
Efficiently Shuffling Loads

of Data from Place to Place

Adrian Astley – Tools Engineer at Activision

Agenda

● Problem statement
● History / prior approaches
● What we wanted to improve vs prior approaches
● Overview of Indy
● Lessons learned during development and use in

production
● What’s next / future plans
● Questions

This talk is a postmortem of a tool we
created called Indy.

It's designed for bulk data transfer
and build distribution.

Here's our agenda:

Why we need a tool

Single Studio Development

● One location

● Single fast LAN network

Large Scale Distributed Development

● Multiple physical locations

● Multiple LAN networks connected by

bandwidth-limited WAN

<click> In classic game dev, the
game is developed at a single studio,
with very fast LAN network

<click> With recent Activision
games, this was becoming less and
less true. We had one “lead” studio
with 2-4 helper studios, and another
2-3 sites of QA testers. In addition,
we were simultaneously developing 3
games in leap-frog. Each year, a
different game was shipping, with a
different "lead" studio.

Continuous Testing - Compass

GDC 2018 - Automated Testing and Profiling

for 'Call of Duty'

Activision has a continuous testing
tool called Compass. My coworker
Jan van Valburg did a GDC 2018 talk
about it that you can find in GDC
Vault.

For each check in, Compass will
compile the game, bake a test map,
and then run the game

Continuous Testing DAG

1. Build All Code

2. Bake Game Data

3. Run Game

Simple Test

Bake Game Data

Build Game Code

Run Game

Build Tools Code

Run Game

Run Game

Our DAG

In a simple implementation of this,
you have a single task run on a
single worker. It builds all the code,
bakes the game data, and then runs
the game.
This works, and it keeps all the
artifact data local. However, it
doesn't scale very well.

<click>

So we break up the test into multiple
tasks that can run on multiple

workers in parallel. This allows us to
better utilize our servers, and run tests
faster.

However, there is no free lunch. By

splitting up the test into multiple tasks,

we now have to transfer all the artifacts

between servers.

Simple and Fast Storage

Switch

CI ServersCI DevkitsDeveloper PCs

File

Share

When there is only a single studio,
this wasn’t a big problem. Compass
was originally designed to use a
single file share server like SMB or
NFS to store the artifacts from each
task.

This is simple, and works relatively
well when everything is on the same
LAN network.

Latency is Killer

70 ms
140 ms

130 ms

180 ms

However, as mentioned before, our
projects are no longer being
developed at a single studio. We
have multiple studios and multiple
QA sites.

So where do we put the file share?
We have studios spread out across
the US, in Australia, Shanghai, and
QA sites in Europe
If we put it in California <click>, the
latencies to the other studios can end
up being immense. <click> This isn’t

slow network connections. It’s just the
speed of light. It's just physics

File Share Performance with High Latency

Location Upload Time [s]

California 2

Australia 2,463

Canada East Coast 772

Europe 312

With a single file server, any workers
not in the same physical area or
network as the file share are
guaranteed to have poor
performance.

In this graph, I tested transferring a
1GB file containing random data to
one of our file shares in California,
from various locations.
Transferring from within the same
data center is only a few seconds.
But as the latency increased, the

bandwidth drops drastically. Not just a
few seconds more, but hundreds or
thousands of seconds more.

So if the file share was in California, and
a studio on the East Coast added
workers to Compass. Awesome! Yay!
More workers to churn through tasks!
But actually, the workers ended up being
not very useful, because any tasks run
on those workers are much slower, for
startup / finish just due to artifact
transfer bandwidth being
much much slower.

Scaling and Fault Tolerance

+ $$$ =

The last two issues with file shares
are scaling and fault tolerance.

<click> If the current file share can’t
keep up with load, <click> your only
options are to buy a bigger and more
powerful server. Or perhaps figure
out a way to shard your data across
multiple file shares.

But the other issue is that there is no
fault tolerance. <click> If the server
dies, or needs maintenance, or

someone trips on the power cord, oops,
now the entire CI system is having an
outage.

NOTES: Maybe talk a bit more about the
fact that maintenance happens a lot.
Even with hotswapping. And failures
happen a lot

Deduplication

Bake Game Data

Build Game Code Run Game

Build Tools Code

Run Game

Run Game

Lastly, let's talk about deduplication
of data. <click> This is the task DAG
that we talked about a few slides
ago. The arrows show the
dependencies of the tasks

Let's instead swap the arrows to
show the artifact data flow

<click>

Deduplication

Bake Game Data

Build Game Code Run Game

Build Tools Code

Run Game

Run Game

File

Share

The code build tasks will upload their
compiled executables to the file share
<click>

Then the Bake game task will
download those, <click> and use it
to bake the game maps. <click>

When finished it will upload the 70GB
of map data to the file share. <click>

And finally each run game test will
download the game executable

and the 70GB of data from the file
share.

Deduplication

Build 123

In the original Compass setup, each
“build” stored its artifacts in a new
folder on the file share.
<click>
So one build will bake all the maps,
and store the 70GB of data in a
folder.

<click>

Deduplication

Build 123 Build 124

Then the next build will bake all the
maps, and store *its* 70GB of data
in a new folder.

Even if the only change between the
two builds was a single texture, we
had to transfer all 70GB *to* the file
share for storing, and then transfer
the whole 70GB *from* the file share
when we ran the game test.

As an addedum, file shares *can*
and *do* have block-level

deduplication on the server itself. So the
70GB of data *may* be deduplicated
somewhat in the server storage. But we
still need to *transfer* all the data to
and from the server. Storage is cheap,
but bandwidth is a precious commodity.
So, it’s bandwidth savings that we care
about the most.

Deduplication

One last thing is that in the previous
slides, we were only looking at the
artifacts from a single build type. We
also have other builds, like a nightly
build that builds ALL the maps,
instead of just 1-3.
Again, there will be a huge amount of
data that will be identical, not only
between builds of the same type, but
also builds of different types.

So it's clear that we need a solution
that can generically deduplicate data,

no matter what the source of the data is.

Deduplication

Our games are really big!

The 70GB number I used isn’t just a
random number. Our games and
maps are really big.

A CI run might bake 1 to 3 maps. We
don’t do the hardcore compression
like we do for ship, because that
takes too long.

So the data output from the baking
can be anywhere from 70-100GB,
depending on the maps included.

That’s a lot of data!

10 * 70 * 5 = 3.5 TB = 84 TB

10 * 70 * 5 * 3 * 2 = 21 TB = 504 TB

Let’s do some quick back of the
envelope math
• Let’s assume there are 10 commits
per hour. <click>

• Each CI run builds 3
maps, totaling 70GB. <click>

• Let’s assume we build for PC, XB3,
XB4, PS4, and PS5. That’s 5
platforms <click>

That means we're generating 3.5 TB
of data per hour. <click> And 84 TB

of data per day. <click>
But that's only how much we generate.
We still need to use this data.

So let's do some more math for how
much data is *downloaded* from the
server.
• We again assume 10 commits per hour,
70GB of data, and 5 platforms <click>

• For every build we test 3 maps <click>
• And for each map, we run two tests,
one for profiling, and one for logging,
screenshots, etc. <click>

If we total this up <click>, for each build
we're downloading 21TB of data per
hour, and <click> 504 TB of data per
day.

~ 8 Gbps upload to file share

~ 45 Gbps download from file share

That’s a lot of data!

