
Live Long and Render!

Dan Buckstein

Engineer (Gameplay), Infinity Ward

GDC 2022

Game Career Development

Live Long and Render!

●Dan Buckstein

●Engineer (Gameplay)

●Formerly: Associate Professor,

Game Programming, Champlain College

Session Overview

●This talk does contain:
● Tales from graphics programming

● Benefits of graphics programming

● Tips & tools for hobby & career advancement

●This talk does not contain:
● The deep and fascinating history of the GPU

● AAA proprietary rendering technology

● How to write the best renderer ever

Session Overview

Thoughts and opinions expressed

in this talk are my own.

https://miro.medium.com/max/3200/1*MctT8J5VmdbuAvvkAgGgUw.jpeg

graphics

Where do I

begin?

Live Long and Render!

…or…

How I Learned to Stop Worrying

and Love Graphics Programming

In the beginning… (2009-ish)

:)

me

:/ U
8

prof

:| :D
friend

Productive spring break!

:D

:D
O

8

:U

teaching assistant me










Where do I begin?

●Three main components of graphics programming:

SHADERS

ARCHITECTURE

INNOVATION

“A Three-Course Meal in Graphics Programming Education”
D. Buckstein, GDC 2021 Education Summit

Where do I begin?

●SHADERS & VFX FIRST!!! :D

SHADERS

->Fun
->Creative
->High impact
->Low stress

“Teaching Modern Graphics: A Shader-First Approach”
S. Farooq, GDC 2019 Education Summit

Shaders first!

●OpenGL shader pipeline:

VS→TCS→TES→GS→FS (CS)

12 34 5

Vertex Tessellation Ctrl. Tessellation Eval. Geometry Fragment Compute
(attributes) (patches) (subdiv. out) (primitives) (raster out) (whatever)

Shaders first!

●Simplified OpenGL shader pipeline:

VS→TCS→TES→GS→FS (CS)

12

Vertex Tessellation Ctrl. Tessellation Eval. Geometry Fragment Compute
(attributes) (patches) (subdiv. out) (primitives) (raster out) (whatever)

Shaders first!

●Tools for success (my recommendations):

●For non-programmers to get started, any visual editor!

Background
there

… …
Glow
here

Shaders first!

●Tools for success (my recommendations):

shadertoy.com shadered.org

https://shadertoy.com/
https://shadered.org/

Shaders first!

●SHADERS FOR ALL!!!

Programmers

Designers

Artists

$$$

COMMUNICATION!!!

Shaders first!

●Cross-discipline in nature: engineers, artists, designers

●Understand and explain why
● Interviews: hardest problem you’ve solved

●Cross-discipline goals
● Engineers: build tools to make prototyping easier for others

● Artists/designers: gain appreciation for how it all works

●Go to conferences and talk to people

Shaders first!

●The pitfall:

Shaders first!

●Shaders are simply data readers/writers

●They are crazy fast and they don’t give a damn

Where do I go next?

●BUILD A RENDERER!!! (or two… or six…)

ARCHITECTURE

->Engineering
->Abstraction
->Tackle hard probs
->Pull your hair out

What’s a renderer?

Engine +Tools +Assets

RENDERER

Graphics APIs

Platform-spec

Driver-spec

GL VK D3D …

Win Mac Win

A B C

…

…

GL=OpenGL
VL=Vulkan
D3D=Direct3D

What’s a renderer?

●It’s just data: food for shaders

●Need to think abstractly!!!

Data in interleaved vertex buffer:

𝑥0 𝑦0 𝑧0 𝑟0 𝑔0 𝑏0 𝑢0 𝑣0 𝑥1 𝑦1 𝑧1 𝑟1 𝑔1 𝑏1 𝑢1

“position” “color” “texcoord”

The first vertex (all of it!) The second…

What’s a renderer?

●It’s just data: food for shaders

●Need to think abstractly!!!

Location 0
Color 0
UV 0

Location 1
Color 1
UV 1

Location 2
Color 2
UV 2

Triangle 0: 0,1,2

What’s a renderer?

