy pull` command. This will contact 
Ark to figure out which data it needs to 
download, and then download that in 
parallel from the Object Store.

Finally, Client B has an image. But an 
image is a bit of a black box. You can't 
use it directly. First you need to create 
an instance of the image. <click> You do 
this with `indy mount`.

At a high level, this doesn't seem much 



different from the file transfer tools we're 
intending to be improving upon. So let's 
go back now, and look at each of 
the indy commands in more details and 
see how they work.



A Very Simple Indyfile

ADD map1.bin /maps/map1.bin

CHUNK 1M map2.bin /maps/map2.bin

CHUNK 1M map3.bin /maps/map3.bin

Let's start with image building. To do 
this, you first create an Indyfile. This 
is a custom declarative language that 
defines what you want in your image.

If you want to add a file you can use 
the `ADD` instruction. This will 
include the entire file as a single 
chunk.

Alternatively, you can use the 
`CHUNK` instruction, to tell Indy to 
split the file up into chunks. In this 



example, it will split it into fixed-size 
1MB chunks.

Now that we have the Indyfile, we can 
call `indy build` <click>



Building an Indy Image

<namespace>/<name>:<tag>

Indy will read in the instructions in 
the Indyfile and use them to create 
an image.

The build command outputs a sha1 
which uniquely identifies the 
image. However, it's highly 
inconvenient to have to reference 
images by sha1. So, we can create a 
label that is a human consumable, 
which acts as a pointer to the image 
sha1.
In the `indy build` command, you'll 



notice we specified the label 
`aastley/gdc-test:v1`.

<click> Labels are of the form 
namespace, name, tag



How Does Build Work?

ADD map1.bin /maps/map1.bin

CHUNK 1M map2.bin /maps/map2.bin

CHUNK 1M map3.bin /maps/map3.bin

Let's talk a little bit more about what 
build does and what an indy image 
actually is.

When we call `indy build`, indy will 
use the Indyfile instructions to create 
an image manifest. It looks 
something like this <click>



{

"Version": 0,

"Size": 780000000,

"Env": [],

"Files": [

{

"Path": "/maps/map2.bin",

"Sha1": "1bb7c068c4e162b0b82c3972c87119a49036d8f0",

"Size": 248000000,

"Chunks": [

{

"Sha1": "1bf0a17e0709a295efd8af3b33a5316bd65ddfcf",

"Size": 1048576

},

{

"Sha1": "e68641bba66f6b6dff18af14f1d1c607d8e757f1",

"Size": 1048576

},

...

]

},

...

]

}

The manifest is a simple json file, 
which lists all the files in the image, 
and for each file, all the chunks that 
make it up.

For those reading 
this after the presentation, the 
manifest is highly truncated in order 
to fit in onto the slide. A "real" 
manifest has much more information 
in it.

Everything in the Indy ecosystem is 



content addressable. That is, the name 
and identifier of everything is the sha1 
hash of its content.
So here in the manifest, we list all of 
those hashes, plus the sizes of 
everything.

For example, the map2.bin file has the 
hash `1bb7`, and a size of 248 MB. It's 
made up of many many chunks. The first 
two are listed here, with sizes of 1MB 
each, and each have their own hashes.



Local Indy Image Storage

> tree ~/.indy

.indy

├── images

│ └── 4d002477d3aa6bfab47d34f58aa98451fe96bb8b <----- json manifest file, filename=sha1

├── mounts

├── objects

│ ├── 03

│ │ └── 034a2bfcd34b70e279730d1ed4c055d0f93376b3 <----- binary blob, filename=sha1

│ ├── 1c

│ │ └── 1c755788fa01e5f4fe480e3f54e68e6597f7f0f6

│ ├── 1e

│ │ └── 1e558dfbcbe27afe1f1c9c6a50f423b812d9d456

│ ├── 1f

│ │ └── 1fa4c43eeab6a68997d80af4118592296650546f

--------------------------------------------------------- (abbreviated for slides)

│ └── ff

│ └── ff6b440094fe85ebfecd493f5f9749fe9ab40663

└── repo.yaml <------ mapping of labels to image sha1

The indy build process walks through 
each file, and calculates the hashes 
mentioned in the last slide.
As it does so, it copies the chunks 
into the local Indy Image storage. 
Specifically into the "objects" folder.

All the files are named by their hash. 
This means that everything is 
immutable. A file in the Indy image 
storage can never change, since that 
would change the hash and thus the 
file name would also change. This is 



really important and one of the key 
points of indy. We'll get more into this in 
a second.

The image manifests from the last slide 
are stored in the images folder, again 
named by the sha1 hash of the manifest 
itself



Adding a new Label

Let's dig more into labels. As 
mentioned before, labels are human-
accessible pointers to an image. In 
this example, the label aastley/gdc-
test:v1 points at image 0bff1.
Since labels are just pointers, we are 
free to add as many as we like 
referencing the same image.

<click>



Adding a new Label

Here we add a new label 
`aastley/my-awesome-label:123`.

If we run `indy images` to list all the 
images we have locally, we can see 
the new label we created. Note that 
they're both pointing to the same 
image sha1.



Image Time to Live

Labels have one more feature. When 
you create them, you can set a Time 
to Live. This represents a time in the 
future when the label will expire.
In the labels we have created so far, 
the TTL is infinite.

Let's update the label we just created 
to have a TTL



Image Time to Live

We'll set the TTL to 20 seconds. If we 
then run the `indy images` 
command, it shows that the label has 
18 seconds left.

So now that we've set a TTL, what 
happens when a label expires?



Image Time to Live

Nothing immediately. If we run `indy
images`, now the image is marked 
as expired.
However, this is where clean up 
comes in.