Looking from the file share’s
standpoint, that’s about 8 Gbps
sustained upload to the server. And
about 45 Gbps sustained download
from the server.
And this is only looking at the main
CI. We also have presubmit builds,
manual builds, package builds, and
builds on a release branch. So in
reality, the upload and download
numbers would more than likely be 2

or 3 times higher.

If this was all on the same LAN, it
might be possible with a really fast
networking setup. But given that we
have workers spread across the world,
supporting this amount of data
bandwidth across the WAN is not feasible
or cost effective.

NOTE: Maybe dedicated slide – Really
hammer home that this is just CI. Real
life is 3x or 4x higher.

Clean Up

Don't Script that walks the filesystem

The last problem we wanted to tackle
was clean up. With traditional ad-hoc
artifact systems, there are generally
two approaches:

<click> First, just don’t do any clean
up all all.
You may laugh, but if you have semi-
infinite storage or storage is cheap
and the amount of data you're
storing is small, this is actually a
decent plan. It's very simple, and you
can just nuke everything when the

project is done. However, as we saw in
the previous slides, the amount of data
we generate is not small. It would fill up
any system in a week or less. Also, as an
industry, we are quickly moving to a
world where a project is never done; it
continues on, with new content, and new
patches.

<click> The second approach is usually
some kind of script that walks the
filesystem. This "works". But it has a
number of drawbacks:

First, walking the filesystem itself could
take hours. Artifact systems have the
ability to generate a huge number of
files. Therefore, it's very probable that
the file system could have trillions of files
for this script to walk through. While
filesystems *can* handle that number of
files, walking the iNodes is not going to
be fast, no matter
what filesystem implementation that you
use.

So, this clean up has the potential to
death spiral. Where CI is adding files
faster than the clean up script can index
and delete them.

Lastly, as we found out in the previous
slides, deduplication is very important.
But if you have some kind of strategy for
deduplication, how do you find out when
a file is no longer referenced? Say you
index all the files, and are able to do ref-
counting. How do you prevent the race
condition where the indexing finds an
unreferenced file, but in the time it took
for the indexing to happen, a new
reference was added, so that file
shouldn't be deleted.

So, it's clear that any clean up system
that we create must be an integral part
of the artifact system as a whole, rather
than a script tacked on at the end.

History / Prior Tools and Approaches

Hopefully now, you all can
understand the problem we had. So,
now we’ll move on to what existing
tools and approaches were available
when we first started. And exploring
their pros and cons.

Packaging Tools

Installers Compression Tools

Container Systems

First, we have packaging tools. And
these can be broken down into a few
categories.

First, installers. For example, the
Windows installer (msi) and all the
Linux various install formats (.deb,
.rpm, etc.)

● These bundle a group of files with
a small script for where to put the
files when installing and what files
to remove when uninstalling

● Some of the formats’ install

scripts have optimizations around
“don’t copy the a file, if the existing
already exists”

● But there is no download
deduplication. You have to download
the entire .msi / .deb bundle

Next we have compression tools. Like
zip, tar, and 7zip

● These have the same arguments as
installers, but now we don’t have
any deduplication

Finally, we have container systems, like
Docker

● Docker is mostly designed around
process isolation

● That said, it also has nice file
isolation / deduplication properties

● Each line in the Dockerfile is a
“layer”. All files changed or modified
in that layer are grouped, hashed,
and thus can be deduplicated
between images

● So, when you “pull” an image, it only
downloads the layers that aren’t
already downloaded

Data Transfer Tools

Local

Server

There are a bunch of open source
data transfer tools. Or some built-in,
like Microsoft’s robocopy.

You give them a source directory
<click>, and a destination file share
path <click> and they will copy up
files to make them identical. <click>
They have really great algorithms for
parallel transfer to make this really
fast. <click>

However, they have a few

drawbacks.

First, as we know from the previous
slides, the fastest transfer is the one you
don't have to do.
The tools can attempt to figure which
files are identical, the “cheap” way by
comparing file sizes. But this isn’t
accurate. If a single texture is re-
colored, the file size will be the same,
but the content is completely different.
Some tools can additionally attempt to
use file modification timestamps as an
additional piece of comparison. But these
also aren’t super accurate at the
Operating System level.

The *best* way to do this comparison is
to compare hashes. However, these tools
are all client-side. To calculate the hash,
we would need to download the file from
the server, which defeats the whole
purpose.

Next, these tools are all optimized
around “just” the transfer. Not the long
term state after the transfer

That is, it’s up to you the user to
organize / deduplicate any local “builds”
that you have downloaded. Similary, it's
up to you to try an organize the files on
the server so they can be deduplicated.

Lastly, these tools are all all reliant on a
filesystem. That is, the destination has to
be a file share of some kind, which as we
saw before, doesn’t scale

Data Transfer Tools

Pros

• Good algorithms for parallel / fast data transfer

Cons

• All client-side

• Clean up is hard

• Hard to have exact deduplication

• Deduplication is at the “whole file” level

So here's the final list of pros and
cons.

Historically, at Activision we used a
mix of things.

One project hashed their files, and
robocopied them to a central file
share that served them downstream
over HTTP.
But they forgot to add cleanup, and
the script they added on at the end

death spiraled. Oops.

Another project sharded their work
across multiple file shares, so there was
a smaller blast radius.
But they still had all the downsides of file
share performance and scaling.

Goals for the new tool

• Single binary CLI tool

• Data deduplication, with file chunking

• Automatic clean-up of old data

• The server components must be horizontally scalable and

fault tolerant

• As much as makes sense, utilize the hard work done by the

web community

So, now that we understand the
problem statement and we’ve
explored the pros and cons of
existing tools, let’s go over our goals
for our new tool.

<click> First, we want the tool to be
a single binary. As much as possible,
it should be statically linked. So
someone can download just the
single file and be able to run it
without any dependencies.

<click> Next, the tool needs to support
data deduplication. The tool must be
able to break files up into “chunks”,
because deduplication at the whole file
level will not work due to our large map
file sizes.

<click> Next, the system must support
automatic clean up of old data. Both
locally and on the server.

<click> The server components must be
horizontally scalable and fault tolerant.
Especially storage

<click> Finally, as a “bonus” goal, as
much as makes sense, the system
should utilize the hard work done by the
web community. The technology of the
web has exploded in the last decade. The
people in that ecosystem are
exceptionally smart and are solving very
difficult problems similar to us. So rather
than trying to re-invent what they've
done, we should utilize their discoveries

and tools.

Let's Design a New Tool

Executable

File

Share

So given those goals, let's think
about what we need.

First, the obvious one, we'll want a
local command line program. <click>
This will do all the "heavy lifting" for
a user. It will have a nice clean set of
commands, that can also be used by
scripting.

The tool will upload to a remote
server. <click> But we've learned
that file shares aren't great. So let's

swap out the file server for an HTTP
Object Store. <click>

Let's Design a New Tool

Object

Store

Executable

Metadata /

Orchestration

Great. HTTP is highly scalable, works
across all platforms, and in the last
two decades, there has been a huge
amount of tools and infrastructure
work by the community to make
HTTP fast and easy.

Lastly, we learned from file transfer
tools like robocopy that we need
some kind of server component
<click>
This will orchestrate data
deduplication and data cleanup.

And that's basically what we did!

Introducing Indy

• Local binary - indy.exe

• Metadata server - Ark

• Object Storage Server - WebDAV

So with no further ado, let me
introduce our tool called Indy.

