
Hello! Thank you for joining me today. I’m Kevin Todisco, Graphics Engineer at
Blizzard and I was the lead graphics engineer on Diablo II: Resurrected. I’m excited
to have the opportunity today to present all the hard work of the team. Before I start
I want to say don’t forget to fill out those surveys at the end of the talk so that I can
make my talks even better and, if I’m lucky, get invited back in the future.

Now, I’ve worked for almost 10 years at Vicarious Visions, which is now part of
Blizzard, but if you know Vicarious…

then you know we’ve had our hands in a lot of popular remasters over the past
several years, so you could say we know a thing or two about remasters.

[image source: IGN]

And remasters, they generally fit into one of two categories: either you’re
rebuilding the entire game from the ground up - a remake, new code, new assets,
probably some changes to the game itself

or you’re increasing the quality of all the assets and behavior in the original to meet
modern technology - a remaster, same code, same assets but upscaled, increased
resolution and framerate, game remains the same, and generally 2D-to-2D or 3D-to-3D.

I’m here today to talk about something a little different. I’m here to talk about how we
remastered Diablo II while also adding a dimension to it. But it’s still a remaster; it’s not
some PR spin when we say that all the original code is still running - all the original code
is still there and running just like it did in the year 2000, and that’s what is controlling the
game. But, now we have these cool new 3D graphics to represent it.

As we can see in this concept art, our Art team had some high ambitions. They wanted
to create very high fidelity assets for a super realistic and gritty reproduction of the
classic, dark Diablo aesthetic. Diablo’s graphics in the year 2000 may certainly look
dated today but back then they were really convincing. A player could let their mind’s
eye fill in all the gory detail and paint a picture of what they were getting immersed in.
For this remaster, we had to capture that.

As we can see in this concept art, our Art team had some high ambitions. They wanted
to create very high fidelity assets for a super realistic and gritty reproduction of the
classic, dark Diablo aesthetic. Diablo’s graphics in the year 2000 may certainly look
dated today but back then they were really convincing. A player could let their mind’s
eye fill in all the gory detail and paint a picture of what they were getting immersed in.
For this remaster, we had to capture that.

As we can see in this concept art, our Art team had some high ambitions. They wanted
to create very high fidelity assets for a super realistic and gritty reproduction of the
classic, dark Diablo aesthetic. Diablo’s graphics in the year 2000 may certainly look
dated today but back then they were really convincing. A player could let their mind’s
eye fill in all the gory detail and paint a picture of what they were getting immersed in.
For this remaster, we had to capture that.

As we can see in this concept art, our Art team had some high ambitions. They wanted
to create very high fidelity assets for a super realistic and gritty reproduction of the
classic, dark Diablo aesthetic. Diablo’s graphics in the year 2000 may certainly look
dated today but back then they were really convincing. A player could let their mind’s
eye fill in all the gory detail and paint a picture of what they were getting immersed in.
For this remaster, we had to capture that.

On the other hand, we made an explicit choice to reuse the engine, in large part because
we did not want to risk the chances of getting any intricacy about the game wrong. So
as an engineering team, we had to solve the largest question of them all – how do we
make this possible? The simulation is in 2D – as in, positions and logic are all
conducted in screen coordinates or an arbitrary 2D game coordinate space. And we
must build a pipeline for our team to make 3D assets, without touching the existing
engine.

This is the story of how we solved this huge challenge with clever engineering and
collaboration. This talk isn’t so much a deep dive into the code, but rather how we
engineered solutions to make the project possible.

What this talk is not is why we decided to preserve the original engine and build the
project from that. If you’re interested in the design motivation behind that, I definitely
recommend checking out my colleague Rob’s talk this Friday at 3 in Room 2010 in the
West Hall.

In order to succeed here, we need to consider what technical challenges need to be
overcome. First, that illusion of a 3-dimensional space that the original game created with
its isometric camera? We need to make that real. We need to build out a 3D engine and
figure out how to drive it from a 2D dimensional space. And second, we need to make the
game look like everyone remembered. Obviously, art plays the biggest role in this but as
we’ll see, graphics technology plays a key role here as well.

And what are our steps to success? We need a 3D engine. We need a toolchain for art
to be able to make the game. And we need to choose the right rendering technology
that will enable us to create visuals that recreate what you saw in your minds eye all
those years ago. So today I will walk you all through how we pulled this off, and the best
place to start is in the year 2000, so… stay a while, and listen.

And how do we go about pulling this off? Three easy steps, right? We need a 3D engine.
We need a toolchain for art to be able to make the game. And we need to choose the
right rendering technology that will enable us to create visuals that recreate what you
saw in your minds eye all those years ago. So today I will walk you all through how we
pulled this off, and the best place to start is in the year 2000, so… stay a while, and
listen.

Diablo II was originally rendered using a collection of sprites created from pre-rendered
3D objects, split up into multiple pieces and then pieced back together to create various
animations, procedural variability, and a variety of different level layouts.