Garbage Collection

aastley/gdc-test:v1 aastley/my-awesome-label:123 packages/test:123Labels

0bbf149 f1d2d2fImages

Chunks

Indy has a command `gc`, aka 
garbage collection. To understand 
how it works, let's look at how indy
tracks each component

<click> The Indy system has a 
hierarchy of references. At the top 
there are the labels
<click> These reference specific 
image SHA1's
<click> The images, in turn, 
reference individual chunks. Note, 
that chunks can be referenced by 



multiple images.



Garbage Collection

aastley/gdc-test:v1 aastley/my-awesome-label:123 packages/test:123Labels

0bbf149 f1d2d2fImages

Chunks

So back to Garbage Collection.

GC happens in 3 phases. First, we 
check if any labels have expired 
TTLs, and if so remove them.

<click> In the previous slides, we 
saw the aastley/my-awesome-
label:123 label was expired. So let's 
follow along with what GC would do 
and remove it.
<click>



Garbage Collection

aastley/gdc-test:v1 packages/test:123Labels

0bbf149 f1d2d2fImages

Chunks

The next phase is to check all the 
images, and see if any are now 
unreferenced by any labels.

<click> In this case, the 0bbf149 is 
still referenced by the aastley/gdc-
test:v1 label. So nothing happens.

Moving on the final phase. <click>



Garbage Collection

aastley/gdc-test:v1 packages/test:123Labels

0bbf149 f1d2d2fImages

Chunks

In this phase, we reference count all 
the chunks, to see if any chunks are 
no longer referenced by any images.
Again, in this example, we didn't 
remove any images. So all the 
chunks are still referenced.

So let's do one more example, so we 
*can* see the chunk deletion.
<click> We'll simulate manually 
deleting the packages/test:123 label, 
and then running gc again.



Garbage Collection

aastley/gdc-test:v1Labels

0bbf149 f1d2d2fImages

Chunks

Phase 1: Remove all expired labels. 
There's nothing expired here, so we 
can move on.
Phase 2: Remove all unreferenced 
images.
<click> The f1d2d image is no longer 
referenced by any labels, so we 
remove it



Garbage Collection

aastley/gdc-test:v1Labels

0bbf149Images

Chunks

Phase 3: Remove all unreferenced 
chunks

<click> We find that these 5 chunks 
are no longer referenced and can be 
deleted. Note, there were a few 
chunks that were shared with the 
other image. These chunks aren't 
deleted, since they're still referenced 
by the 0bbf1 image



Garbage Collection

1. Delete all expired labels

2. Delete all unreferenced images

3. Delete all unreferenced chunks

So in summary, these are the steps 
we take

* Delete all expired labels
* Delete all unreferenced images
* And finally, delete all unreferenced 
chunks



Pushing

Object

Store
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Time
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Manifest

Indy
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Upload 
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Chunks

Indy

Finalize Push

Ark - Metadata
Object Store - Storage

Next, let's talk about how 
`indy push` works, and how it 
deduplicates data.

<click> First, indy will POST the 
image manifest to the Ark server.
<click> Ark will query its internal 
database to figure out which chunks 
*don't* already exist on the server. 
And return this to `indy`
<click> Next, in parallel, indy will 
upload the missing chunks to the 
object storage server.



<click> And finally send another POST to 
Ark, telling the server that it finished the 
upload

So, since Indy only uploads what is 
missing on the server, we can get 
excellent bandwidth savings, assuming 
the changes from image to image are 
small.



Pulling

Object

Store
Ark

Time

Indy

GET Image 

Sha1

Indy

Get Image 

Manifest

Indy

Calculate 

missing chunks

Indy

Download 

missing chunks

Ark - Metadata
Object Store - Storage

Now we can look at pull

<click> First, indy will ask Ark for the 
image sha1, using the image label.
<click> Then, indy will use the image 
sha1 to download the manifest from 
the object store
<click> Indy will compare the chunks 
in the manifest against what it has 
locally already, so it can calculate the 
list of "missing" chunks
<click> Then indy will download the 
missing chunks in parallel



Again, since we only download the 
chunks that don't already exist on disk, 
we can get excellent bandwidth savings.



Mounting an Indy Image

> tree ~/.indy

.indy

├── images

│ └── 4d002477d3aa6bfab47d34f58aa98451fe96bb8b

├── mounts

├── objects

│ ├── 03

│ │ └── 034a2bfcd34b70e279730d1ed4c055d0f93376b3

│ ├── 1c

│ │ └── 1c755788fa01e5f4fe480e3f54e68e6597f7f0f6

│ ├── 1e

│ │ └── 1e558dfbcbe27afe1f1c9c6a50f423b812d9d456

│ ├── 1f

│ │ └── 1fa4c43eeab6a68997d80af4118592296650546f

--------------------------------------------------------- (abbreviated for slides)

│ └── ff

│ └── ff6b440094fe85ebfecd493f5f9749fe9ab40663

└── repo.yaml

Lastly, let's talk more about 
mounting.

<click> As discussed in previous 
slides, when we build or pull an 
image, the image chunks are stored 
in the "objects" folder on 
disk. <click> Specifically, they're 
stored by their content hash name.
This very important to clean up and 
data deduplication, but it's not useful 
to users.



Users want to see the files with the 
correct names and directory structure. 
This is where the `indy mount` 
command comes in.