The Indy ecosystem is made up of
three components:

1.The indy binary itself
2.The metadata server called Ark
3.An Object Storage Server

We'll explore each of these in a series
of examples

Using Golang

• Familiar syntax to C

• Native cross-compiling

• Fantastic standard library

• For everything else, there's probably a library for that

• Metrics / telemetry

• Web server path routing

• Terminal Progress bars

• Etc

As a very small tangent, we chose to
use golang to create our tool and
server components.

This was for a few reasons:

<click> First, golang has a very
familiar C-like syntax, which made it
very easy for co-workers to learn
<click> Second, it has native cross-
compiling for all the major operating
systems
<click> Third, it has a fantastic

standard libary. Http, sha1 hashing,
string manipulation, all included.
<click> And for anything that *isn't*
included in the standard library, there's
probably an open source library for it.
For example:
• Metrics and telemetry
• Fancier web path routing
• Terminal progress bars
• And more

Overview of Indy

• Everything is structured an "image"

• An image is:

• Bundle of files

• Optional ENV variables

• Optional commands to be run with files / ENV

Back to Indy.

<click> In the Indy ecosystem,
everything is structured around an
“image”.

<click> An image is a bundle of files
with optional ENV variables and
commands to be run with those files.

The Image "Flow"

Object

Store
Ark

Client A

Indy build ...

Client B

Indy mount ...Indy push ... Indy pull ...

Ark - Metadata
Object Store - Storage

Let's look at a high level diagram
showing how images are created,
moved around, and used.

We have two clients, A and B. And
we have the Ark metadata server,
and the Object Store.

<click> First, client A creates an
image by using the `indy build`
command. I'll go into more details in
a second how this works. But for
now, just think of build as bundling

up all the files into a black box.
Client A wants to share the image with
other machines. <click> To do that,
client A uses the `indy push` command.
This will contact Ark to figure out what
data it needs to upload, and then will
upload that in parallel to the Object
Store.

So now Client B wants to download the
image. <click> It does this by using the
`indy pull` command. This will contact
Ark to figure out which data it needs to
download, and then download that in
parallel from the Object Store.

Finally, Client B has an image. But an
image is a bit of a black box. You can't
use it directly. First you need to create
an instance of the image. <click> You do
this with `indy mount`.

At a high level, this doesn't seem much

different from the file transfer tools we're
intending to be improving upon. So let's
go back now, and look at each of
the indy commands in more details and
see how they work.

A Very Simple Indyfile

ADD map1.bin /maps/map1.bin

CHUNK 1M map2.bin /maps/map2.bin

CHUNK 1M map3.bin /maps/map3.bin

Let's start with image building. To do
this, you first create an Indyfile. This
is a custom declarative language that
defines what you want in your image.

If you want to add a file you can use
the `ADD` instruction. This will
include the entire file as a single
chunk.

Alternatively, you can use the
`CHUNK` instruction, to tell Indy to
split the file up into chunks. In this

example, it will split it into fixed-size
1MB chunks.

Now that we have the Indyfile, we can
call `indy build` <click>

Building an Indy Image

<namespace>/<name>:<tag>

Indy will read in the instructions in
the Indyfile and use them to create
an image.

The build command outputs a sha1
which uniquely identifies the
image. However, it's highly
inconvenient to have to reference
images by sha1. So, we can create a
label that is a human consumable,
which acts as a pointer to the image
sha1.
In the `indy build` command, you'll

notice we specified the label
`aastley/gdc-test:v1`.

<click> Labels are of the form
namespace, name, tag

How Does Build Work?

ADD map1.bin /maps/map1.bin

CHUNK 1M map2.bin /maps/map2.bin

CHUNK 1M map3.bin /maps/map3.bin

Let's talk a little bit more about what
build does and what an indy image
actually is.

When we call `indy build`, indy will
use the Indyfile instructions to create
an image manifest. It looks
something like this <click>

{

"Version": 0,

"Size": 780000000,

"Env": [],

"Files": [

{

"Path": "/maps/map2.bin",

"Sha1": "1bb7c068c4e162b0b82c3972c87119a49036d8f0",

"Size": 248000000,

"Chunks": [

{

"Sha1": "1bf0a17e0709a295efd8af3b33a5316bd65ddfcf",

"Size": 1048576

},

{

"Sha1": "e68641bba66f6b6dff18af14f1d1c607d8e757f1",

"Size": 1048576

},

...

]

},

...

]

}

The manifest is a simple json file,
which lists all the files in the image,
and for each file, all the chunks that
make it up.

For those reading
this after the presentation, the
manifest is highly truncated in order
to fit in onto the slide. A "real"
manifest has much more information
in it.

Everything in the Indy ecosystem is

content addressable. That is, the name
and identifier of everything is the sha1
hash of its content.
So here in the manifest, we list all of
those hashes, plus the sizes of
everything.

For example, the map2.bin file has the
hash `1bb7`, and a size of 248 MB. It's
made up of many many chunks. The first
two are listed here, with sizes of 1MB
each, and each have their own hashes.

Local Indy Image Storage

> tree ~/.indy

.indy

├── images

│ └── 4d002477d3aa6bfab47d34f58aa98451fe96bb8b <----- json manifest file, filename=sha1

├── mounts

├── objects

│ ├── 03

│ │ └── 034a2bfcd34b70e279730d1ed4c055d0f93376b3 <----- binary blob, filename=sha1

│ ├── 1c

│ │ └── 1c755788fa01e5f4fe480e3f54e68e6597f7f0f6

│ ├── 1e

│ │ └── 1e558dfbcbe27afe1f1c9c6a50f423b812d9d456

│ ├── 1f

│ │ └── 1fa4c43eeab6a68997d80af4118592296650546f

--- (abbreviated for slides)

│ └── ff

│ └── ff6b440094fe85ebfecd493f5f9749fe9ab40663

└── repo.yaml <------ mapping of labels to image sha1

The indy build process walks through
each file, and calculates the hashes
mentioned in the last slide.
As it does so, it copies the chunks
into the local Indy Image storage.
Specifically into the "objects" folder.

All the files are named by their hash.
This means that everything is
immutable. A file in the Indy image
storage can never change, since that
would change the hash and thus the
file name would also change. This is

really important and one of the key
points of indy. We'll get more into this in
a second.

The image manifests from the last slide
are stored in the images folder, again
named by the sha1 hash of the manifest
itself

Adding a new Label

Let's dig more into labels. As
mentioned before, labels are human-
accessible pointers to an image. In
this example, the label aastley/gdc-
test:v1 points at image 0bff1.
Since labels are just pointers, we are
free to add as many as we like
referencing the same image.

<click>

Adding a new Label

Here we add a new label
`aastley/my-awesome-label:123`.

If we run `indy images` to list all the
images we have locally, we can see
the new label we created. Note that
they're both pointing to the same
image sha1.

Image Time to Live

Labels have one more feature. When
you create them, you can set a Time
to Live. This represents a time in the
future when the label will expire.
In the labels we have created so far,
the TTL is infinite.

Let's update the label we just created
to have a TTL

Image Time to Live

We'll set the TTL to 20 seconds. If we
then run the `indy images`
command, it shows that the label has
18 seconds left.

So now that we've set a TTL, what
happens when a label expires?

Image Time to Live

Nothing immediately. If we run `indy
images`, now the image is marked
as expired.
However, this is where clean up
comes in.

Garbage Collection

aastley/gdc-test:v1 aastley/my-awesome-label:123 packages/test:123Labels

0bbf149 f1d2d2fImages

Chunks

Indy has a command `gc`, aka
garbage collection. To understand
how it works, let's look at how indy
tracks each component

<click> The Indy system has a
hierarchy of references. At the top
there are the labels
<click> These reference specific
image SHA1's
<click> The images, in turn,
reference individual chunks. Note,
that chunks can be referenced by

multiple images.