Rendering begins with the floor, followed by shadows which are just sprites drawn at half
height and skewed in a solid shade. Next up walls and units, such as buildings,
characters and props are all drawn over top of the terrain. Then weather, and finally UI.

If we want to create a 3D space to sit on top of this world, we need to look at the original
game as if it were actually 3D. One of the best clues for understanding this is a floor tile.

Floor tiles in Diablo II are half as tall as they are wide -- 80 pixels tall and 160 pixels
wide. Assuming that, in 3D space, this floor tile is meant to be a square and sits on the
XZ plane in the world, these dimensions give us all the information we need to calculate
the viewing angle from which the tile is being looked at.

We start at the assumption that the tile in our mock 3D world is a square. This would
mean that the tile has been foreshortened along the screen Y-axis by half of its diagonal
length.

That foreshortening can be thought of as a right triangle formed by the projection of the
tile onto the camera’s projection plane. The tile itself is the hypotenuse. Its
foreshortened diagonal axis is the short side of the right triangle, and the angle we need
to solve for is the arcsine of the ratio of these two sides. Some quick trigonometry tells us
that the camera is tilted downward 30 degrees.

The next question is, where is the camera located in space?

Floor tiles to the rescue again! Diablo II was originally presented at a resolution of
640x480, and the Lord of Destruction expansion -- ahem -- expanded that resolution to
800x600. Not only did it increase the resolution, but because it’s a sprite-based game, it
increased the viewable play space rather than just increasing pixel density. In either
case, this means that a certain number of floor tiles can fit in one screen from left to right,
and from this we can calculate the field of view of the camera.

Oh, I forgot to mention before now, Diablo II: Resurrected uses feet as its unit of
measurement. Why? Because Diablo II used yards. Strange, I know. But as far as in-
game units were concerned, a yard is 48 pixels horizontally and 24 pixels vertically in
screen space, making floor tiles each 3 ⅓ yards wide.

That makes the viewable ground space in this scene 16 and two thirds yards from left to
right,

or 50 feet. From a birds-eye view, our camera will sit at some point in space looking at
the game scene and will need to view 50 feet of space from left to right.

Assuming a standard 35mm film projection, which is 24mm in height, we calculated a
400mm focal length to match, using the squint test, the “fake perspective” mode that was
introduced in the Lord of Destruction expansion, and we could use that focal length for
the orthographic projection as well. The focal length can be converted to a field of view
value of 0.16 degrees. Half of that gives our angle to our right triangle pictured here, and
our W’ value is 25 feet; rearranging we get our formula; and solving we get a distance
from the focal point of 883.88 feet.

We also now know how large our floor tiles will need to be in 3D - 10 feet
diagonally since five would fit across the screen in the 800x600 view, making up
50 feet of horizontal space. That means that the side of a floor tile would be 10
over the square root of 2 feet long, which is obviously not a very round number.

So in practice, we scale everything in the world up by the square-root of two, so
that instead of being 10 feet diagonally, floor tiles could be 10 feet by 10 feet
square. The reason for this is that 10 is exactly representable by floating point,
and so we wouldn’t have to worry about floating point imprecision creating issues
at seams between the rooms that are procedurally stitched together to create the
game world.

Another important question is how to orient everything? The original game allowed for a
unit to have up to 64 different directions that it could face. We can treat these as 64
intervals of a 360 degree rotation. To convert from a 2D orientation value to a 3D
rotation, we scale the value by the number of degrees in each increment, which is 2-pi
over 64. It’s negated because we have a right hand coordinate space. And, lastly we
need an offset to account for the fact that “neutral” rotation in the 2D space is rotated 45
degrees from our forward axis in 3D space.

There’s one more thing we need to figure out, and that’s how to derive vertical height.
Things like character sizes, missiles, and as we’ll see soon, height changes in terrain,
need this.

For calculating verticality from pixel measurements, we return to thinking about the 2D
game as a 3D world. Pixels in vertical space along the screen could refer to two different
directions, each of which has a different scalable value. Along the ground plane, 24
pixels in vertical screen space is one yard, or 8 pixels per foot. For height, it’s something
different. But once again, we can form a right triangle to derive the equivalent in vertical
space.

In this case our unsolved side of the triangle is parallel to the world y-axis rather than the
projection plane, so we’re dealing with the tangent of 30 degrees instead of the sine.
The tangent of 30 is one over the square root of three, which means the same length
projected onto the screen vertically is 0.577 yards, and the formula can be rearranged to
show that the height in yards is the height in pixels, y, of the object on the screen,
divided by 24 (at 24 pixels per yard along the ground plane) times the square root of
three. That gives us height in yards, but we want feet as our in-game unit, so we multiply
that by three, and then we finally multiply it again by square root of two as our world
scaling factor.

In practice, we simplify this to a multiplication by the square root of six and division by
24. I’ll leave it as an exercise to the audience to derive to that point.

