
Joel Pritchett

joelpri@microsoft.com

Franchise Technical Director

Age of Empires - Microsoft

Hello everyone, and good afternoon. 
Before we get started I’d like to 
remind everyone to please silence 
your cell phones

My name is Joel Pritchett, I am the 
tech director for the Age of Empires 
franchise at Microsoft and today I’m 
going to talk about tools we built to 
aid in our engine parallelization 
efforts for Age IV. 



Agenda

●Intro to Age of Empires IV

●The Problem: Networking and Sim

●Solution Implementation

●Debugging and Performance

●Observations and Errata

●Questions?

In the next 25 minutes I’m going to 
blitz through a quick intro to what 
Age of Empires is, incase you hadn’t 
played it.

Then I’ll talk about how our 
simulation can benefit from 
parallelization, the complications that 
this causes, specifically with our 
networking model.

Most importantly I’ll cover the tools 
we built to catch these problems.

I will also share some observations 



and learnings from our implementation 
that you should find helpful if you chose 
to do something similar.

And we’ll have a little time at the end for 
any questions anyone might have



What is Age of Empires IV?

Every game in the Age of empires 
franchise has been a historical RTS in 
which up to 8 players and AI battle it 
out with hundreds, sometimes over a 
thousand units. Why parallelize at 
all? What happens if we didn’t? The 
most obvious reason, if it wasn’t 
clear from this video, is that we have 
a lot of units in our games. Most PCs 
these days have a lot of cores, and 
the ability to run our simulation 
across many of them lets us push 
more units and give players bigger 

3



battles with more spectacle. 



The Game

Our engine goes wide in many 
places. Some parts of our entity or 
component updates don’t reach into 
entities outside themselves, these 
cases were easy to parallelize. One 
entity or component per task. Spread 
the tasks out to all the cores 
available. Done. We also have some 
very complicated targeting phases 
where entities are evaluating all of
the entities around them, changing 
internal state that may impact the 
decisions of other entities that 

4



haven’t updated yet. Maybe its healing, 
or activating area of effect abilities, or 
running data driven designer script. Who 
knows. This phase gets very complicated 
and was the most expensive part of our 
update by a long shot. More expensive 
than pretty much all of the rest of the 
entity update combined. 

It was a big target for parallelization. 
The biggest target we had. In a nutshell, 
we approached the problem by finding 
‘islands’, or groups entities who are only 
looking amongst themselves that we can 
update in a single task. The next few 
slides show 5 such islands.



The Game

5



The Game

6



The Game

7



The Game

8



The Game

Each circle here is a simulation 
island, an independent group of units 
where each individual unit, in theory, 
only is looking at other units in the 
same island during its the update 
phases that require modifying unit 
state. Across the rest of the map, 
there are probably dozens, if not 
hundreds, more. Plenty enough 
islands to spread across the cores of 
most PCs these days. 

9



Solving selectable set of units by a 
prepass was also discussed, some extra 
code each designer/programmer would 
implement to get actual set of units 
needed for the island, but this wasn’t a 
general purpose solution. This is kind of 
what we did, but we only did the pass 
from one compoenent. There were 
dozens other updating during the island 
update. And the impact of having to 
implement this pass for all those 
components was unknown, data driven 
script behaviors made it even more 
complicated. On the other hand, MAW is 
a totally general solution and took ~2 
weeks to get up and running plus 
probably 2 weeks to iterate on the 
output. It was easier to implement and 
more reusable.



The Problem

Typical Age IV Threading Pattern

Main thread Main thread
Wide work 2

Entity C, D

Wide work 3
Entity E, F

Wide work 5
Write Entity A

Wide work 6
Write Entity C

Main thread

Wide work 1
Entity A, B

Wide work 4
Write Entity A

This is a simplified view of how our 
individual update jobs are issued, it is 
a fork join model. During our 
simulation update, every time the 
sim thread got to a parallel phase of 
its update it would kick off all the 
tasks at once and go to sleep until 
they had completed. In the case I 
just talked about, we’d find a bunch 
of simulation islands, assign each one 
to a task and kick it off.