Garbage Collection

aastley/gdc-test:v1 aastley/my-awesome-label:123 packages/test:123Labels

0bbf149 f1d2d2fImages

Chunks

So back to Garbage Collection.

GC happens in 3 phases. First, we
check if any labels have expired
TTLs, and if so remove them.

<click> In the previous slides, we
saw the aastley/my-awesome-
label:123 label was expired. So let's
follow along with what GC would do
and remove it.
<click>

Garbage Collection

aastley/gdc-test:v1 packages/test:123Labels

0bbf149 f1d2d2fImages

Chunks

The next phase is to check all the
images, and see if any are now
unreferenced by any labels.

<click> In this case, the 0bbf149 is
still referenced by the aastley/gdc-
test:v1 label. So nothing happens.

Moving on the final phase. <click>

Garbage Collection

aastley/gdc-test:v1 packages/test:123Labels

0bbf149 f1d2d2fImages

Chunks

In this phase, we reference count all
the chunks, to see if any chunks are
no longer referenced by any images.
Again, in this example, we didn't
remove any images. So all the
chunks are still referenced.

So let's do one more example, so we
can see the chunk deletion.
<click> We'll simulate manually
deleting the packages/test:123 label,
and then running gc again.

Garbage Collection

aastley/gdc-test:v1Labels

0bbf149 f1d2d2fImages

Chunks

Phase 1: Remove all expired labels.
There's nothing expired here, so we
can move on.
Phase 2: Remove all unreferenced
images.
<click> The f1d2d image is no longer
referenced by any labels, so we
remove it

Garbage Collection

aastley/gdc-test:v1Labels

0bbf149Images

Chunks

Phase 3: Remove all unreferenced
chunks

<click> We find that these 5 chunks
are no longer referenced and can be
deleted. Note, there were a few
chunks that were shared with the
other image. These chunks aren't
deleted, since they're still referenced
by the 0bbf1 image

Garbage Collection

1. Delete all expired labels

2. Delete all unreferenced images

3. Delete all unreferenced chunks

So in summary, these are the steps
we take

* Delete all expired labels
* Delete all unreferenced images
* And finally, delete all unreferenced
chunks

Pushing

Object

Store
Ark

Time

Indy

POST

Manifest

Indy

Missing

Chunks List

Indy

Upload

Missing

Chunks

Indy

Finalize Push

Ark - Metadata
Object Store - Storage

Next, let's talk about how
`indy push` works, and how it
deduplicates data.

<click> First, indy will POST the
image manifest to the Ark server.
<click> Ark will query its internal
database to figure out which chunks
don't already exist on the server.
And return this to `indy`
<click> Next, in parallel, indy will
upload the missing chunks to the
object storage server.

<click> And finally send another POST to
Ark, telling the server that it finished the
upload

So, since Indy only uploads what is
missing on the server, we can get
excellent bandwidth savings, assuming
the changes from image to image are
small.

Pulling

Object

Store
Ark

Time

Indy

GET Image

Sha1

Indy

Get Image

Manifest

Indy

Calculate

missing chunks

Indy

Download

missing chunks

Ark - Metadata
Object Store - Storage

Now we can look at pull

<click> First, indy will ask Ark for the
image sha1, using the image label.
<click> Then, indy will use the image
sha1 to download the manifest from
the object store
<click> Indy will compare the chunks
in the manifest against what it has
locally already, so it can calculate the
list of "missing" chunks
<click> Then indy will download the
missing chunks in parallel

Again, since we only download the
chunks that don't already exist on disk,
we can get excellent bandwidth savings.

Mounting an Indy Image

> tree ~/.indy

.indy

├── images

│ └── 4d002477d3aa6bfab47d34f58aa98451fe96bb8b

├── mounts

├── objects

│ ├── 03

│ │ └── 034a2bfcd34b70e279730d1ed4c055d0f93376b3

│ ├── 1c

│ │ └── 1c755788fa01e5f4fe480e3f54e68e6597f7f0f6

│ ├── 1e

│ │ └── 1e558dfbcbe27afe1f1c9c6a50f423b812d9d456

│ ├── 1f

│ │ └── 1fa4c43eeab6a68997d80af4118592296650546f

--- (abbreviated for slides)

│ └── ff

│ └── ff6b440094fe85ebfecd493f5f9749fe9ab40663

└── repo.yaml

Lastly, let's talk more about
mounting.

<click> As discussed in previous
slides, when we build or pull an
image, the image chunks are stored
in the "objects" folder on
disk. <click> Specifically, they're
stored by their content hash name.
This very important to clean up and
data deduplication, but it's not useful
to users.

Users want to see the files with the
correct names and directory structure.
This is where the `indy mount`
command comes in.

<click>

Mounting an Indy Image

> tree ~/.indy

.indy

├── images

│ └── 4d002477d3aa6bfab47d34f58aa98451fe96bb8b

├── mounts

│ ├── 6b46cd8a-91aa-4786-af51-fc206a2f6cb0

│ │ ├── maps

│ │ | ├── map1.bin -> hardlink to objects /1c/1c755788fa01e5f4fe480e3f54e68e6597f7f0f6

│ │ | ├── map2.bin -> hardlink to objects /03/034a2bfcd34b70e279730d1ed4c055d0f93376b3

│ │ | └── map2.bin -> hardlink to objects /21/213c4192b81be6e3d1079c15d908c82c6447c4b3

├── objects

│ ├── 03

│ │ └── 034a2bfcd34b70e279730d1ed4c055d0f93376b3

│ ├── 1c

│ │ └── 1c755788fa01e5f4fe480e3f54e68e6597f7f0f6

│ ├── 21

│ │ └── 213c4192b81be6e3d1079c15d908c82c6447c4b3

-- (abbreviated for slides)

└── repo.yaml <------ mapping of labels to image sha1

Mounts get created in the mounts
folder.

We create the correct directory
structure for the image, and then
create hardlinks to the corresponding
objects in the objects folder.
As a quick refresher, hard links are a
filesystem concept where
two filepaths actually correspond to
the same file data. They're very fast
to create, and don't cause any
copying.

This means that creating mounts is
semi-instantaneous, and we can create
as many of them as we want with no
additional disk space usage.

Let's move on to exploring some of the
server concepts.

Cache Nodes

• All uploaded files are immutable

• Never have to worry about cache coherency

One of the great things about using
content-addressable files for
everything is that everything is
immutable
This means that we can use cache
nodes at each of our studio locations,
because we never have to worry
about cache coherency.
A file either exists, or it doesn't. The
contents will never change.

Cache Nodes

Object

Store

Studio A

Cache Node

...

Clients

Studio B

Cache Node

...

Clients

Studio C

Cache Node

...

Clients

Our cache nodes are set up in a
wheel and spoke model.

We have a central object store. And
then each studio has a dedicated
cache node.
All clients download and upload
through the cache nodes. They never
connect to the object store directly.

This has lots of benefits:

1.The cache nodes can cache files. So

if one client downloads an image, the
next client can download the image
chunks directly from the cache node.
This reduces the WAN traffic, which is
a much more precious resource. And it
reduces load on the object store itself.