In this case our unsolved side of the triangle is parallel to the world y-axis rather than the
projection plane, so we’re dealing with the tangent of 30 degrees instead of the sine.
The tangent of 30 is one over the square root of three, which means the same length
projected onto the screen vertically is 0.577 yards, and the formula can be rearranged to
show that the height in yards is the height in pixels, y, of the object on the screen,
divided by 24 (at 24 pixels per yard along the ground plane) times the square root of
three. That gives us height in yards, but we want feet as our in-game unit, so we multiply
that by three, and then we finally multiply it again by square root of two as our world
scaling factor.

In practice, we simplify this to a multiplication by the square root of six and division by
24. I’ll leave it as an exercise to the audience to derive to that point.

In this case our unsolved side of the triangle is parallel to the world y-axis rather than the
projection plane, so we’re dealing with the tangent of 30 degrees instead of the sine.
The tangent of 30 is one over the square root of three, which means the same length
projected onto the screen vertically is 0.577 yards, and the formula can be rearranged to
show that the height in yards is the height in pixels, y, of the object on the screen,
divided by 24 (at 24 pixels per yard along the ground plane) times the square root of
three. That gives us height in yards, but we want feet as our in-game unit, so we multiply
that by three, and then we finally multiply it again by square root of two as our world
scaling factor.

In practice, we simplify this to a multiplication by the square root of six and division by
24. I’ll leave it as an exercise to the audience to derive to that point.

Ok, phew. We’ve reversed engineered the 2-dimensional space and worked out the
mathematics of an equivalent 3-dimensional space. Now we have to figure out how we
are going to position things in this world.

Initially, we can imagine that the whole 2D game is taking place on a flat plane. We’ve
just imagined it as if it were 3D, so it’s not a stretch to think that the whole thing can take
place on a single plane. And so, we could consider the coordinates to be coordinates on
the XZ plane in 3 dimensions. Will this work? Sounds like it will, let’s try it!

And that actually works fairly well. It gives us this, where we have a unit and basic
missiles from the war cry skill appearing in the correct locations in 3D. But what
happens when height gets involved?

Diablo II can convince you that you’re on a staircase by blocking off the sides, only
allowing you to walk on the “stairs”, and painting the stairs to look like, well, stairs. But
we’re going to have actual stairs. They can’t be flat, because the lighting won’t work
right, and we did commit to making a 3-dimensional game. So… what are we to do?

When we first thought about this problem, we considered and prototyped a solution
which applied texture mapping to translate between 2D and 3D. The idea was there
would be an underlying navigational mesh which was texture mapped with a “fake
texture” that was the top-down planar space of the 2-dimensional game.
When we have the location where a unit is in 2D game space, we can put that into local
coordinates of the texture space, then convert that to barycentric coordinates on the
navigation mesh, and finally use those coordinates to derive the 3D position. We were
going to move forward with this idea until a little later on in development when we looked
at it a different way.

We considered that we had a fixed camera, that’s not user controlled, and a pillar of the
project was to have a 1:1 correspondence between 3D and 2D elements on the screen.
If that holds true, and we still consider the 2D game to take place on a flat plane in a
pseudo-3D space, then we can fire a ray into the screen at the position of, well, anything,
and determine where that ray intersects our 3D world, then place that thing at that
position in the 3D world.

In this video everything in red is the location of the 2D game units on the 2D game plane.
Rays are fired into the scene at each location and collide with the 3D floor, where the
green 3D units are placed. This ends up guaranteeing that the 3D elements appear at
the same screen location as the 2D sprites.

This is what that looks like in code, with some surprisingly helpful comments and ascii
art. We take the position that we are trying to convert, establish it as our trace point, get
the camera view ray, and cast to find an intersection point in the 3D world.

This is what that looks like in code, with some surprisingly helpful comments and ascii
art. We take the position that we are trying to convert, establish it as our trace point, get
the camera view ray, and cast to find an intersection point in the 3D world.

This is what that looks like in code, with some surprisingly helpful comments and ascii
art. We take the position that we are trying to convert, establish it as our trace point, get
the camera view ray, and cast to find an intersection point in the 3D world.

This is what that looks like in code, with some surprisingly helpful comments and ascii
art. We take the position that we are trying to convert, establish it as our trace point, get
the camera view ray, and cast to find an intersection point in the 3D world.

This technique has some great advantages. First off, the game is generally presented with
an orthographic camera, and that means that anything moved along the camera forward
vector will not appear to move at all on the projection plane. We’ll see a more concrete
example of this in just a second. It means that we can accomplish height changes, without
deviating 3D objects from their corresponding sprite’s position. It just means that any
height change has to be accompanied by a shift on the XZ plane.

We actually implemented a custom tool for our artists to do this reliably, which we called
the nudge tool. You can see here in Maya an artist is able to nudge an object along the
camera view vector, which will alter the height that it sits at, but on the left, its location on
screen does not change.

This does end up making some dangerously steep staircases. Arguably there’s more
danger in this staircase than in the Chaos Sanctuary on Hell difficulty. Anyway…

Checkpoint. We’re still building our 3D engine. We’ve defined our 3D space and we can
position things in the 3D world. How are we going to populate it?