<click>



Mounting an Indy Image

> tree ~/.indy

.indy

├── images

│ └── 4d002477d3aa6bfab47d34f58aa98451fe96bb8b

├── mounts

│ ├── 6b46cd8a-91aa-4786-af51-fc206a2f6cb0

│ │ ├── maps

│ │ | ├── map1.bin -> hardlink to objects /1c/1c755788fa01e5f4fe480e3f54e68e6597f7f0f6

│ │ | ├── map2.bin -> hardlink to objects /03/034a2bfcd34b70e279730d1ed4c055d0f93376b3

│ │ | └── map2.bin -> hardlink to objects /21/213c4192b81be6e3d1079c15d908c82c6447c4b3

├── objects

│ ├── 03

│ │ └── 034a2bfcd34b70e279730d1ed4c055d0f93376b3

│ ├── 1c

│ │ └── 1c755788fa01e5f4fe480e3f54e68e6597f7f0f6

│ ├── 21

│ │ └── 213c4192b81be6e3d1079c15d908c82c6447c4b3

------------------------------------------------------------------------ (abbreviated for slides)

└── repo.yaml <------ mapping of labels to image sha1

Mounts get created in the mounts 
folder.

We create the correct directory 
structure for the image, and then 
create hardlinks to the corresponding 
objects in the objects folder.
As a quick refresher, hard links are a 
filesystem concept where 
two filepaths actually correspond to 
the same file data. They're very fast 
to create, and don't cause any 
copying.



This means that creating mounts is 
semi-instantaneous, and we can create 
as many of them as we want with no 
additional disk space usage.

Let's move on to exploring some of the 
server concepts.



Cache Nodes

• All uploaded files are immutable

• Never have to worry about cache coherency

One of the great things about using 
content-addressable files for 
everything is that everything is 
immutable
This means that we can use cache 
nodes at each of our studio locations, 
because we never have to worry 
about cache coherency.
A file either exists, or it doesn't. The 
contents will never change.



Cache Nodes

Object

Store

Studio A

Cache Node

...

Clients

Studio B

Cache Node

...

Clients

Studio C

Cache Node

...

Clients

Our cache nodes are set up in a 
wheel and spoke model.

We have a central object store. And 
then each studio has a dedicated 
cache node.
All clients download and upload 
through the cache nodes. They never 
connect to the object store directly.

This has lots of benefits:

1.The cache nodes can cache files. So 



if one client downloads an image, the 
next client can download the image 
chunks directly from the cache node. 
This reduces the WAN traffic, which is 
a much more precious resource. And it 
reduces load on the object store itself.

2.We control the cache nodes. So we can 
enable much more sophisticated and 
aggressive TCP tuning. For example, 
we enable the BBR congestion control 
algorithm. This guarantees that all 
WAN traffic is as optimized as possible

3.The cache nodes can be scaled to as 
many as we want. If a studio has a ton 
of clients, we can add multiple cache 
nodes, and load-balance between 
them. This also adds a layer of fault 
tolerance. We can have multiple cache 
nodes, so if we ever need to do 
maintenance on them, or if one of 
them crashes, a client can just switch 
to using a different cache node.



Ark Garbage Collection

1. Delete all expired labels

2. Delete all unreferenced images

3. Ref-count all chunks

4. Delete all unreferenced chunks

When you push an image to Ark, you 
also specify a TTL for the label.

Similarly to local indy, Ark has a 
Garbage Collection process. This 
follows the same basic steps as local 
Garbage Collection, but utilizes a 
database to allow concurrency and 
atomicity at the server level.
Also, it runs automatically every 10 
minutes, rather than being a manual 
command.



As a note, the details of *how* we 
execute these queries on the database in 
order to be atomic and race-free is an 
super interesting topic.
Unfortunately, it could cover an entire 
talk all to itself, so if you're curious, 
come talk to me after.



Effect of Chunk Size

Lastly, let's cover a couple 
miscellaneous topics. Starting with 
exploring how chunk sizes affect 
things.

The first experiment that we did was 
to create files of different sizes and 
put them on two nearly identical 
nginx servers. One had a 20Gbps 
NIC, and the other had a 40 Gbps 
NIC.
Then we downloaded each file 1000 
times, and measured the effective 



bandwidth. <click> This chart is the 
result. Let's explore it a bit in detail.

<click> When the chunk size is only 
100kB the throughput is quite low. Even 
with a 40Gb NIC, we could only manage 
~8Gbps of effective bandwidth.
This makes intuitive sense. TCP has 
overhead, and the HTTP framing itself 
has quite a bit of overhead. Plus, for 
every 100kB of data, you need to do a 
back and forth request / response with 
the server.

<click>



Effect of Chunk Size

If we look at 1MB chunks, the 
performance is much better, <click> 
and by 10MB chunks, we're already 
hitting the NIC limit for the 20Gb 
server, and very close for the 40Gb 
server.

So the more data you can exchange 
per HTTP request, the higher your 
effective bandwidth will be. Though, 
after ~10MB, the bandwidth plateaus 
to the NIC limits.



Effect of Chunk Size

If we look at 1MB chunks, the 
performance is much better, <click> 
and by 10MB chunks, we're already 
hitting the NIC limit for the 20Gb 
server, and very close for the 40Gb 
server.

So the more data you can exchange 
per HTTP request, the higher your 
effective bandwidth will be. Though, 
after ~10MB, the bandwidth plateaus 
to the NIC limits.



Effect of Chunk Size

Small Chunks

• Modified chunk is a small amount 

of data. (Higher deduplication)

• Retries are cheaper

• Transfer speed is slower

Large Chunks

• Modified chunk is a large amount 

of data. (Lower deduplication)

• Retries are more expensive

• Transfer speed is faster

So what size do you choose? To 
answer that, we also have to look at 
the last two properties that chunk 
size affect:

• Deduplication
• HTTP retries

For small chunks, if a chunk is 
modified from one image to the next, 
it's not a bit deal. It's only a small 
amount of data to have to upload. 
Similarly, if the HTTP connection 



breaks for whatever reason, it's not a big 
deal to have to re-transfer the entire 
chunk. On the flip side, the transfer 
speed can be quite slow.