10



If our island generation was solid and 
entities only every really looked at 
entities in the same island we’d be solid. 
A lot of code across many different 
components, or even data driven script 
was about to execute. We couldn’t 
inspect 100% of the code that was about 
to run and ensure this was the case in 
any timely fashion. 

we instead looked at what a small set of 
our components responsible for targeting 
hoping the entities it cared about would 
represent a superset of entities the rest 
of the components cared about. That 
was not always the case.



The Problem

The regular threading issues exist 

Main thread Main thread
Wide work 2

Entity C, D

Wide work 3
Entity E, F

Wide work 5
Write Entity A

Wide work 6
Write Entity C

Main thread

Wide work 1
Entity A, B

Wide work 4
Write Entity A

A mutex would prevent the code from crashing.. 

but..

If that always happened, we’d never 
have any issues. 

But there is nothing about our engine 
that inherently prevents any object 
from reading or modifying any other 
object and causing well understood 
issues such as having multiple 
operations in flight attempting to 
modify the same object. The team 
wrote code all the time that broke 
these rules. Designers built script 

11



that broke them. And caused issues like 
this, just a traditional threading issue 
where you have two threads trying to 
modify an object simultaneously. 
Depending on what that modify 
operation is doing to the entity, we 
might cause corrupted data, or maybe 
even a crash. So we need to fix that.. 
But we have this other problem we need 
to deal with



Networking

Peer to peer deterministic

• Worked in 1997 - Works now

• All peers agree on input before update

• All simulations must update to the exact same result

Since the beginning of the Age 
franchise, and well RTSs probably in 
general, most RTS titles have relied 
on peer to peer deterministic 
networking. What does that mean? It 
means that each peer starts each 
simulation tick in the exact same 
state. All our networking does is 
share the input from each player 
before starting to update the 
simulation. P2P was chosen because 
it requires minimal bandwidth and 
the number of entities in the 

12



simulation doesn’t matter. Parallelism 
introduces some interesting problems 
though. 



The Other Problem

Main thread Main thread
Wide work 2

Entity C, D

Wide work 3
Entity E, F

Wide work 5
Read Entity A

Wide work 6
Write Entity C

Main thread

Wide work 1
Entity A, B

Wide work 4
Write Entity A

Timing and determinism

where parallelization creates an 
additional problem for our sim in that 
timing of jobs executing across 
multiple cores is variable as 
hypothetically show in the second 
fork here. Tasks 4, 5, and 6 are 
kicked off at the same time as part of 
a group of work, but for whatever 
reason 4 might run well before 5 on 
some machines.

13



The Other Problem

Timing and determinism

Main thread Main thread
Wide work 2

Entity C, D

Wide work 3
Entity E, F

Wide work 5
Read Entity A

Wide work 6
Write Entity C

Main thread

Wide work 1
Entity A, B

Wide work 4
Write Entity A

And due to random uncontrollable 
circumstances, Task 5 executes 
before Task 4 on other machines and 
in this case, 5 will get a value from 
entity A before 4 modifies it. (don’t 
mention mutex. Next slide)

14



The result is non-deterministic

The Other Problem

This is a problem

Main thread Main thread
Wide work 2

Entity C, D

Wide work 3
Entity E, F

Wide work 5
Read Entity A

Wide work 6
Write Entity C

Main thread

Wide work 1
Entity A, B

Wide work 4
Write Entity A

this would still cause a non 
deterministic outcome, a desync. It 
breaks our networking model. We 
realized that if we could build a 
system that could catch the 
nondeterministic use of an entity 
shown in these example, it would 
also guarantee that there won’t be 
contention for that object across our 
multiple worker threads. We could 
get rid of mutexes or locking and 
solve our determinism at the same 
time.