All we really have at this point is a completely empty void. We started to fill this in with
debug lines and boxes. We even gave the boxes some character by making them bob as
they moved around and tilt as they “attacked.” This was the birth of the layer of the
engine which we simply called the “translation layer.”

If we look at the software structure of Diablo II, as you might expect it had different
libraries each responsible for different things. For example, there was Client, which
handled most of the client-side functionality and communication with the server;
Common, which contained a pool of common functionality for all the engine; Game,
which as you might guess contained the bulk of the logic for the game itself; and Gfx
which of course handled the drawing of the sprites.

Now, every functional piece of the game – items, characters, objects like chests and
shrines, missiles like arrows and spells – are all called Units. A unit has a type that can
be any one of those things I just mentioned. All of the game’s content is controlled by
CSV files that dictate what each unit is, what its stats are, where it spawns and in what
number, etc. Abilities are hardcoded, but can spawn other units.

For Resurrected, our idea was straightforward – create a mapping of every unit in the
game to a 3-dimensional counterpart. Any time that a particular unit is created, find the
corresponding 3D assets and load them, then start updating them according to the unit’s
state. This is where the translation layer came from. This software layer sits in between
the original game and the new library built from scratch to manage 3D rendering. In
practice it’s quite a bit of code, but in theory it’s a shim between the logical components
of the original game and the visuals of the remaster. This is what does all the heavy
lifting of the conversion between 2 dimensional space and 3 dimensional space. All that
math we covered in the beginning? That happens here.

The collection of all these things make up the software package which is Resurrected.

For Resurrected, our idea was straightforward – create a mapping of every unit in the
game to a 3-dimensional counterpart. Any time that a particular unit is created, find the
corresponding 3D assets and load them, then start updating them according to the unit’s
state. This is where the translation layer came from. This software layer sits in between
the original game and the new library built from scratch to manage 3D rendering. In
practice it’s quite a bit of code, but in theory it’s a shim between the logical components
of the original game and the visuals of the remaster. This is what does all the heavy
lifting of the conversion between 2 dimensional space and 3 dimensional space. All that
math we covered in the beginning? That happens here.

The collection of all these things make up the software package which is Resurrected.

Now in reality, the layer had several specializations besides just units. Things like the
camera as I described earlier, for effects like camera shake and horizontal offsets when
menus are opened; weather state, which operates outside of the “unit” structure; level
translation for the placement of rooms and the building blocks of physical space in the
game; and animation layers all exist in addition to translation of game units.

Generally, the flow would be that any event that would occur in the original game would
push a message to the translation layer that some action needed to take place, such as
spawning or despawning a unit, changing a unit’s animation state, or instantiating a
level. The translation layer would then perform its management of the runtime objects
which had associated render objects for the 3D scene. This was a push method, but the
translation layer would also operate on a pull method for other information like “what
color is this unit” or “what properties does the light associated with this unit have?”

We needed some way to represent all these mappings and the structure of the data for
the 3D engine itself. For this we elected to use the JSON format, and there were several
reasons for this. The foremost was mod-ability. Diablo II has a very passionate modding
community, so one of things that we wanted to make sure to carry forward as best as
possible was the openness of the content we were developing for the 3D visuals. Thus,
we felt that much of our 3D content would need to be in a human readable format in
order to make it easy to modify.

The other advantage is in development workflows. It’s a lot easier to dig into data that’s
human readable and solve problems than it is to inspect some broken binary data. On
top of that, it enables much of the art and design teams to be more hands on with
troubleshooting data files.

And lastly, it was just highly strategic move for us. It allowed us to adopt an existing
toolset from our old engine at Vicarious Visions – Alchemy Laboratory. Compatibility
with JSON was easy to add, we had relevant expertise on the team, and it offered us a
full build harness to start writing scripts for our databuild. It was the fastest way of going
from essentially nothing, as far as infrastructure was concerned, to having a full toolset.

The game has over 7500 json files to represent 3D assets. Everything from animation
state machines, presets, prefabs, effects, objects, characters, visual data, and biomes
are represented by json.

At runtime we have 40 MB of memory dedicated to loaded json files. Now, as you might
expect plain text is never the friendliest to load speeds. In practice, we had the most
time spent in instantiation of objects, in part because of the larger scope of logic required
to set up an object based on properties gathered from the original simulation.

We optimized for load speeds by removing whitespace in built json files.

Another issue we had was severe fragmentation caused by the parsing of the plain text,
so we sequestered json loading into its own pool of memory that could effectively be
cleared between loads.

If we were to do this all over again, there are further steps we could take. A big one is
limiting the amount of information actually stored in the file. We didn’t end up stripping
out default values from our files because at the time it became relevant, it was too risky
to do on all the game’s data.

We could also explore better dependency checking. Our records of dependencies are
not robust and we likely load more data in dependencies than we really need to during
parts of the game. In many cases we fell back on hand optimization of dependency
loading in order to resolve this situation. An advantage we had because we knew what
the full scope of the game was and how it would be played from the start.