For large chunks, if a single byte 
changes within a chunk, we still have to 
transfer the entire chunk. Similarly, if 
we're in the middle to uploading a 1GB 
chunk, and the TCP connection fails at 
the last 20 bytes, we have to re-upload 
the entire 1GB again. Though, in 
general, the transfer speed will be very 
fast.



Effect of Chunk Size

~ 1 to 5 MB chunk size

So what size did *we* choose? From 
our empirical testing, we found 1-
5MB chunks to be a good balance 
between speed, deduplication, and 
retries.



The Importance of *Good* Chunking

Now that we know how size affects 
performance, let's look at how we 
actually do the chunking with Indy.

This diagram represents a file. Each 
colored section represents a "logical" 
portion of the file. If this was a map 
file, one colored section might be a 
texture, and another model data.
If we tell Indy to chunk every 1MB, 
this is what it would look like

<click>



The Importance of *Good* Chunking

Fixed-size Chunks

Everything inside each red square 
would be an Indy chunk. With the 
contents creating the sha1.
Ok great. For a single file, in 
isolation, this works fine. However, 
our data isn't in isolation. We build 
similar data over and over and over 
again.

Let's say an artist modifies a texture 
for a tree and checked it in. <click>
When we build the map, 
<click> that corresponds to this 



purple section getting a little bit bigger. 
Ok, you say. What's wrong with that?



The Importance of *Good* Chunking

Fixed-size Chunks

"New" chunks

Well, if we apply the same fixed-size 
chunking pattern to the file, we now 
have a problem. <click>

The addition to the purple section 
shifted the entire rest of the file 
down. So every single chunk after 
the modified section now has a 
different hash, and has to be 
uploaded to the server, because the 
contents changed.
This is obviously bad. It destroys all 
deduplication the file *should* have 



gotten.



The Importance of *Good* Chunking

Fixed-size Chunks

So what if we could tell Indy to chunk 
at the "natural" boundaries of the 
file, instead of at arbitrary fixed 
sizes? <click>



The Importance of *Good* Chunking

Fixed-size Chunks

Custom-sized Chunks

That way, if a single section were to 
change <click>, the only chunk that 
would change would be that section. 

Well there is! <click>



Whole File

ADD my/local/path/file.txt /image/path/file.txt

Pros
• Very simple

Cons
• Single byte change = No deduplication

An Indyfile has 4 different ways to 
add a file. You've seen two of those 
ways so far.

<click> The first way is using the 
ADD command. It adds the file to the 
image using one giant chunk for the 
entire file
It's simple, but it isn't efficient, 
because a single byte change means 
the entire file needs to be re-
transferred



Fixed Chunk Size

CHUNK 1M my/local/path/file.txt /image/path/file.txt

Pros
• Very simple

Cons
• Single byte change = All chunks after change in file, no 

deduplication

Next, you can tell Indy to use fixed-
sized chunks. In this example, we tell 
it to make a chunk every 1MB

This is better than ADD, because you 
can change bytes without blowing the 
entire file. But, as we saw in the 
previous slides, if the file size 
changes at all, then we destroy the 
deduplication for the rest of the file.



Custom Chunk Size

CHUNK .chunks my/local/path/file.txt /image/path/file.txt

0

23

54

120

436

Now we move to the new stuff.

<click> With this command you 
specify an extension. In this 
example, we used the `.chunks` 
extension.

What this does is instruct Indy to 
look for a file next the specified file, 
which has that extension <click>

The file should be a newline-
separated list, <click> where each 



entry gives the byte offset of each 
chunk.
So in this example, the first chunk would 
be from byte 0 to 22, the next from 23 
to 53, etc.

<click>



Custom Chunk Size

CHUNK .chunks my/local/path/file.txt /image/path/file.txt

Pros
• Chunking matches "natural" file boundaries

• Change to a section of file -> only modifies that chunk

Cons
• Requires knowing "natural" file boundaries

• Extra manual step

• "Natural" boundaries might create very tiny chunks or huge chunks

This allows user to specify exactly 
where Indy should split the file. This 
is great, because it means that if an 
artist changes a single texture, the 
only chunk that changes is that 
texture.

However, on the flip side, the user 
now has to know the exact file 
structure, they have to do an 
additional manual step to generate 
the .chunks file, and lastly, the 
natural boundaries might create 



super tiny or super huge chunks. Which, 
from the previous slides, we know isn't 
good for performance.

<click>



Content-Defined Chunking

So what do you do if you don't know 
the file format? Or if the content 
inside the file is super tiny?

Is there a way that Indy can 
automatically find deterministic 
chunk locations? YES!

There is an algorithm called Content-
Defined Chunking that uses hashing 
of the content to deterministically 
determine chunk boundaries



This is exactly what we need!

What's better, there are multiple open 
source implementations of the algorithm 
which we can use.



Automatic Chunk Size

CHUNK ~1M my/local/path/file.txt /image/path/file.txt

CDC Setting Chunk count
Match Size 

[GB]

Diff Size 

[GB]
Deduplication

~512K 245,516 119 22 85.31

~1M 127,955 114 27 81.70

~2M 69,353 108 34 77.18

~4M 40,177 101 41 71.96

We implemented this as follows 
<click>

You tell Indy the average chunk size 
that you want. Then it will pass that 
value to the Content-Defined 
Chunking algorithm to calculate the 
chunk offsets, and then it runs as 
usual.