2.We control the cache nodes. So we can
enable much more sophisticated and
aggressive TCP tuning. For example,
we enable the BBR congestion control
algorithm. This guarantees that all
WAN traffic is as optimized as possible

3.The cache nodes can be scaled to as
many as we want. If a studio has a ton
of clients, we can add multiple cache
nodes, and load-balance between
them. This also adds a layer of fault
tolerance. We can have multiple cache
nodes, so if we ever need to do
maintenance on them, or if one of
them crashes, a client can just switch
to using a different cache node.

Ark Garbage Collection

1. Delete all expired labels

2. Delete all unreferenced images

3. Ref-count all chunks

4. Delete all unreferenced chunks

When you push an image to Ark, you
also specify a TTL for the label.

Similarly to local indy, Ark has a
Garbage Collection process. This
follows the same basic steps as local
Garbage Collection, but utilizes a
database to allow concurrency and
atomicity at the server level.
Also, it runs automatically every 10
minutes, rather than being a manual
command.

As a note, the details of *how* we
execute these queries on the database in
order to be atomic and race-free is an
super interesting topic.
Unfortunately, it could cover an entire
talk all to itself, so if you're curious,
come talk to me after.

Effect of Chunk Size

Lastly, let's cover a couple
miscellaneous topics. Starting with
exploring how chunk sizes affect
things.

The first experiment that we did was
to create files of different sizes and
put them on two nearly identical
nginx servers. One had a 20Gbps
NIC, and the other had a 40 Gbps
NIC.
Then we downloaded each file 1000
times, and measured the effective

bandwidth. <click> This chart is the
result. Let's explore it a bit in detail.

<click> When the chunk size is only
100kB the throughput is quite low. Even
with a 40Gb NIC, we could only manage
~8Gbps of effective bandwidth.
This makes intuitive sense. TCP has
overhead, and the HTTP framing itself
has quite a bit of overhead. Plus, for
every 100kB of data, you need to do a
back and forth request / response with
the server.

<click>

Effect of Chunk Size

If we look at 1MB chunks, the
performance is much better, <click>
and by 10MB chunks, we're already
hitting the NIC limit for the 20Gb
server, and very close for the 40Gb
server.

So the more data you can exchange
per HTTP request, the higher your
effective bandwidth will be. Though,
after ~10MB, the bandwidth plateaus
to the NIC limits.

Effect of Chunk Size

If we look at 1MB chunks, the
performance is much better, <click>
and by 10MB chunks, we're already
hitting the NIC limit for the 20Gb
server, and very close for the 40Gb
server.

So the more data you can exchange
per HTTP request, the higher your
effective bandwidth will be. Though,
after ~10MB, the bandwidth plateaus
to the NIC limits.

Effect of Chunk Size

Small Chunks

• Modified chunk is a small amount

of data. (Higher deduplication)

• Retries are cheaper

• Transfer speed is slower

Large Chunks

• Modified chunk is a large amount

of data. (Lower deduplication)

• Retries are more expensive

• Transfer speed is faster

So what size do you choose? To
answer that, we also have to look at
the last two properties that chunk
size affect:

• Deduplication
• HTTP retries

For small chunks, if a chunk is
modified from one image to the next,
it's not a bit deal. It's only a small
amount of data to have to upload.
Similarly, if the HTTP connection

breaks for whatever reason, it's not a big
deal to have to re-transfer the entire
chunk. On the flip side, the transfer
speed can be quite slow.

For large chunks, if a single byte
changes within a chunk, we still have to
transfer the entire chunk. Similarly, if
we're in the middle to uploading a 1GB
chunk, and the TCP connection fails at
the last 20 bytes, we have to re-upload
the entire 1GB again. Though, in
general, the transfer speed will be very
fast.

Effect of Chunk Size

~ 1 to 5 MB chunk size

So what size did *we* choose? From
our empirical testing, we found 1-
5MB chunks to be a good balance
between speed, deduplication, and
retries.

The Importance of *Good* Chunking

Now that we know how size affects
performance, let's look at how we
actually do the chunking with Indy.

This diagram represents a file. Each
colored section represents a "logical"
portion of the file. If this was a map
file, one colored section might be a
texture, and another model data.
If we tell Indy to chunk every 1MB,
this is what it would look like

<click>

The Importance of *Good* Chunking

Fixed-size Chunks

Everything inside each red square
would be an Indy chunk. With the
contents creating the sha1.
Ok great. For a single file, in
isolation, this works fine. However,
our data isn't in isolation. We build
similar data over and over and over
again.

Let's say an artist modifies a texture
for a tree and checked it in. <click>
When we build the map,
<click> that corresponds to this

purple section getting a little bit bigger.
Ok, you say. What's wrong with that?

The Importance of *Good* Chunking

Fixed-size Chunks

"New" chunks

Well, if we apply the same fixed-size
chunking pattern to the file, we now
have a problem. <click>

The addition to the purple section
shifted the entire rest of the file
down. So every single chunk after
the modified section now has a
different hash, and has to be
uploaded to the server, because the
contents changed.
This is obviously bad. It destroys all
deduplication the file *should* have

gotten.

The Importance of *Good* Chunking

Fixed-size Chunks

So what if we could tell Indy to chunk
at the "natural" boundaries of the
file, instead of at arbitrary fixed
sizes? <click>

The Importance of *Good* Chunking

Fixed-size Chunks

Custom-sized Chunks

That way, if a single section were to
change <click>, the only chunk that
would change would be that section.

Well there is! <click>

Whole File

ADD my/local/path/file.txt /image/path/file.txt

Pros
• Very simple

Cons
• Single byte change = No deduplication

An Indyfile has 4 different ways to
add a file. You've seen two of those
ways so far.

<click> The first way is using the
ADD command. It adds the file to the
image using one giant chunk for the
entire file
It's simple, but it isn't efficient,
because a single byte change means
the entire file needs to be re-
transferred

Fixed Chunk Size

CHUNK 1M my/local/path/file.txt /image/path/file.txt

Pros
• Very simple

Cons
• Single byte change = All chunks after change in file, no

deduplication

Next, you can tell Indy to use fixed-
sized chunks. In this example, we tell
it to make a chunk every 1MB

This is better than ADD, because you
can change bytes without blowing the
entire file. But, as we saw in the
previous slides, if the file size
changes at all, then we destroy the
deduplication for the rest of the file.

Custom Chunk Size

CHUNK .chunks my/local/path/file.txt /image/path/file.txt

0

23

54

120

436

Now we move to the new stuff.

<click> With this command you
specify an extension. In this
example, we used the `.chunks`
extension.

What this does is instruct Indy to
look for a file next the specified file,
which has that extension <click>

The file should be a newline-
separated list, <click> where each

entry gives the byte offset of each
chunk.
So in this example, the first chunk would
be from byte 0 to 22, the next from 23
to 53, etc.

<click>

Custom Chunk Size

CHUNK .chunks my/local/path/file.txt /image/path/file.txt

Pros
• Chunking matches "natural" file boundaries

• Change to a section of file -> only modifies that chunk

Cons
• Requires knowing "natural" file boundaries

• Extra manual step

• "Natural" boundaries might create very tiny chunks or huge chunks

This allows user to specify exactly
where Indy should split the file. This
is great, because it means that if an
artist changes a single texture, the
only chunk that changes is that
texture.

However, on the flip side, the user
now has to know the exact file
structure, they have to do an
additional manual step to generate
the .chunks file, and lastly, the
natural boundaries might create

super tiny or super huge chunks. Which,
from the previous slides, we know isn't
good for performance.