Switching to something more obvious, we would move to a binary compressed version
for processed game files instead. This will give us that edge in load times and
instantiation times.

But honestly, we probably would just not use json if we were to do this again.

Right, so – we have our 3D engine now! We can associate and load 3D assets with
original game content, position them, move them, animate them – everything needed to
make gameplay happen.

How are we going to make all this content? What are we going to have our art teams
do? And in particular, what about environments? Units in the game like missiles and
characters and objects are one thing, but procedural level building is a major component
of the game.

One solution we considered was very similar to how things were originally done:
what if we built a bunch of 3D content and then created an automated process to
slice it up into tiny pieces that correspond to all the sprites?

Then we could draw all the pieces in the same manner that the sprite game draws to
reassemble the original 3D model.

…Yea, that’s definitely too crazy. Some of the cons to this were potentially long
processing times -- something we wanted to avoid because we needed to
develop very rapidly -- and uncertainty about what we would do with LoDs;
texture seams; lighting seams; high draw call count; you name it, it seemed a
little too crazy overall.

[image courtesy GameSpot]

Too crazy even for the studio that brought you a 3D game on a Game Boy Advance.

To solve this problem, we took a deeper look at how the Diablo II engine
works. Diablo II assembles levels from a collection of building blocks called
presets. Presets are assembled from a collection of tiles, but we weren’t looking
to go to that level of granularity. Presets come in all shapes and sizes, and there
are also some special blocks for outdoor areas called clusters that we won’t really
get into here.

Presets exist for every area of the game, like the barracks

And the inner cloister

And the caves

And entire towns like Lut Gholein

And also fixed locations like the maggot queen’s lair. But how many presets are
there?

There are exactly two thousand, four hundred, and sixteen presets (2416) in the
entire game. This isn’t even all of them here on this slide. That’s a lot… but
maybe not too much when you think about how many assets go into a game
these days.

What we can do is have the environment art team create 3D versions of all 2416
presets, and these presets can be placed in the 3D world using the 2D game
coordinates where their counterpart presets are spawned.

To do this, we created a custom toolset in Maya that fixes the camera with an orthographic
projection identical to the game and creates an image plane that shows the 2-dimensional
preset over top the 3D geometry as a reference.

Art would construct 3D presets using separately modeled pieces like pillars, wall segments,
torches, and other building blocks all while aligning them with the original.

And when that process is done, we can see the transformation of each original preset to
a 3D-ified version.

But, we still need to make sure that we can place these presets accurately in the world.
And, as we’re about to see, it’s not quite as simple as placing units.

As we’re navigating the world, the game populates the space around us by placing
presets that connect together to form the randomly generated dungeons. Via the
translation layer, each time a preset is placed, we need to load and create the 3D
equivalent.

Preset coordinates are given by tile coordinates since every preset is going to be some
specific number of floor tiles in size. These tile coordinates can be used directly to
calculate our position in world space along the XZ plane. This works great if our world is
flat, but we’re adding an extra dimension to the game, so we need to consider what
height the preset should be at. *That* is the real black magic here and I’ll talk about that
in just a second. Finally, we’d use this height offset to adjust the position along the XZ
plane, since we need to preserve the preset’s location on the projection plane.

Some areas of the game have faked elevation changes, and we’re talking about making
these real elevation changes. Take this cliff for example. On the left side of the cliff
you’re standing at height 0, while on the right side after ascending the stairs you’re at
height 20. Any preset that falls to the right of this one needs to be placed at the correct
height, otherwise we’ll end up with a discontinuity in the terrain and the environment
lighting.

So the algorithm goes something like this: start with a preset that we need to place.
Let’s say we need to place this desert cliff preset. We have markup for the height of the
northeast and southwest edges, the other two, in this case, are irrelevant, because, very
kindly of the game, it will always line up sides of presets with height discontinuities, since
it wouldn’t make much visual sense to break that in 2D either.

We look for presets in each cardinal direction around the one we want to place.

For this example, we can discard the northwest and southeast edges because they’re
always going to align with height.

We take the height markup for the border edges of orthogonal presets.

And subtract the height markup of the preset we’re placing, and largest offset wins and is
returned as the height offset we need to spawn the preset at.

In this example, that would be 10 feet, because the southwest border has a height
differential of 10 feet. A valid question is: can any unresolvable height differences occur,
such as trying to place a preset with a height change between two preexisting presets on
the same level?

And the answer fortunately is, almost all of the time, no, because presets are placed
outward from the player’s position, so the most common case is only comparing heights
against one edge, or two adjacent edges, and 99% of the time these situations are
resolvable.

But Diablo II is also a game that doesn’t make sense sometimes. We like to call this
example The Loop of Death. You can see here that if one were to run around this
dungeon loop clockwise or counterclockwise, you can technically travel down, or up,
infinitely.

This case was particularly difficult because the loop is small enough that all the relevant
presets are still instantiated while traversing the whole thing. Our solution was simply to
monitor and re-spawn presets off-screen if we detected that they no longer aligned at
adjacent preset heights.

And you can see that in action in this video.