As a quick and dirty test, I took the 
output of a package build from one 
day, and the output of another 



package build from the next day.
Then I ran `indy build` on each of the 
outputs, with 4 different CDC settings 
and compared their chunks. 

<click> This chart shows the results.

To reiterate what this test did: For each 
setting, I would first build an image with 
the output from day 1. Then I would 
build another image with the output from 
day 2. And finally diff the two images.

As expected, when we specify smaller 
chunk sizes, the CDC algorithm is able to 
extract more deduplication from the 
files. However, the total number of 
chunks also goes up, and the chunk sizes 
are smaller. Which we know can lead to 
poor bandwidth performance.

Take these specific deduplication 
numbers with a grain of salt, but it's 
really interesting to see that the CDC 
algorithm is able to get such great 



deduplication numbers, with no a-priori 
knowledge of the file structure.



Automatic Chunk Size

CHUNK ~1M my/local/path/file.txt /image/path/file.txt

Pros
• Very simple

• Excellent temporal deduplication

Cons
• Two passes through file

1. Figure out chunk boundaries

2. "Normal" `indy build` portion

So, as a summary, automatic CDC 
chunking is very simple to use and 
doesn't require any a priori 
knowledge of the file structure.
And on top of that, it performs very 
well.

That said, there is no free lunch. CDC 
does require you to do two passes 
through the file. First, to figure out 
the chunk boundaries, and then the 
second as the "normal" indy build. So 
builds are slightly slower.



All the Ways

ADD my/local/path/file.txt /image/path/file.txt

CHUNK 1M my/local/path/file.txt    /image/path/file.txt

CHUNK .chunks my/local/path/file.txt    /image/path/file.txt

CHUNK ~1M    my/local/path/file.txt    /image/path/file.txt

So here are all the Indyfile methods 
for adding a file.

• ADD the whole file
• Fixed-size chunks
• Custom-size chunks
• Automatic CDC chunks



What about Devkits?

.elf binary

Game data files

Devkit Host Devkit

.elf binary

Game data filesUpload 

or 

HostFs

Ok great. We have this new tech that 
works for all our workstations and all 
our servers. But what do we do for 
the devkits?

<click>

As a quick review, for console 
development, you have a host PC, 
which we call the devkit host. And 
the console devkit itself.
To launch the game, you need to get 
the elf binary and the game data files 



from the devkit host to the devkit. 
<click> XBox and Playstation support 
either uploading everything before you 
launch the game, or streaming the files 
from the host to the devkit just-in-time. 
We call this second approach HostFs.



What about Devkits?

.elf binary

Game data files

Devkit Host

.elf binary

Game data files

Devkit

Cache Node
Indy 

pull / mount

Upload 

or 

HostFs

If we plug in Indy, it looks like this.

We use Indy to pull/mount the data 
on the devkit host.
Then transfer all the data to the 
devkit and finally launch the game.

This is *fine* for local development. 
But it has a number of issues for a CI 
system.



What about Devkits?

.elf binary

Game data files

Devkit Host

.elf binary

Game data files

Devkit

Upload 

or 

HostFs

Studio A Studio B

First, our devkits are a precious 
resource. We have a limited number 
of them for all the projects.
Ideally, we'd have devkit hosts at all 
the studios, but this doesn't always 
happen.
Especially since the hosts are kind of 
a "waste" of server resources. They 
basically sit idle during the game run 
and read the console logs.

<click>



So the host and devkit might not be in 
the same physical location. And we know 
that WAN bandwidth is both precious and 
super slow, because of latency.



What about Devkits?

.elf binary

Game data files

Devkit Host

.elf binary

Game data files

Devkit

Cache Node
70GB

70GB

Next, if we look at the data path, 
we're downloading the elf and all the 
data to the host, and then 
immediately transferring all that data 
to the devkit.
It's an extra hop.

In addition, even though the game 
build is 70GB, a run of a single map 
may only need to read 10 GB or so of 
data. But with this setup we still have 
to download and transfer all 70GB.



IndyFs

FileSysHandle OpenFile( const char *filename, int flags );
size_t Size( FileSysHandle handle );
uint64_t Seek( FileSysHandle handle, const uint64_t pos );
void Close( FileSysHandle handle );
bool Exists( const char *filename );
FileSysResult ReadBlocking( FileSysHandle handle, uint64_t offset, uint64_t size, void *dest,

uint64_t *numBytesRead );
FileReadHandle StartRead( FileSysHandle handle, uint64_t offset, uint64_t size, void *dest, 

FileReadCallback cbfn, void *cbContext );

So to solve these problems we 
created IndyFs

The game abstracts all filesystem 
access behind an interface that looks 
like this.
All your standard functions, open, 
close, read, etc.

So we created Indy File System, 
which is a virtual filesystem, using 
Indy behind the scenes.



IndyFs

Devkit Host Devkit

Cache Node

.elf binary

Indy 

pull / mount

.elf binary

Upload

IndyFs

This is the flow.

<click> First, we download *just* 
the binary to the devkit host.
<click> Then we upload the binary to 
the devkit and launch the game
<click> During the game run, we 
download the game data on the fly 
using IndyFs



IndyFs Modes

Devkit

Cache Node

Disk

Memory

HTTP

Whole

chunks

Local Caching 

Mode

IndyFs can run in two different 
modes: Local Caching Mode, and 
Direct To Memory Mode

In Local Caching Mode, we download 
whole chunks to disk, and then use 
those to serve read requests to the 
game.
If the game asks for data from a 
chunk already downloaded, we don’t 
have to download it again, since it’s 
already on disk.
Similarly, from one game run to the 



next, many of the chunks will be the 
same, so we don’t have to re-download 
that data



IndyFs Modes

Devkit

Cache Node

Disk

Memory

HTTP

Whole

chunks

Devkit

Cache Node

MemoryHTTP

Range 

Query

Local Caching 

Mode

Direct to 

Memory Mode

In Direct to Memory mode, we don’t 
touch disk at all. Instead, we use 
HTTP range requests to download 
chunk data Just-In-Time as the game 
requests it.
We lose all caching potential we 
could get vs Local Caching Mode, but 
we avoid the disk.