15



• Detect non-thread safe and nondeterministic use 

of game objects

• Debuggable

• Minimal setup, maintainance

• Fast (aka usable) on dev builds

Problem Overview

We set out to design a system that 
could detect both nonthread safe and 
nondeterministic use of our game 
objects.

Our other goals in priority order were 
obviously to get useful debug 
information out of any issues the 
system detected, ease of setup and 
lastly something fast enough for 
heavy use by the dev team.

16



The Memory Access Watcher (MAW)

The Solution

We called it MAW, or the memory 
access watcher. Tried real hard here 
to not have a lame acronym. 

17



• All important data lives in memory pools

• Access gated though pool aware pointer types.

• This is where we injected MAW (->, . Operators)

The Essence Engine and Memory

To understand how we went about 
implementing MAW, you need to 
know a little bit about how our 
engine works. 

At some point in the past, the team 
had to separate the simulation from 
the presentation and put them on 
their own threads. Since the 
presentation was using the same 
objects with the same code and 
underlying data, the team 
implemented an offset pool system to 

18



avoid having to go through all the data 
and code being used and figure out 
exactly which individual bits were 
needed on the other side. So In this 
system, when the presentation and 
simulation sync up, all of the relevant 
simulation state is copied in one massive 
go to a second buffer so the presentation 
has a fixed view of the world to work 
from while the simulation gets on 
generating the next simulation frame.

This required using offset pointers. What 
is an offet pointer? Well.. Its an offset. 
Instead of a raw pointer under the hood, 
we store an offset from the beginning of 
the pool. When dereferenced, the offset 
pointer looks at a TLS value to figure out 
whether its in the sim or the pres, finds 
the pool base pointer and adds its offset 
to that. In this way the code could be 
used by the same code on either the 
simulation or presentation and still find 
the right data.

It also means we can’t store raw 



pointers. The only raw pointer use was 
only allowed for transient data, 
operations that will be complete by the 
next sim tick. The reason for this is 
because if a raw pointer is stored in an 
object by the simulation and that object 
gets copied to the presentation and 
referenced, the raw pointer will point 
back to the memory being modified by 
the simulation update.

I guess the point of all of this 
explanation is that our offset pointer use 
was ubiquitous. Gave us an easy point to 
inject a system like MAW that every 
object was already using. Many engines 
I’ve worked in over the years have had 
similarly ubiquitous smart pointer 
systems that could be leveraged in the 
same way.



On any access to pool held memory

Logging object access

The first time an object is accessed 
by a task, that generates a MAW 
access record that we store in a 
thread local table. We found we only 
needed keep track of one access per 
object per task. And it happens to be 
the most restrictive of all of the 
accesses to the object, that is, if an 
entity is accessed many times by a 
single task, we only bother to store 
the most restrictive type of access. 
read only is promoted to write, but 
write is never demoted. Because the 

19



timing is variable, we don’t bother 
tracking access time and consider an 
access of any type at any time to hold 
for the entire execution of the task group 
during later comparison.

In this example our entity is marked for 
write access at the instant the 
dereference operator is invoked. Write is 
determined by the fact that it’s a non 
const pointer. The system only ever 
allows one task in a task group to have 
write access to an object. If an object is 
write modified, then no other task in that 
group is allowed to read or write from 
that object.



On any access to pool held memory

Logging object access

Same as the top access, but the 
access is logged on the top line. We 
can not track accesses made through 
raw pointers so when you get one 
from one of our offset pointers, we 
assume the worst case based on the 
constness of our offset handle being 
accessed.

20



On any access to pool held memory

Logging object access

This third example shows one of the 
several ways you can have a const 
pointer in our system and is an 
example of a case that would be 
logged as a read. Any number of 
tasks in a group are allowed to read 
from an entity to long as no other 
task ever writes to it.