Now if we compare the start position with the end position, it looks like the camera
moved. The camera didn’t actually move, the entire level layout actually just moved
downward, because overall the character travelled down, and off-camera we
repositioned the presets to reflect this change in height.

Now if we compare the start position with the end position, it looks like the camera
moved. The camera didn’t actually move, the entire level layout actually just moved
downward, because overall the character travelled down, and off-camera we
repositioned the presets to reflect this change in height.

Oh, and if you know Diablo II well you’re probably wondering, how did we handle the
Arcane Sanctuary? The whole concept of the space is geometry that’s impossible in 3D.
So how do we make something like this, real?

I hate to burst everyone’s bubbles on this one, but the truth is that the walkable area, and
even the staircase, is just flat. Even the original game forces an orthographic camera in
this area, so we can use the same forced perspective tricks to give the illusion of
impossible geometry. The staircase, while originally a real staircase, was flattened, to
prevent a lighting pop when the character would step off the staircase onto the platform
behind it at a different height.

Ok great! At this point we had our 3D world coming together. But there’s one pretty
critical component missing – the floor.

Can we include the floor in our presets? Not really. The floor is going to need to be
continuous, and presets can connect to a variety of other presets in any area of the
game, and it sounds pretty horrendous to require our environment team to guarantee
that all the edges of each preset are tileable with other preset edges, so that’s out.

Instead we did something that I like to call one giant plane of controlled noise.

Terrain in the game is made up of a maximum of 10 layers, each of which has texture
maps for albedo, normal, roughness, as well as data for grass, clutter, parallax
properties, and more. Each layer also has parameters that control their influence in the
terrain stack and thresholds against other layers in the stack.

Noise on the scale of the world coordinate system is used to calculate what terrain layer
appears at a given position. The noise value is used to resolve the stack of all 10 terrain
layers, with either one or a blend of two layers winning out at a given position. Art could
manipulate the threshold values to get the terrain appearance and complexity that they
wanted.

This works great for general terrain but there are also cases where art needs to have
specific features in specific locations. These features are specific to presets, so in a
preset an artist can place stamps and decals that manipulate the terrain. Decals are
specialized decals for terrain, and stamps are used to explicitly force certain layers to win
out during the resolution of the layer stack.

There’s also one more special case where we were able to leverage underlying data
from the original game, and that’s paths. Most prominent in act 1, paths are special tiles
in the sprite graphics that are also procedurally placed in the world. By associating
these tiles directly with chunks of generated terrain, we can automatically populate paths
in the remaster without having to have art replicate them. All art needed to do is provide
alpha masks that would affect the pattern of each path tile. Art could also manipulate the
terrain layer which would be used to represent the path.

Within preset files, an artist places a floor mesh with a terrain material, which indicates
that mesh will be rendered with the virtual terrain textures. The pattern which appears
on the floor ultimately depends on where in the world the preset is procedurally placed.
It’s a large procedural version of splat textures.

Now, evaluating all 10 layers of the terrain stack at a given position is rather expensive.
This is where we started, but it took something like 20ms of GPU on our development
workstations, so of course this wasn’t going to fly on consoles. Or any machine, really.

So it’s time to optimize. The key observation here is that you’re not going to see new
terrain every frame. For a vast majority of the time, most of the terrain on the screen
remains constant, so we can optimize terrain generation heavily by caching the result
into a virtual texture. The composite size varies per platform, depending on the output
resolution of the game, in a best attempt to get a 1:1 pixel density ratio. The highest
quality we offer is a 9k composite texture (technically two for all PBR properties).

Generation of the texture is distributed into compute jobs operating on square chunks of
the atlas. As you move, generated tiles would look like a sliding window across the atlas
texture.

This helps performance a lot, but our new problem is that there’s a lot of variability in
how many tiles need to be generated each frame. Sometimes it’s 0, when you’re just
standing in one spot. Sometimes it’s an entire row of tiles in the texture as you run
around the world. And of course sometimes it’s nearly all of it, if you’re a sorceress and
you’re speedrunning the game 

So, we optimized this even further by prioritizing what tiles we actually generate. Top
priority are the tiles within the camera frustum. Again, we get to take advantage of our
fixed camera, and we know automatically what tiles are visible on the screen. Any tiles
that fall outside of the camera frustum we can amortize over several frames, unless they
happen to come into view at which point we must generate them.

And lastly, we put terrain texture generation on asynchronous compute in order to hide
the cost as much as possible.

At this point, we’ve established our 3D space, we’ve set the art team off and
running with tools to make the content, and we’ve solved our issues with height
changes in the game (mostly, there were still a lot of bugs). We still have another
large undertaking ahead of us - how do we recreate what people imagined when
they were playing this game decades ago? Our brains can do some amazing
things, and players turned those pixels into some pretty impressive imagery.

Now, it’s definitely worth me mentioning that a ton of work went into the art direction for
the game to pull off that visual trick of recreating what was in your mind’s eye back in the
day, and if you’d like to hear about that, go see my colleague Dustin tomorrow in the
West Hall.