Why do we want to avoid the disk?



PS4 / XB3 HDD is specced for 
durability, not raw speed. Best-case 
scenario, the drive can do 120 MBps. 
But that's with fully sequential, large 
read.

Also, HDDs in general perform very 
poorly if you are doing lots of mixed 
read/writes/seeks.
Local caching mode is the worst-case 
for this.

This graph shows a series of tests 



that I did. I started the game in 4 
different modes, and timed how long it 
took to boot into a map.

HostFs dynamically streams everything 
from the Host PC, and boots quite fast.
IndyFs using Local Caching Mode, with 
an empty cache was horribly slow. An 
order of magnitude slower than HostFs.
Even with the best case scenario, a full 
cache. Everything is read, no writes, it's 
still slow. This is just due to the specs of 
the drive, and having to do seeks to the 
different chunks.

IndyFs with Direct To Memory Mode, aka 
we download everything on the fly, we 
get performance on par with HostFS.
IE the NIC vastly outperforms the disk.

That all said, if we switch to SSDs, the 
story is completely flipped. For PC, it's 
hugely beneficial to cache. I don’t have a 
graph to show you, but IndyFs in caching 



mode is vastly faster, because SSD 
speeds are on the order of GB/s and are 
much more resilient to seeks.



How Well is it Working?

Very Well!

So, now we have this new ecosystem 
for transferring tons of data around. 
Just how well is it working?

<click>

Very well!



Raw Data Deduplication

Let's look at the raw data 
deduplication we're getting.

This graph measures the data rate of 
images being created and removed 
for a *single* project

The gray bars represent how much 
data would be added if there was no 
deduplication from the server. That 
is, if every image push uploaded ALL 
chunks.
For those of you that can't read the 



Y-axis numbers, the peaks here are 
about 5 to 10Gbps.

The yellow bars represent how much 
data was *actually* uploaded. It's about 
1.2Gbps.

The red bars represent how much data is 
being deleted by Ark garbage collection.

NOTE: This only a single project. Here is 
another project <click>



Raw Data Deduplication

This project has a very active 
package generation pipeline, which 
adds a ton of data. Pre-deduplication 
peaks are at 20 Gbps.
However, they're getting excellent 
deduplication, so the actual data 
uploaded is just 1 Gbps.



Cache Nodes Function like a CDN

Now let's look at the cache node 
performance. <click>
The Indy cache nodes end up 
functioning like a classic CDN.

We build and push an image once, 
and then consume it multiple times. 
And the image is cached by the cache 
nodes.
We also get temporal caching. AKA, a 
build pulled from 10 minutes ago 
probably has lots of the same chunks 
as the build we’re about to pull



This table shows those numbers.
It shows that in 24 hours, we uploaded 
39.7 TB of data through the cache 
nodes.
And downloaded 230 TB of data.

So we're downloading almost 6 times 
more data than we upload.



Cache Hit Ratios

The cache nodes are also working 
exceedingly well as caches.

96% of all requests are cached 
already, which corresponds to 63% 
of all data is already cached.
This is due to temporal deduplication, 
or clients pulling the same image.

This is really good, because it 
drastically reduces the load on the 
WAN and the object store.



Lessons Learned Along the Way

Now we can move on to some of the 
lessons we learned along the way 
while developing this tool and 
deploying it to production.



Curse of Scale - Probability

• Bug: 1 in 1 billion chance

• We do operation 100 million times per day

• Bug will occur roughly every 10 days

First, the curse of scale. Indy is being 
used in production with most of our 
projects, and being used by 
thousands of CI workers each day.
This is awesome, but it also shines a 
huge spotlight on any issues that we 
might have.

Let's imagine a bug that has a 1 in 1 
billion chance of happening <click>. 
That seems pretty tiny. And it is. 
<click> But if we do that operation 
100 million times a day <click>, then 



the bug will occur roughly every 10 
days...

Hence, the name, the curse of scale. 
Very small probabilities become very 
possible, or even semi-guaranteed, due 
to the huge number of operations we're 
doing.



Curse of Scale - Hardware

Disks *will* fail. Memory *will* fail. BSoDs *will* happen

Indy verifies data integrity at every step

`indy verify` to validate the contents on disk

<click> On that same note, at this 
scale of workers, it's semi-
guaranteed that at least one of the 
workers will have a disk fail, or 
memory fail, or Blue Screen of 
Death. It's not a matter of *if* it will 
fail, but *when* it will fail.

<click> In order to combat this and 
prevent chunk corruption on the 
server object store, indy will do data 
verification at every single step of a 
pull or push. As it reads data from 



disk or from the network, it will re-hash 
the data and verify it matches what we 
expect it to.

<click> Lastly, the data we store on disk 
must be durable. When we do a pull, we 
only download the chunks that we don't 
already have. So if a chunk is corrupt on 
disk, due to say, a disk error, this would 
corrupt all image files that use that 
chunk.

So to combat *this* problem, we have 
the `indy verify` command which will 
verify the data integrity of all images and 
chunks on disk. We run this nightly on all 
our CI workers to help guarantee that we 
always have correct data for our CI 
testing.



The Perfect DDoS Hammer

• Stampeding herd can cause further networking outage 

or DDoS

• Fix: Randomized exponential backoff

With Indy now being used to shuffle 
around so much data, we have to be 
very careful and considerate to the 
network as a whole.