21



Detecting nondeterminism

Each worker thread builds up a table of access records as 

work is completed

When a worker thread finishes, we push each Memory 

Access Table into a queue to be compared to sibling tasks

Back on the main thread when all of the tasks have 

completed, compare the Memory Access Table records and 

see if there were any conflicts

Each task is generating dozens, if not 
hundreds of access records into its 
local table during execution. Each 
record is just the object accessed and 
the type of access requested. And 
that can only be read or 
write/modify. Time is irrelevant, as it 
is assumed a task could overlap any 
other task. What this means is that 
once an object is accessed by a task 
that task has ownership of said 
object from the fork to the following 
join. 

22



When each task finishes, it pushes its 
table into a queue for the main thread to 
process once all the tasks in the group 
have completed but before the main 
thread begins work again.

Doesn’t really need to be a strict fork 
join. This model would work for any 
thread blocking on another thread or 
threads. 

If you are just tracking read or write 
access on an object, there are not many 
possible outcomes for the comparisons 
that happen. Lets just take a quick look 
at them.



Detecting nondeterminism

TLS Memory Access Table : 320

Object 0x023FDA00 : Write

TLS Memory Access Table : 321

Object 0x023FDB00 : Read Only

Each worker thread builds up a table of access records as 

work is completed

When a worker thread finishes, we push each Memory 

Access Table into a queue to be compared to sibling tasks

Back on the main thread when all of the tasks have 

completed, compare the Memory Access Table records and 

see if there were any conflicts

First scenario: the access tables 
contain only accesses of completely 
unrelated objects.

23



Detecting nondeterminism

TLS Memory Access Table : 320

Object 0x023FDA00 : Write

TLS Memory Access Table : 321

Object 0x023FDB00 : Read Only

Each worker thread builds up a table of access records as 

work is completed

When a worker thread finishes, we push each Memory 

Access Table into a queue to be compared to sibling tasks

Back on the main thread when all of the tasks have 

completed, compare the Memory Access Table records and 

see if there were any conflicts

Perfectly OK

24



Detecting nondeterminism

TLS Memory Access Table : 320

Object 0x023FDA00 : Write

TLS Memory Access Table : 321

Object 0x023FDB00 : Read Only

TLS Memory Access Table : 320

Object 0x023FDA00 : Read Only

TLS Memory Access Table : 321

Object 0x023FDA00 : Read Only

Each worker thread builds up a table of access records as 

work is completed

When a worker thread finishes, we push each Memory 

Access Table into a queue to be compared to sibling tasks

Back on the main thread when all of the tasks have 

completed, compare the Memory Access Table records and 

see if there were any conflicts

Two non competing accesses of the 
same object?

25



Detecting nondeterminism

TLS Memory Access Table : 320

Object 0x023FDA00 : Write

TLS Memory Access Table : 321

Object 0x023FDB00 : Read Only

TLS Memory Access Table : 320

Object 0x023FDA00 : Read Only

TLS Memory Access Table : 321

Object 0x023FDA00 : Read Only

Each worker thread builds up a table of access records as 

work is completed

When a worker thread finishes, we push each Memory 

Access Table into a queue to be compared to sibling tasks

Back on the main thread when all of the tasks have 

completed, compare the Memory Access Table records and 

see if there were any conflicts

That’s OK too when its read – only.

26



Detecting nondeterminism

TLS Memory Access Table : 320

Object 0x023FDA00 : Write

TLS Memory Access Table : 321

Object 0x023FDB00 : Read Only

TLS Memory Access Table : 320

Object 0x023FDA00 : Read Only

TLS Memory Access Table : 321

Object 0x023FDA00 : Read Only

TLS Memory Access Table : 320

Object 0x023FDA00 : Write

TLS Memory Access Table : 321

Object 0x023FDA00 : Read Only

Each worker thread builds up a table of access records as 

work is completed

When a worker thread finishes, we push each Memory 

Access Table into a queue to be compared to sibling tasks

Back on the main thread when all of the tasks have 

completed, compare the Memory Access Table records and 

see if there were any conflicts

Two competing accesses for the 
same object? 