And on the technical side, you can hop in your time machine and go back approximately
2 hours and 15 minutes to see me talk about the renderer in detail in this very room… or
see it when it hits the vault. I’m only going to talk about a few very niche things we did
with the renderer here so if you want the full story on that, I definitely recommend
checking this out.

The rendering technology we would choose would play a big role in our success, not just
from a time perspective because we were building everything from the ground up; but
also, some key details were necessary to really nail the same visual feeling a sprite
game evokes.

There was one really important detail for us to work with, which was that the camera is
fixed. This meant we could take a lot of shortcuts and solve a lot of problems by leaning
into this. It also cuts down on the number of systems and performance situations we
need to worry about. We don’t have to worry about long vistas, and therefore don’t need
to create any kind of distance imposter rendering systems – though we would still need
LoDs and rate limiting for platform scaling. We don’t need to render sky – like, at all.
You can’t see it. And, as I talked about earlier, we know exactly how much terrain we
can see at any given time, and we used that to our advantage.

Art’s ask was physically-based, realistic visuals. Goal-wise, we want to recreate exactly
what you thought you were looking at in the year 2000. So, we start by building a
physically-based renderer and see what we get…

So, ignoring some of the artifacts here, this is what you get, when you take the act 2
desert and light it for the daytime with universal lighting. It’s probably clear that there are
some monsters right in front of me. But what about this body over here? Is there loot
around it? Is it obvious that I can interact with it? Oh, I bet you didn’t notice that there’s
a monster literally right next to me.

If we look at the sprite game, sprites in motion like monsters stand out from the
environments a lot better. It’s almost a little bit of that effect from old cartoons where the
art style of the secret doorway was different than the rest of the wall, so you kinda knew
something would happen with it.

Either way, characters and items on the ground, and interactable things are elements
critical to gameplay, so the realism needs to step aside, and we need a way to bring this
readability into the remaster.

Our solution was to give players, monsters, and even items their own unique
lighting rigs -- not per instance mind you, but per type. Players are lit by three
directional lights and monsters and items are lit by two. Art could control the
direction, intensity, color, and diffuse and specular contributions of the lights
independently from the environment. The properties of these rigs are primarily
controlled by the time of day system, as are the environment lighting properties,
but can also be overridden by trigger volumes throughout the world, such as
walking into an interior space from an exterior space.

Here you can see the lighting rig for all monsters being modified.

And, lastly, there were global controls over the brightness of characters and items
that were applied in a pseudo-post-processing step at the end of the lighting
shader. It worked just by modifying the value in the hue/saturation/value
representation of the shaded pixel color.

Something else that a sprite-based game has that a 3D game struggles with is
explicit control over layering and ordering of the objects in the scene. Diablo II
always renders elements in an order that visually makes sense – like in this
animation that I showed earlier. Floor, then shadows, then walls, characters, items,
then weather, then UI. If some gameplay element must appear in front of another,
it’s fairly easy to do so.

As an example, a character can stand on top of anything on the ground and draw
over it completely.

But in 3D, everything is just going to clip together.

Some of the key issues we had were problems with characters and items clipping
with the ground or non-gameplay elements on the ground, which in the best case
would make your character’s feet disappear but in the worst case would make it
impossible to see the item that just dropped on the ground.

Like gold.

Or sweet loot.

Even bulky armor pieces could sink into the ground a little bit.

To solve this, we leveraged the stencil buffer during our depth prepass, first
drawing out characters, items, and any other objects that needed to appear
above the terrain or other terrain elements. We provided the art team a means to
tag models as ones considered to be part of the floor, such as these pillows in the
harem.

These objects would draw later in the depth prepass but fail the stencil test
anywhere that a character or item had drawn, and therefore not render there at
all.

So we can go from feet sinking into harem pillows.

To a character fully visible on top of them. Normally in 3D this makes no sense. Or you
might put collision on the pillows and stand on top of them. But our 3D elements are all
being positioned by a 2D engine that doesn’t really care that pillows are not flat like
paper.

There was one case that this would not work for though, and that was ethereal items.
These items render partially transparent, and that precludes them from completely
obscuring whatever is behind them, meaning we can’t prevent rendering whatever is
meant to blend with them. They’re drawn later in the frame, by the time the terrain is
already drawn. This is something we never solved and counted on being a rare enough
case that it wouldn’t be a huge issue. It remains an open problem.

We also had issues with auras. Since we didn’t have a projected decal system,
our auras are planar effects parallel to the ground that were originally placed
directly at ground level. Whenever there would be undulation in the ground or
any kind of grass or foliage at ground level, the auras would clip through them.

For this, we took advantage of the fixed camera angle. We asked the effect artists
to move the origin point for the auras off the ground toward the camera, and we
rendered them testing against the same stencil that characters and items would
draw with. By moving the effect along the camera vector, its position on screen did
not change, and by ensuring a character always draws over it, it guarantees that the
aura still appears to be at the character’s feet, without clipping with grass and
foliage.