<click> If the network is 
experiencing congestion or some 
other issue, Indy can very easily 
choke out other network traffic or 
cause the network issue to be worse, 
due to the stampeding herd problem. 
This is where many clients fail their 
requests and immediately retry, 



causing a stampede of new requests, 
which can cripple the network.

<click> To solve this, we added 
randomized exponential backoff to all 
requests in Indy. This adds backpressure 
to the system, so network issues have a 
chance to be fixed without a herd of new 
requests.



Firewalls

• Talk to your IT department

• Traffic Shaping

• Ask about firewall ratings

• 10 Gbps rating != 10 Gbps bandwidth

Speaking of networking, let's talk 
about firewalls.

<click> If you're going to implement 
a system like this, make sure to talk 
to your IT department. They can get 
really confused and concerned when 
all of a sudden a few dozen cache 
nodes are now doing Gbps of network 
traffic.

<click> One way to possibly prevent 
Indy from stealing all the bandwidth 



is to use traffic shaping on the firewall to 
limit the bandwidth for the cache nodes. 
This way, Indy is capped at how much of 
the straw it is allowed to suck through.

<click> Lastly, ask your IT department 
about the rating of the firewall. 
Specifically, the ratings of firewall with 
all the settings enable. The reason being, 
a firewall rating can be a bit of a lie. 
*Usually* the rating gives the bandwidth 
the firewall can handle with *everything* 
turned off. Which is makes for a pretty 
useless firewall. If you enable anything 
useful, like packet classification, the 
bandwidth the firewall can handle will be 
much much lower than the rating. If I 
remember correctly, one of our 10 Gbps 
rated firewalls could only handle 7 Gbps 
with packet classification turned on, and 
only 4 Gbps with everything turned on.



Filesystems

Issues:

• Atomicity

• Temp file, fsync(), rename

• POSIX rename - ✔

• NTFS rename - ✖

Let's move on to filesystems

Many of the local indy operations are 
creating files (using multiple threads, 
and potentially multiple processes 
of indy). And potentially the content 
of those files will end up being the 
same hash, so they will want to write 
to the same file name. <click> 
<click>

We do the classic “write to a 
temporary file, call fsync(), and then 



rename to the correct name”. To ensure 
that the file write is safe and complete.

However, we run into issues with the 
rename.

The POSIX spec guarantees a file 
rename will be atomic. It will either 
succeed or fail. There is no intermediate 
state.

NTFS doesn't have any similar 
guarantee. None of the official 
documentation mentions anything about 
atomicity. Worse yet, some of the 
“rename-like” functions even mention 
being implemented as a copy+delete, 
which is *definitely* not atomic.

Windows used to have a “Transacted” 
API, but it’s deprecated, and will be 
removed soon.

There is a great CppCon talk by Naill 
Douglass called "Racing the 



Filesystem". https://www.youtube.com/
watch?v=uhRWMGBjlO8

In the talk he goes though a magic 
incantation of Win32 calls that you can 
do, which *should* be an atomic.
So, we do that. However, even with that, 
we were able to get a reproducible bug, 
where two threads trying to 
rename tmp files to the same dest file 
will both succeed, but it will end up with 
a corrupt truncated file.
So, we resorted to a global mutex on 
renames, to prevent collisions at the file 
system layer. It's an area that we'd love 
to investigate more and get a better 
solution for.



fsync() is Very Important

• Filesystems only journal metadata

• Machines *will* crash, especially human workstations

• Crash and OS hasn't flushed write buffers -> Corrupt file

I mentioned that our process was:

Write to a temp file, call fsync(), and 
then rename. Why do we need 
the fsync()?

<click>

Most filesystems journal metadata. 
So if you do an iNode operation like a 
rename, the filesystem will not return 
to you until that operation 
is persisted in the journal.



However, almost no filesystems journal 
the data itself. This is purely for speed 
reasons.

So, if we write to a temp file, then 
rename without calling fsync(), the new 
file will exist, but the data for it is in an 
indeterminate state. The operating 
system will lazily flush its write buffers to 
disk, as it gets free CPU cycles.
If our computer crashes before 
everything is flushed to disk, the new file 
will exist, because the metadata was 
journaled, but the data will be corrupt. 
Some filesystems will zero-fill the rest of 
the file and some will truncate.

We can't tolerate this corruption, so we 
call fsync() before calling rename to 
guarantee that the data exists on disk.



Switch from NFS to RGW S3

Storage 

Server

Nginx

NFS Volume Mount

NFS

...

Clients

RGW

Ceph

Node

...

Clients

...RGW RGW

Ceph

Node

Ceph

Node
...

Finally, let's talk about the object 
store itself.

In the first generation of Ark servers, 
we leveraged the existing storage 
servers we already had. <click>

We ran a single nginx container that 
mounted an NFS volume from one of 
our storage servers.
This worked relatively well, but had 
all the drawbacks that we discussed 
at the beginning of the talk. Namely:



• It was a single point of failure
• It couldn't scale
• And NFS implements a full posix file 

system. Which is nice, but Indy 
doesn't need that. Chunks are all 
immutable and content addressable. 
They either exist or they don't.

• Related to that, in order to be "safe" 
with the filesystem, nginx also does 
the standard, "write to a temp 
file, fsync(), and rename". Which is 
good for correctness, but it creates a 
huge number of IOPS for NFS to 
handle. Which can bring the storage 
server performance to a crawl

So, in order to address these concerns, 
we migrated to Ceph RGW. <click>

Ceph RGW is an implementation of the 
S3 object storage protocol on top 
of Ceph.