27



Detecting nondeterminism

TLS Memory Access Table : 320

Object 0x023FDA00 : Write

TLS Memory Access Table : 321

Object 0x023FDB00 : Read Only

TLS Memory Access Table : 320

Object 0x023FDA00 : Read Only

TLS Memory Access Table : 321

Object 0x023FDA00 : Read Only

TLS Memory Access Table : 320

Object 0x023FDA00 : Write

TLS Memory Access Table : 321

Object 0x023FDA00 : Read Only

Each worker thread builds up a table of access records as 

work is completed

When a worker thread finishes, we push each Memory 

Access Table into a queue to be compared to sibling tasks

Back on the main thread when all of the tasks have 

completed, compare the Memory Access Table records and 

see if there were any conflicts

Uh oh. This would also be true for 
write/write. Doesn’t matter, once a 
single write happens no other task 
can touch the object.

28



Detecting nondeterminism

TLS Memory Access Table : 320

Object 0x023FDA00 : Write

TLS Memory Access Table : 321

Object 0x023FDB00 : Read Only

TLS Memory Access Table : 320

Object 0x023FDA00 : Read Only

TLS Memory Access Table : 321

Object 0x023FDA00 : Read Only

TLS Memory Access Table : 320

Object 0x023FDA00 : Write

TLS Memory Access Table : 321

Object 0x023FDA00 : Read Only

Each worker thread builds up a table of access records as 

work is completed

When a worker thread finishes, we push each Memory 

Access Table into a queue to be compared to sibling tasks

Back on the main thread when all of the tasks have 

completed, compare the Memory Access Table records and 

see if there were any conflicts

And you get hit in the face with this. 
It tells you the bad happened. What 
is all of this information? There are 4 
important bits of information here 
and we’ll break down what it all 
means so don’t bother squinting and 
trying to read this.

29



Debuggability

Initially..

Did not capture callstacks. Workflow:

1. Cause a MAW assert, get an unhelpful error.

2. Get a programmer, Compile in more expensive call stack 

checks

3. Repro again to figure out what’s going on

Not very useful or efficient. 

Now..

All useful information is captured on every access

Callstacks alone are 80% of the current cost of the system

How’d we get to this big ol message? 
It didn’t start that way. We still just 
keep the callstack as void*s until an 
actual violation is detected. Then we 
load the symbols and convert to 
something human readable. Its also 
why I didn’t spend too much time 
optimizing the rest of the system.. 
Could make record 
tracking/comparison 2x faster but no 
one would notice. Everything I am 
about to cover is very engine and 
game specific, but I’m sure you’ll see 

30



its worth considering for any 
implementation.



Debuggability

Which call stack is expected?

The Premark

• Removes ambiguity

• Pre associates objects with the task that 

will update them

• Any non-Premark call stack then 

assumed to be unexpected

Initially the system would throw two 
gnarly callstacks at you. How would 
you know which one of the two was 
correct? It could be that neither was 
expected and the collision was 
detected. Or it could be that 
somehow both were expected and 
this is an architectural issue that 
needs resolving. You were always in 
a position where you’d need the 
author of the both bits of code to 
come look over the log and figure out 
which of the two was ‘right’. To 

31



simplify this we added the Premark 
phase. The top callstack is the obvious in 
the log is always from this block of code, 
anyone could look at it and know it was 
the intended access. Well, the intended 
task owner. Any other callstack was not 
expected. Ok maybe this isn’t so game 
specific.



Debuggability – Scripts

Call stacks from our designer 

state tree interpreter – not so 

useful

Add unit data to tracking info 

This block of code associates the unit 
who’s statetree script is running with 
any subsequently captured callstacks 
on this worker thread. This is 
designer created data, and callstacks
generated by it are generic state tree 
interpreter call stacks. Not so useful. 
This macro associates the unit name 
with any subsequently captured 
callstacks so we can actually figure 
out what unit was running. There are 
similar macros that log the state tree 
node UIDs as they execute, so we 

32



can work back from a MAW log to actual 
designer data.