<click>

Content-Defined Chunking

So what do you do if you don't know
the file format? Or if the content
inside the file is super tiny?

Is there a way that Indy can
automatically find deterministic
chunk locations? YES!

There is an algorithm called Content-
Defined Chunking that uses hashing
of the content to deterministically
determine chunk boundaries

This is exactly what we need!

What's better, there are multiple open
source implementations of the algorithm
which we can use.

Automatic Chunk Size

CHUNK ~1M my/local/path/file.txt /image/path/file.txt

CDC Setting Chunk count
Match Size

[GB]

Diff Size

[GB]
Deduplication

~512K 245,516 119 22 85.31

~1M 127,955 114 27 81.70

~2M 69,353 108 34 77.18

~4M 40,177 101 41 71.96

We implemented this as follows
<click>

You tell Indy the average chunk size
that you want. Then it will pass that
value to the Content-Defined
Chunking algorithm to calculate the
chunk offsets, and then it runs as
usual.

As a quick and dirty test, I took the
output of a package build from one
day, and the output of another

package build from the next day.
Then I ran `indy build` on each of the
outputs, with 4 different CDC settings
and compared their chunks.

<click> This chart shows the results.

To reiterate what this test did: For each
setting, I would first build an image with
the output from day 1. Then I would
build another image with the output from
day 2. And finally diff the two images.

As expected, when we specify smaller
chunk sizes, the CDC algorithm is able to
extract more deduplication from the
files. However, the total number of
chunks also goes up, and the chunk sizes
are smaller. Which we know can lead to
poor bandwidth performance.

Take these specific deduplication
numbers with a grain of salt, but it's
really interesting to see that the CDC
algorithm is able to get such great

deduplication numbers, with no a-priori
knowledge of the file structure.

Automatic Chunk Size

CHUNK ~1M my/local/path/file.txt /image/path/file.txt

Pros
• Very simple

• Excellent temporal deduplication

Cons
• Two passes through file

1. Figure out chunk boundaries

2. "Normal" `indy build` portion

So, as a summary, automatic CDC
chunking is very simple to use and
doesn't require any a priori
knowledge of the file structure.
And on top of that, it performs very
well.

That said, there is no free lunch. CDC
does require you to do two passes
through the file. First, to figure out
the chunk boundaries, and then the
second as the "normal" indy build. So
builds are slightly slower.

All the Ways

ADD my/local/path/file.txt /image/path/file.txt

CHUNK 1M my/local/path/file.txt /image/path/file.txt

CHUNK .chunks my/local/path/file.txt /image/path/file.txt

CHUNK ~1M my/local/path/file.txt /image/path/file.txt

So here are all the Indyfile methods
for adding a file.

• ADD the whole file
• Fixed-size chunks
• Custom-size chunks
• Automatic CDC chunks

What about Devkits?

.elf binary

Game data files

Devkit Host Devkit

.elf binary

Game data filesUpload

or

HostFs

Ok great. We have this new tech that
works for all our workstations and all
our servers. But what do we do for
the devkits?

<click>

As a quick review, for console
development, you have a host PC,
which we call the devkit host. And
the console devkit itself.
To launch the game, you need to get
the elf binary and the game data files

from the devkit host to the devkit.
<click> XBox and Playstation support
either uploading everything before you
launch the game, or streaming the files
from the host to the devkit just-in-time.
We call this second approach HostFs.

What about Devkits?

.elf binary

Game data files

Devkit Host

.elf binary

Game data files

Devkit

Cache Node
Indy

pull / mount

Upload

or

HostFs

If we plug in Indy, it looks like this.

We use Indy to pull/mount the data
on the devkit host.
Then transfer all the data to the
devkit and finally launch the game.

This is *fine* for local development.
But it has a number of issues for a CI
system.

What about Devkits?

.elf binary

Game data files

Devkit Host

.elf binary

Game data files

Devkit

Upload

or

HostFs

Studio A Studio B

First, our devkits are a precious
resource. We have a limited number
of them for all the projects.
Ideally, we'd have devkit hosts at all
the studios, but this doesn't always
happen.
Especially since the hosts are kind of
a "waste" of server resources. They
basically sit idle during the game run
and read the console logs.

<click>

So the host and devkit might not be in
the same physical location. And we know
that WAN bandwidth is both precious and
super slow, because of latency.

What about Devkits?

.elf binary

Game data files

Devkit Host

.elf binary

Game data files

Devkit

Cache Node
70GB

70GB

Next, if we look at the data path,
we're downloading the elf and all the
data to the host, and then
immediately transferring all that data
to the devkit.
It's an extra hop.

In addition, even though the game
build is 70GB, a run of a single map
may only need to read 10 GB or so of
data. But with this setup we still have
to download and transfer all 70GB.

IndyFs

FileSysHandle OpenFile(const char *filename, int flags);
size_t Size(FileSysHandle handle);
uint64_t Seek(FileSysHandle handle, const uint64_t pos);
void Close(FileSysHandle handle);
bool Exists(const char *filename);
FileSysResult ReadBlocking(FileSysHandle handle, uint64_t offset, uint64_t size, void *dest,

uint64_t *numBytesRead);
FileReadHandle StartRead(FileSysHandle handle, uint64_t offset, uint64_t size, void *dest,

FileReadCallback cbfn, void *cbContext);

So to solve these problems we
created IndyFs

The game abstracts all filesystem
access behind an interface that looks
like this.
All your standard functions, open,
close, read, etc.

So we created Indy File System,
which is a virtual filesystem, using
Indy behind the scenes.

IndyFs

Devkit Host Devkit

Cache Node

.elf binary

Indy

pull / mount

.elf binary

Upload

IndyFs

This is the flow.

<click> First, we download *just*
the binary to the devkit host.
<click> Then we upload the binary to
the devkit and launch the game
<click> During the game run, we
download the game data on the fly
using IndyFs

IndyFs Modes

Devkit

Cache Node

Disk

Memory

HTTP

Whole

chunks

Local Caching

Mode

IndyFs can run in two different
modes: Local Caching Mode, and
Direct To Memory Mode

In Local Caching Mode, we download
whole chunks to disk, and then use
those to serve read requests to the
game.
If the game asks for data from a
chunk already downloaded, we don’t
have to download it again, since it’s
already on disk.
Similarly, from one game run to the

next, many of the chunks will be the
same, so we don’t have to re-download
that data

IndyFs Modes

Devkit

Cache Node

Disk

Memory

HTTP

Whole

chunks

Devkit

Cache Node

MemoryHTTP

Range

Query

Local Caching

Mode

Direct to

Memory Mode

In Direct to Memory mode, we don’t
touch disk at all. Instead, we use
HTTP range requests to download
chunk data Just-In-Time as the game
requests it.
We lose all caching potential we
could get vs Local Caching Mode, but
we avoid the disk.

Why do we want to avoid the disk?

PS4 / XB3 HDD is specced for
durability, not raw speed. Best-case
scenario, the drive can do 120 MBps.
But that's with fully sequential, large
read.

Also, HDDs in general perform very
poorly if you are doing lots of mixed
read/writes/seeks.
Local caching mode is the worst-case
for this.

This graph shows a series of tests

that I did. I started the game in 4
different modes, and timed how long it
took to boot into a map.

HostFs dynamically streams everything
from the Host PC, and boots quite fast.
IndyFs using Local Caching Mode, with
an empty cache was horribly slow. An
order of magnitude slower than HostFs.
Even with the best case scenario, a full
cache. Everything is read, no writes, it's
still slow. This is just due to the specs of
the drive, and having to do seeks to the
different chunks.