Speaking of grass… it tends to get in the way of items as well. For this, we cut a two-for-
one deal with visual fidelity that serviced important gameplay elements. We render out
force maps on grass that are affected by characters, items, and objects which are then
used during grass rendering to affect the bend of the grass blades. Blades that fall in the
same location as a character’s feet, items, or objects placed on the ground will
essentially flatten out and prevent clipping with the object. Plus it’s a cool detail to run
around and see the grass deform.

Now really the biggest thing in Diablo II is the darkness, and this is where a lot of
our attention went. As part of our physically based renderer, we were using
image-based lighting as a global illumination solution. The real issue with
modern rendering is that the simulation of bounce lighting in enclosed spaces will
mean that even a single light source in that space will provide some amount of
illumination to the rest of the surrounding environment.

In Diablo II, the darkness in dungeons beyond the player’s light is total. Unless a
monster has a light as well, you will not be able to see anything beyond that light
falloff. Light and sight give information. This meant that in order to maintain this
behavior in Resurrected, we needed to break the physicality of typical light.

In the absense of something to suppress light in those same areas, you get this. It
becomes wayyy more advantageous to play the game in Resurrected mode – you can
see everything!

This is something that no other game out there really needs, so it was something
convenient for us to solve in engineering without art needing to work around some
existing engine behavior.

The system we came up with we called global attenuation. An extra rendering pass
uses light data and depth information to render out a fullscreen buffer that describes
the influence and extent of any punctual light source in the scene.

This global attenuation mask is multiplied over lighting in order to suppress the
influence of ambient light in those areas that were not lit by a punctual light
source, meaning that if any area had no light sources reaching it, it would be
completely dark.

Nearly every secondary lighting element in the game is affected by global attenuation in
order to achieve these pitch dark areas.

In the case of character lighting rigs, it turns full lit monsters like this…

Into much more intimidating looking monsters emerging from the darkness.

And it’s a pretty close match to the original game, so we were really happy with this.

There’s one more thing to talk about that I think is worth mentioning. Remember this
diagram of the software that I showed earlier? The software layout can also be read as
a flow chart for how a frame of the game unfolds.

The frame starts with all the original game logic, sprite rendering included, then goes on
to translating gameplay elements into 3D, and finally renders the 3D scene.

Under the hood at all times, the original game is still rendering since the cost is negligible
(ok, well, there are some shortcuts we take but for the most part we can consider it
negligible).

And then the 3D graphics just draw right over it. Which gives us this unique opportunity
to decide at the end of the frame which version to show you. And switching between
them is as simple…

… as a fade.

This is the code that does that. Now, I show this line because it’s one line of code that
creates the effect, combined with the opportunistic software structure that made it
possible. And, when I advocated to have this feature in the game, I knew that it would
be this nice little addition but I couldn’t imagine just what the reaction would be. When
we first put this in, the reaction internally was pure joy. I laughed, because when you
think about it as an engineer, this is so simple. I thought to myself, of the many more
technically challenging things we’ve put into this engine throughout this project, it’s a
single lerp function that’s evoking one of the most excitable reactions from the entire
team.

And it wasn’t just the team. The whole internet found this feature to be incredibly fun.
Kind internet strangers, streamers, and journalists alike got a lot of mileage out of it, at
times being pulled away from playing the game and just walking around, zooming in, and
switching back and forth between old and new graphics to compare what the modern
interpretation looked like.

Courtesy of: Reddit, https://www.dexerto.com/diablo/diablo-2-resurrected-how-to-swap-
between-modern-legacy-graphics-1646984/
https://www.gameinformer.com/2021/04/09/instant-swap-with-diablo-ii-resurrected-
graphics-is-nostalgic-magic , Blizzard Forums

The lesson from this being even the smallest features can have the biggest impact. I
also think that another reason this feature was so successful was the way that it helped
promote the nostalgia that the game attempts to evoke. And, in the same vein, it backs
up our claim about the original engine running under the hood. The legacy toggle is
always there as a reminder that it’s the exact same game that you played 20 years ago,
but with a facelift.

So coming out of this, what did we learn? Honestly, mayyybe don’t try to build an engine
from scratch. It’s a huge undertaking, larger than it always first appears, and while it can
offer you lots of opportunity to tailor your solution specifically to the game you’re making,
it’s easy to take for granted the swaths of foundational technology required to make a
game that you’ll be missing up front.

Second, always be on the lookout for shortcuts that you have when making any game
technology. In our case, our most important advantage was the fixed gameplay camera.
We took advantage of this in different ways from terrain optimization, to skipping sky
rendering entirely, and solving many of the draw ordering issues that are difficult to pull
off when recreating a sprite game.

Third, breaking the rules is ok. We had to depart from strictly physically based lighting in
many instances, creating an amalgamation of lighting approaches in order to service
gameplay and bring the remaster closer to the look and feel of the original.

And lastly, the devil is in the details. Little things like simulating sprite drawing and
features like the legacy toggle are great examples of how the small details can really
improve the quality of a remaster, or any title for that matter.

The greatest bug ever.