Debuggability

The final block here has the internal 
job ID and violating permission types 
being requested.

33



Implementation Concerns

Initially…

• Memory Access records were kept for every access of every 

MemoryEnvironment based object for the entire frame

• This fired all the time. 

• We’re not anywhere close to const correct. 

• This was slow

• About 10s per sim tick slow.

• And took >30GB of memory.

• Needed to narrow the scope the system cared about

• Supporting staged roll-out would also be a bonus

34



Implementation Concerns

Step 1

• Enable tracking on the objects we care about by adding two 

macros to the declaration and implementation of the class:

Easy to integrate. We got enabling 
the system down to these two lines. 
This is all it took to enable MAW 
tracking on any object in our engine.

This macro serves two purposes. It 
creates an uint UID that is used 
under the hood during allocation 
record creation. This represents the 
objects slot in the allocation tables. 
Every object is given a unique ID the 
first time it is used in the MAW 
system. Lazy assignment. Prevents 

35



creation of loads of unused IDs. We also 
support enabling and disabling tracking 
of object types for different parts of the 
update, but this has a performance 
penalty over disabling by removing the 
macro as the latter causes the system to 
never be compiled into the object to 
begin with.



Implementation Concerns

Step 2

Thanks to some Substitution Failure template metaprogramming (SFINAE)

Only compiled for the objects we care about 

Compiles to nothing on objects we don’t. 

Fast! (ish)

But having to check whether MAW is 
enabled on a per object basis added 
a lot of overhead, just due to the 
number of objects and dereferences 
going on in our engine. Templates to 
the rescue (?) 

Using SFINAE we were able to only 
compile MAW in on objects that had 
the required tracking variables. MAW 
was completely compiled out on all of 
the rest of our game objects. Can’t 

36



get lower overhead than that.

template <

typename element_type,

typename base_type = 
std::remove_pointer_t<element_type>,

typename shouldTrack = 
maw::should_track<base_type>,

typename
std::enable_if_t<!shouldTrack::value>* = 
nullptr>

void MarkMemoryPermission(env::MemoryPool, 
void*)

{

}

template <

typename element_type,

typename base_type = 
std::remove_pointer_t<element_type>,

typename shouldTrack = 
maw::should_track<base_type>,

typename



std::enable_if_t<shouldTrack::value && 
std::is_const_v<base_type>>* = nullptr>

void MarkMemoryPermission(env::MemoryPool
memoryPool, void* memory)

{

if 
(IsPermissionTrackingEnabled(memoryPool) 
&&

base_type::maw_owner_task_allowed_access
!= maw::ValidationType::VT_Disabled &&

// if the base_type is in read only mode, 
this can never fail and never generate an 
error.

// so lets just not do it. errors will be 
caught on an attempt to grab a write.

base_type::maw_owner_task_allowed_access
!= maw::ValidationType::VT_ReadOnly)

{

base_type* object = 
reinterpret_cast<base_type*>(memory);

if 
(ValidateReadOnlyPermissionRequest(memoryP
ool, object))

{



MarkMemoryAsReadOnly(memoryPool, object);

}

}

}

template <

typename element_type,

typename base_type = 
std::remove_pointer_t<element_type>,

typename shouldTrack = 
maw::should_track<base_type>,

typename
std::enable_if_t<shouldTrack::value && 
!std::is_const_v<base_type>>* = nullptr>

void MarkMemoryPermission(env::MemoryPool
memoryPool, void* memory)

{

if 
(IsPermissionTrackingEnabled(memoryPool) 
&&

base_type::maw_owner_task_allowed_access
!= maw::ValidationType::VT_Disabled)

{



base_type* object = 
reinterpret_cast<base_type*>(memory);

if 
(ValidateWritePermissionRequest(memoryPool
, object))

{

MarkMemoryAsWriteable(memoryPool, object);

}

}

}



Implementation Concerns

Step 3

• Enable the system for the parts of the update we care about.