●It’s just data: food for shaders

●Need to think abstractly!!!

https://gifimage.net/shrek-gif-image-for-whatsapp-and-facebook-16/

A brief history…

●CBTK

●2012 – 2016

●Windows & iOS – C++

●OpenGL 3.3, OpenGL ES 2

A brief history…

●EGP

●2016 – 2017

●Windows – C++

●OpenGL 4.3

●Quick Mac port

4.1

A brief history…

●animal3D

●2017 – 2021

●Windows – C 

●OpenGL 4.5

****IMAGE
->bloom, everything

A brief history…

●Current project

●2020 – present

●Windows – C (want: Mac/iOS/Android)

●OpenGL, Vulkan (want: Metal/D3D)

●Relying on takeaways from animal3D

Starting over

●Two approaches:

Shoot first
Ask questions later

→Follow tutorials
→Essentials only
→Use existing SDKs

Ask questions first
Shoot later

→ Prerequisites
→ Prediction
→ Iteration

Starting over

●Why/when to start over?

●Need to fulfill some greater purpose
● E.g. teaching tools; needs of project

●Existing framework has weaknesses
● E.g. too rigid; too many dependencies

●Iteration
● E.g. new experiments, new setup

8
U

prof me

:|
:|

:|:o

:|

Where do I go with my renderers?

●Three main components of graphics programming:

INNOVATION ->Bend the rules
->Deep learning
->Teach others
->Get a job

CURIOSITY!!!

Where do I go with my renderers?

●Time for space…time…

*my hobby: drawing & learning about
spacetime anomalies

WOW!!!

●Now you know everything… right?

SHADERS

ARCHITECTURE

INNOVATION

“We looked at your resume

because… math.”

-my manager, 2021

Mathematics

●Important types of math
● Basic algebra: functions, trigonometry

● Calculus: derivatives, integrals

● Linear algebra: vectors, matrices, quaternions (bonus)

●Misconception: total pre-requisite of graphics?
● It definitely helps to know some, but…

●Actually: great way to learn math through application

●Interested in a math problem? Visualize it!

:o

Ken Shoemake’s arcball paper: http://graphicsinterface.org/wp-content/uploads/gi1992-18.pdf

http://graphicsinterface.org/wp-content/uploads/gi1992-18.pdf

:| :) COME
EAT
DINNER

significant
other

:V :o

slerp𝑞0,𝑞1 𝑡

=
sin 1 − 𝑡 Ω 𝑞0 + sin 𝑡 Ω 𝑞1

sinΩ

:D :|

Mathematics

●Solve random but relevant problems

●E.g. prove the quadratic formula:

●Then optimize it:

𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎
0 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

𝑥 = −𝐵 ± 𝐵2 − 𝑐If 𝑎 = 1 and 𝑏 = 2𝐵 then

Mathematics

●Solve random but relevant problems

●E.g. cubic roots: 0 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

*try spline vs plane

Mathematics

●Solve random but relevant problems

●E.g. ray vs shapes & convex hulls

Mathematics

●Learn modern paradigms: e.g. raytracing

ray debugging

^using console as canvas

Mathematics

●E.g. quaternions!!!

vs

matrices!!!

*left: interpolating matrix results in scale and skew
*middle: quaternion slerp results in smooth rotation
*right: dual quaternion sclerp results in arc motion

Mathematics

Write your own

math library

Job Opportunities

●Start here, go anywhere

Animation

Physics

AI

Gameplay

Audio Networking

GRAPHICS

Academia to Industry

●Balance research with practice

●Note to industry: not all academics are researchers
● (For those looking to switch, focus on portfolio!)

project

portfolio classroom

Learning

●Write EVERYTHING down
● Personal writeups and articles

●Comment all code
● For future you

●Write a blog

●Publish your work (e.g. on GitHub, conference talks)

Transferrable Skills!!!

●Math

●Abstraction

●Patience

●Curiosity

●Communication

●Learning

Perspectives

●What I think I know

vs

●What I know I don’t

Live Long

and Render!

Resources 4 U

● Shadertoy: shadertoy.com

● SHADERed: shadered.org

● animal3D: github.com/dbuckstein/animal3D-SDK-Source

● Teaching materials: github.com/dbuckstein/teaching

● Ray Tracing in One Weekend: raytracing.github.io

● Vulkan Tutorial: vulkan-tutorial.com

●Twitter, LinkedIn, GitHub: dbuckstein

https://shadertoy.com/
https://shadered.org/
https://github.com/dbuckstein/animal3D-SDK-Source
https://github.com/dbuckstein/teaching
https://raytracing.github.io/
https://vulkan-tutorial.com/

We’re hiring!!!

●Infinity Ward is hiring Engineers across our four studio

locations: Los Angeles, Austin, Mexico City & Krakow!

●For more information, please visit:

careers.infinityward.com

https://careers.infinityward.com/

Thank You & Enjoy Your GDC ☺

●Special thanks:
● GDC

● Infinity Ward &

Activision

● Family, friends,

colleagues &

mentors