Ceph has lots of advantages:

1. The storage itself is sharded across a 
number of physical servers. Ceph
uses redundant copies, so a single 
node failure doesn’t cause any 
outage.

2. You can add additional ceph nodes 
basically to infinity. For increased 
storage capacity and bandwidth.

3. The RGW instances themselves are 
stateless. And we can scale out to 
any number.

4. The clients can connect to any RGW 
instance. The RGW instance will 
connect to the relevant ceph nodes 
and fetch the corresponding data.

5. Since the data is replicated across 
multiple nodes, RGW can fetch data 
from multiple nodes in parallel, for 
increased throughput, similar to RAID 
1



Improvements for the Future

• Fine-grained authorization

• Service discovery for cache nodes

To finish off today's presentation, 
we'll look at some of the 
improvements we're looking to do for 
the future of Indy.

<click> First, authorization. 
Currently, we only have service-level 
authorization implemented. That is, a 
user either has access to an Ark, or 
they don't. Ideally, we'd like to 
implement something more fine-
grained. For example, access at the 
namespace level. So someone could 



have read-only access to the namespace 
"ci-builds" and read/write access to their 
personal namespace.

<click> Next, we want to explore a 
better method for doing service 
discovery of the cache nodes. Let me 
explain <click>



Service Discovery for Cache Nodes

[

{

"id": "0093c208-610b-498c-8830-eadd01c80844",

"site": "ctla",

"url": "http://example.com/foo/"

},

{

"id": "a87b2286-ce0b-45cc-80e2-80638b4156d6",

"site": "ctla",

"url": "http://example2.com/foo/"

},

{

"id": "4465e6bd-ba98-4420-9b63-6ef28cd2a6ca",

"site": "bnx",

"url": "http://bnx.example.com/foo/"

}

]

/storage

HEAD /health - 6ms

HEAD /health - 8ms

HEAD /health - 122ms

Each Ark can have a number of cache 
nodes associated with it. When indy-
cli needs to use a cache node, it first 
hits Ark's `/storage` endpoint 
<click>

<click> This will return a JSON giving 
the list of all cache nodes.
<click> Then indy-cli will do 
simultaneous HEAD requests to all 
the cache nodes, and then pick the 
one with the fastest response time
<click>



This works well, and handles cache node 
outages / maintenance seamlessly. 
However, it's a lot of "manual" work for 
indy-cli to do every time.

Some of the approaches that we're 
exploring are:
1. GeoIP DNS resolution with dynamic 

BGP routing
This is the most ideal solution. Where 
you'd just give everyone the same DNS 
name, and it would dynamically resolve 
to the closest, alive node to them. 
Unfortunately, it does require a ton of 
control at your network layer. So your IT 
team may just say no. This is the kind of 
thing that cloud provides.

2. Using a Consul service mesh to do 
the discovery for us



Improvements for the Future

• Fine-grained authorization

• Service discovery for cache nodes

• Fine-grained locking for indy.exe

Next up, let's talk about locking in 
indy-cli.

Certain commands in indy have to be 
protected against other commands.
For example, you don't want to have 
a gc start up in the middle of a pull. 
The gc would delete all the chunks 
you're in the process of pulling, 
because they're not referenced yet.

To protect against this, early in the 
design, we added a process file lock. 



So only a single indy process could run 
at one time.
This guaranteed correctness, and 
protection. But with a cost; only one indy
processs can be running at a time.

To be fair, in the 4 year of production, it 
hasn't been a huge problem.
That said, as we're moving to use indy in 
more user-facing tools, the lock can end 
up looking like a hang to a user.

So we're investigating how we can break 
up the lock into smaller pieces and 
adding exclusivity to the pieces.
For example, it's totally fine for multiple 
pulls to happen at the same time, since 
they're only adding files, and not 
deleting anything.

However, if we run a 'gc', we need get 
an exclusive lock on everything, so we 
can be sure that nothing is adding as we 
delete.



Improvements for the Future

• Fine-grained authorization

• Service discovery for cache nodes

• Fine-grained locking for indy.exe

• UI to facilitate build management

Lastly, while indy-cli has a very 
intuitive set of commands, I don't 
expect an artist or QA person to have 
to break out the command line to get 
their daily builds.

So we're working on a GUI to 
facilitate build management and 
delivery. Behind the scenes it will use 
indy with all the benefits that come 
with it, but it will more user friendly 
for those that just want their data.



Conclusion

• Indy has been a huge success

• In production use for 4 years

• Used by most of our projects

• Saves huge amounts of bandwidth and time

• Allows us to scale to workers spread across many 

physical locations

So, wrapping up: Indy has been a 
huge success. It's been used 
continuously for the past 4 years for 
most of our projects.
It's saving us a huge amount of 
bandwidth and time, but more than 
that, it's allowed us to utilize workers 
spread out across many physical 
locations; allowing much closer 
collaboration between the studios 
working on a project.



Special Thanks

Sean Houghton

Will Brode

Daniel Meirovitch

The studio tools teams

I want to give a big shout out to my 
team members that have helped 
build the tool:

Sean Houghton, Will Brode, and 
Daniel Meirovitch.

And another shout out to the studio 
tools teams that integrated indy into 
their pipelines and gave valuable 
feedback and improvements.



We're Hiring!

https://careers.activisionblizzard.com/

And lastly, as you can see from the 
last part of the talk, we still have lots 
of unsolved problems and new tools 
to create.
Do you have ideas on how to solve 
these problems, or do you want to 
work on tools similar to this? Come 
work at Central Tech! We have lots of 
open positions and would love to 
hear from you



Questions?

And with that, I want to thank you 
for coming and listening to my talk, 
and we can open up the floor to 
questions.