• Here we tell the system to monitor all trackable objects from 2 

of our memory pools for code or jobs run in the current scope

• This is all that is required at runtime to turn the system on 

or off.

• We can also enable/disable per type with similar code

MAW is off by default. If you were 
eagle eyed you’d have noticed in that 
last block of code, the very first thing 
MAW checks is whether its even 
enabled. These macros are how you 
toggle MAW. These enable MAW for 
the current scope on the specified 
pool and any tasks spawned during 
it. There are also similar macros to 
disable MAW on a per object type 
basis.

When the team was getting ready to 

37



tackle parallelization for a new part of 
the update, we just had to drop these 
macros into our code for each new 
section as we were ready to make it 
thread safe. We’d tackle all the bugs that 
MAW highlighted then would move on to 
the next section.



Errata

What happens when…

Our job system is smart. 4 tasks and 2 worker threads? 2 

groups of 2 tasks.

Each task has its own access table, not each thread.

Main thread

Wide work 2
Write Entity C, D

Wide work 4
Write Entity B

Main thread

Wide work 1
Write Entity A, F

Wide work 3
Write Entity A

38



Errata

What happens when…

This gets caught

Main thread

Wide work 2
Write Entity C, D

Wide work 4
Write Entity B

Main thread

Wide work 1
Write Entity A, F

Wide work 3
Write Entity A

Specifically, it gets caught after 
Tasks 316-319 finish executing and 
before 320 starts executing. This is 
when all of the access record tables 
are compared.

39



Errata

What happens when…

And it should, on a 4 worker thread machine, each task 

would get its own thread

The system is core count agnostic.

Main thread

Wide work 2
Write Entity C, D

Wide work 4
Write Entity B

Main thread

Wide work 1
Write Entity A, F

Wide work 3
Write Entity A

You can extrapolate that the system 
would still catch errors if the tasks 
were processed in an entirely single 
threaded manner. This was an initial 
design goal, and we used it like this a 
lot to verify code could run in parallel 
before actually making it run in 
parallel. Barry Genova’s 
‘Multithreading the entire Destiny 
engine’ GDC talk he made a great 
point about not bringing down the 
entire team when you light up a 
system like this. So I made sure we 

40



could roll out incrementally in every way 
possible. We can start with a small 
subset of code and roll it out to new 
parts of the engine. We can also start 
with a small set of objects and add more 
as we get the original set under control. 



Conclusions

• 20% performance penalty in our dev builds

• Up to 60,000 tracked accesses per sim tick across >1000 tasks

• Very low integration cost

• Very low cognitive tax

Talking points
#1: dev builds were already about 
half as fast as RTM builds. So 20% 
more wasn’t a big deal. Since our 
game was designed to run 4 player 
800 unit games on a 10 year old 
ultrabook, we just limited dev build 
games on our super dev PCs to ~4 
players and that worked mostly fine. 
One of the really important points of 
this talk, other than the fact the 
system worked is that we went from 
10s per tick of overhead to single 

41



digit milliseconds by making sure we 
paid as little for the systems existence as 
possible when we didn’t need it. It 
wasn’t compiled in on objects we never 
needed to track. And It was only enabled 
and doing heavy work during parts of 
our simulation update that we knew 
were hard to parallelize. 
#2: Point number 2 here is just to 
illustrate the kind of volume the system 
was handling on average. There was no 
theoretical limit on the number of 
tracked accesses. That’s just the most I 
ever saw going through the system in a 
log or when it broke.

#3: The system was integrated at the 
lowest levels of our job and smart 
pointer systems. Required minimal 
setup. It integrated into the engine by a 
guy who wasn’t me, and we rarely had 
to go and modify the code in our sim 
loop that modify that. 

#4: Gameplay engineers just wrote code, 

designers just made state tree logic and MAW 



told them when it was unsafe. Most engineers 

who started after we put the system in had no 

idea it was even there until it tripped. 



Questions?

https://aoe.ms/careers

The Age family is growing!

https://www.relic.com/#careers

42



End of talk

43