IndyFs with Direct To Memory Mode, aka
we download everything on the fly, we
get performance on par with HostFS.
IE the NIC vastly outperforms the disk.

That all said, if we switch to SSDs, the
story is completely flipped. For PC, it's
hugely beneficial to cache. I don’t have a
graph to show you, but IndyFs in caching

mode is vastly faster, because SSD
speeds are on the order of GB/s and are
much more resilient to seeks.

How Well is it Working?

Very Well!

So, now we have this new ecosystem
for transferring tons of data around.
Just how well is it working?

<click>

Very well!

Raw Data Deduplication

Let's look at the raw data
deduplication we're getting.

This graph measures the data rate of
images being created and removed
for a *single* project

The gray bars represent how much
data would be added if there was no
deduplication from the server. That
is, if every image push uploaded ALL
chunks.
For those of you that can't read the

Y-axis numbers, the peaks here are
about 5 to 10Gbps.

The yellow bars represent how much
data was *actually* uploaded. It's about
1.2Gbps.

The red bars represent how much data is
being deleted by Ark garbage collection.

NOTE: This only a single project. Here is
another project <click>

Raw Data Deduplication

This project has a very active
package generation pipeline, which
adds a ton of data. Pre-deduplication
peaks are at 20 Gbps.
However, they're getting excellent
deduplication, so the actual data
uploaded is just 1 Gbps.

Cache Nodes Function like a CDN

Now let's look at the cache node
performance. <click>
The Indy cache nodes end up
functioning like a classic CDN.

We build and push an image once,
and then consume it multiple times.
And the image is cached by the cache
nodes.
We also get temporal caching. AKA, a
build pulled from 10 minutes ago
probably has lots of the same chunks
as the build we’re about to pull

This table shows those numbers.
It shows that in 24 hours, we uploaded
39.7 TB of data through the cache
nodes.
And downloaded 230 TB of data.

So we're downloading almost 6 times
more data than we upload.

Cache Hit Ratios

The cache nodes are also working
exceedingly well as caches.

96% of all requests are cached
already, which corresponds to 63%
of all data is already cached.
This is due to temporal deduplication,
or clients pulling the same image.

This is really good, because it
drastically reduces the load on the
WAN and the object store.

Lessons Learned Along the Way

Now we can move on to some of the
lessons we learned along the way
while developing this tool and
deploying it to production.

Curse of Scale - Probability

• Bug: 1 in 1 billion chance

• We do operation 100 million times per day

• Bug will occur roughly every 10 days

First, the curse of scale. Indy is being
used in production with most of our
projects, and being used by
thousands of CI workers each day.
This is awesome, but it also shines a
huge spotlight on any issues that we
might have.

Let's imagine a bug that has a 1 in 1
billion chance of happening <click>.
That seems pretty tiny. And it is.
<click> But if we do that operation
100 million times a day <click>, then

the bug will occur roughly every 10
days...

Hence, the name, the curse of scale.
Very small probabilities become very
possible, or even semi-guaranteed, due
to the huge number of operations we're
doing.

Curse of Scale - Hardware

Disks *will* fail. Memory *will* fail. BSoDs *will* happen

Indy verifies data integrity at every step

`indy verify` to validate the contents on disk

<click> On that same note, at this
scale of workers, it's semi-
guaranteed that at least one of the
workers will have a disk fail, or
memory fail, or Blue Screen of
Death. It's not a matter of *if* it will
fail, but *when* it will fail.

<click> In order to combat this and
prevent chunk corruption on the
server object store, indy will do data
verification at every single step of a
pull or push. As it reads data from

disk or from the network, it will re-hash
the data and verify it matches what we
expect it to.

<click> Lastly, the data we store on disk
must be durable. When we do a pull, we
only download the chunks that we don't
already have. So if a chunk is corrupt on
disk, due to say, a disk error, this would
corrupt all image files that use that
chunk.

So to combat *this* problem, we have
the `indy verify` command which will
verify the data integrity of all images and
chunks on disk. We run this nightly on all
our CI workers to help guarantee that we
always have correct data for our CI
testing.

The Perfect DDoS Hammer

• Stampeding herd can cause further networking outage

or DDoS

• Fix: Randomized exponential backoff

With Indy now being used to shuffle
around so much data, we have to be
very careful and considerate to the
network as a whole.

<click> If the network is
experiencing congestion or some
other issue, Indy can very easily
choke out other network traffic or
cause the network issue to be worse,
due to the stampeding herd problem.
This is where many clients fail their
requests and immediately retry,

causing a stampede of new requests,
which can cripple the network.

<click> To solve this, we added
randomized exponential backoff to all
requests in Indy. This adds backpressure
to the system, so network issues have a
chance to be fixed without a herd of new
requests.

Firewalls

• Talk to your IT department

• Traffic Shaping

• Ask about firewall ratings

• 10 Gbps rating != 10 Gbps bandwidth

Speaking of networking, let's talk
about firewalls.

<click> If you're going to implement
a system like this, make sure to talk
to your IT department. They can get
really confused and concerned when
all of a sudden a few dozen cache
nodes are now doing Gbps of network
traffic.

<click> One way to possibly prevent
Indy from stealing all the bandwidth

is to use traffic shaping on the firewall to
limit the bandwidth for the cache nodes.
This way, Indy is capped at how much of
the straw it is allowed to suck through.

<click> Lastly, ask your IT department
about the rating of the firewall.
Specifically, the ratings of firewall with
all the settings enable. The reason being,
a firewall rating can be a bit of a lie.
Usually the rating gives the bandwidth
the firewall can handle with *everything*
turned off. Which is makes for a pretty
useless firewall. If you enable anything
useful, like packet classification, the
bandwidth the firewall can handle will be
much much lower than the rating. If I
remember correctly, one of our 10 Gbps
rated firewalls could only handle 7 Gbps
with packet classification turned on, and
only 4 Gbps with everything turned on.

Filesystems

Issues:

• Atomicity

• Temp file, fsync(), rename

• POSIX rename - ✔

• NTFS rename - ✖

Let's move on to filesystems

Many of the local indy operations are
creating files (using multiple threads,
and potentially multiple processes
of indy). And potentially the content
of those files will end up being the
same hash, so they will want to write
to the same file name. <click>
<click>

We do the classic “write to a
temporary file, call fsync(), and then

rename to the correct name”. To ensure
that the file write is safe and complete.

However, we run into issues with the
rename.

The POSIX spec guarantees a file
rename will be atomic. It will either
succeed or fail. There is no intermediate
state.

NTFS doesn't have any similar
guarantee. None of the official
documentation mentions anything about
atomicity. Worse yet, some of the
“rename-like” functions even mention
being implemented as a copy+delete,
which is *definitely* not atomic.

Windows used to have a “Transacted”
API, but it’s deprecated, and will be
removed soon.

There is a great CppCon talk by Naill
Douglass called "Racing the

Filesystem". https://www.youtube.com/
watch?v=uhRWMGBjlO8

In the talk he goes though a magic
incantation of Win32 calls that you can
do, which *should* be an atomic.
So, we do that. However, even with that,
we were able to get a reproducible bug,
where two threads trying to
rename tmp files to the same dest file
will both succeed, but it will end up with
a corrupt truncated file.
So, we resorted to a global mutex on
renames, to prevent collisions at the file
system layer. It's an area that we'd love
to investigate more and get a better
solution for.

fsync() is Very Important

• Filesystems only journal metadata

• Machines *will* crash, especially human workstations

• Crash and OS hasn't flushed write buffers -> Corrupt file

I mentioned that our process was:

Write to a temp file, call fsync(), and
then rename. Why do we need
the fsync()?

<click>

Most filesystems journal metadata.
So if you do an iNode operation like a
rename, the filesystem will not return
to you until that operation
is persisted in the journal.

However, almost no filesystems journal
the data itself. This is purely for speed
reasons.

So, if we write to a temp file, then
rename without calling fsync(), the new
file will exist, but the data for it is in an
indeterminate state. The operating
system will lazily flush its write buffers to
disk, as it gets free CPU cycles.
If our computer crashes before
everything is flushed to disk, the new file
will exist, because the metadata was
journaled, but the data will be corrupt.
Some filesystems will zero-fill the rest of
the file and some will truncate.

We can't tolerate this corruption, so we
call fsync() before calling rename to
guarantee that the data exists on disk.

Switch from NFS to RGW S3

Storage

Server

Nginx

NFS Volume Mount

NFS

...

Clients

RGW

Ceph

Node

...

Clients

...RGW RGW

Ceph

Node

Ceph

Node
...

Finally, let's talk about the object
store itself.

In the first generation of Ark servers,
we leveraged the existing storage
servers we already had. <click>

We ran a single nginx container that
mounted an NFS volume from one of
our storage servers.
This worked relatively well, but had
all the drawbacks that we discussed
at the beginning of the talk. Namely:

• It was a single point of failure
• It couldn't scale
• And NFS implements a full posix file

system. Which is nice, but Indy
doesn't need that. Chunks are all
immutable and content addressable.
They either exist or they don't.

• Related to that, in order to be "safe"
with the filesystem, nginx also does
the standard, "write to a temp
file, fsync(), and rename". Which is
good for correctness, but it creates a
huge number of IOPS for NFS to
handle. Which can bring the storage
server performance to a crawl

So, in order to address these concerns,
we migrated to Ceph RGW. <click>

Ceph RGW is an implementation of the
S3 object storage protocol on top
of Ceph.

Ceph has lots of advantages:

1. The storage itself is sharded across a
number of physical servers. Ceph
uses redundant copies, so a single
node failure doesn’t cause any
outage.

2. You can add additional ceph nodes
basically to infinity. For increased
storage capacity and bandwidth.

3. The RGW instances themselves are
stateless. And we can scale out to
any number.

4. The clients can connect to any RGW
instance. The RGW instance will
connect to the relevant ceph nodes
and fetch the corresponding data.

5. Since the data is replicated across
multiple nodes, RGW can fetch data
from multiple nodes in parallel, for
increased throughput, similar to RAID
1

Improvements for the Future

• Fine-grained authorization

• Service discovery for cache nodes

To finish off today's presentation,
we'll look at some of the
improvements we're looking to do for
the future of Indy.

<click> First, authorization.
Currently, we only have service-level
authorization implemented. That is, a
user either has access to an Ark, or
they don't. Ideally, we'd like to
implement something more fine-
grained. For example, access at the
namespace level. So someone could

have read-only access to the namespace
"ci-builds" and read/write access to their
personal namespace.

<click> Next, we want to explore a
better method for doing service
discovery of the cache nodes. Let me
explain <click>

Service Discovery for Cache Nodes

[

{

"id": "0093c208-610b-498c-8830-eadd01c80844",

"site": "ctla",

"url": "http://example.com/foo/"

},

{

"id": "a87b2286-ce0b-45cc-80e2-80638b4156d6",

"site": "ctla",

"url": "http://example2.com/foo/"

},

{

"id": "4465e6bd-ba98-4420-9b63-6ef28cd2a6ca",

"site": "bnx",

"url": "http://bnx.example.com/foo/"

}

]

/storage

HEAD /health - 6ms

HEAD /health - 8ms

HEAD /health - 122ms

Each Ark can have a number of cache
nodes associated with it. When indy-
cli needs to use a cache node, it first
hits Ark's `/storage` endpoint
<click>

<click> This will return a JSON giving
the list of all cache nodes.
<click> Then indy-cli will do
simultaneous HEAD requests to all
the cache nodes, and then pick the
one with the fastest response time
<click>

This works well, and handles cache node
outages / maintenance seamlessly.
However, it's a lot of "manual" work for
indy-cli to do every time.

Some of the approaches that we're
exploring are:
1. GeoIP DNS resolution with dynamic

BGP routing
This is the most ideal solution. Where
you'd just give everyone the same DNS
name, and it would dynamically resolve
to the closest, alive node to them.
Unfortunately, it does require a ton of
control at your network layer. So your IT
team may just say no. This is the kind of
thing that cloud provides.

2. Using a Consul service mesh to do
the discovery for us

Improvements for the Future

• Fine-grained authorization

• Service discovery for cache nodes

• Fine-grained locking for indy.exe

Next up, let's talk about locking in
indy-cli.

Certain commands in indy have to be
protected against other commands.
For example, you don't want to have
a gc start up in the middle of a pull.
The gc would delete all the chunks
you're in the process of pulling,
because they're not referenced yet.

To protect against this, early in the
design, we added a process file lock.

So only a single indy process could run
at one time.
This guaranteed correctness, and
protection. But with a cost; only one indy
processs can be running at a time.

To be fair, in the 4 year of production, it
hasn't been a huge problem.
That said, as we're moving to use indy in
more user-facing tools, the lock can end
up looking like a hang to a user.

So we're investigating how we can break
up the lock into smaller pieces and
adding exclusivity to the pieces.
For example, it's totally fine for multiple
pulls to happen at the same time, since
they're only adding files, and not
deleting anything.

However, if we run a 'gc', we need get
an exclusive lock on everything, so we
can be sure that nothing is adding as we
delete.

Improvements for the Future

• Fine-grained authorization

• Service discovery for cache nodes

• Fine-grained locking for indy.exe

• UI to facilitate build management

Lastly, while indy-cli has a very
intuitive set of commands, I don't
expect an artist or QA person to have
to break out the command line to get
their daily builds.

So we're working on a GUI to
facilitate build management and
delivery. Behind the scenes it will use
indy with all the benefits that come
with it, but it will more user friendly
for those that just want their data.

Conclusion

• Indy has been a huge success

• In production use for 4 years

• Used by most of our projects

• Saves huge amounts of bandwidth and time

• Allows us to scale to workers spread across many

physical locations

So, wrapping up: Indy has been a
huge success. It's been used
continuously for the past 4 years for
most of our projects.
It's saving us a huge amount of
bandwidth and time, but more than
that, it's allowed us to utilize workers
spread out across many physical
locations; allowing much closer
collaboration between the studios
working on a project.

Special Thanks

Sean Houghton

Will Brode

Daniel Meirovitch

The studio tools teams

I want to give a big shout out to my
team members that have helped
build the tool:

Sean Houghton, Will Brode, and
Daniel Meirovitch.

And another shout out to the studio
tools teams that integrated indy into
their pipelines and gave valuable
feedback and improvements.

We're Hiring!

https://careers.activisionblizzard.com/

And lastly, as you can see from the
last part of the talk, we still have lots
of unsolved problems and new tools
to create.
Do you have ideas on how to solve
these problems, or do you want to
work on tools similar to this? Come
work at Central Tech! We have lots of
open positions and would love to
hear from you

Questions?

And with that, I want to thank you
for coming and listening to my talk,
and we can open up the floor to
questions.

