
Advanced Heightmap Compression
Using Deep Learning in

Dune: Awakening

1

ML modelling and deployment

Calle Lejdfors

R&D Director

Presenting for Antonio Martini, ML expert

Important: no images from the upcoming game, from here on out it’s “coder art” all
the way

2

36x compression

3

Background

• Huge map with multiple biomes of varying look and feel

• Lossy compression is acceptable, but must preserve salient
features

• Decompression in real-time on limited hardware resources
• PC and console

• Must integrate with workflow and Unreal Engine

Solution not tied to Unreal, just integrated

4

Why not use image compression?

• Image pixels have fixed size, color and point of view
• Heightfields can be observed from any viewpoint
• Materials, lighting model and light sources all contribute to visuals
• Contrast against background further amplifies artifacts
• Compression artifacts will be amplified by the above variables
• Perceptual metrics for image compression don’t transfer to heightfield

compression

5

Jpeg compression artifacts with on-disk size comparable to our approach

This is using jpeg export from Gimp at 90% quality resulting in ~33x compression rate
in on-disk size.
• Artifacts are largely related to quantization
• Also non-linear edge response due to perceptual model

6

• Use autoencoder

• Cluster data, train one encoder/decoder pair per cluster

• Results: 16x-36x compression vs Unreal Engine!
• 4x-9x from model

• 16bit quantization of latent code (2x)

• Runtime normal reconstruction (2x)

Our approach

7

• Convolutional autoencoder with fixed
encoder/decoder sizes
• Encoder is large (1.65M parameters)

• Decoder tiny and fast (1209 parameters)

• Selectable compression ratio
• 2x or 3x (to a side → 4x to 9x compression)

• All data available at the time of
compression
• No out-of-sample generalization or validation

data needed

Asymmetric autoencoder

Warning, encoder size not to scale

8

Encoder

F = compression ratio

We use LeakyRelu to avoid “dead neuron problem.” See reference section for paper
links

9

Decoder

F = compression ratio

10

• Uses depthwise separable
convolutions (SepConv2d) instead of
Conv2d
• ~100x fewer parameters: 103393 vs

1209
• Minimal loss of quality
• Key to real-time

• Uses upscaling rather than pixel shuffle
• Shuffling gives blocking artifacts [1,2,3]

• Use LeakyRelu to avoid “dead neuron
problem” that occurs with standard
Relu [4]

Decompressor details Depthwise convolution

Depthwise separable convolution

Images © https://www.paepper.com/blog/posts/depthwise-separable-convolutions-in-
pytorch/ Used with permission.

11

• Data partitioned by biome name

• 2 possible clusters per biome
• Smooth or step-like

• Enable us to deal with large step-
like gradients

• Greatly reduces ringing artifacts for
steep terrain

• Normalization: height data is
converted in [0-1] range

• Training data use random
sampling of 64x64 patches

Data pre-processing
and clustering

12

• 3 terms in decreasing order of importance
• Height loss
• Edge loss
• Gradient loss

• The Canny edge loss 𝐶𝐿 crucial to preserve sharp creases and to
prevent over-smoothing
• Measures the difference of edge intensities between target and prediction
• Calculated by thresholding and blurring the Canny edge magnitude map for

both target and prediction (see right)

• Weighting constants 𝛼 and 𝛽 determined by observation

Loss Function
Loss = 𝐻 − ෡𝐻 +

Input heighfield

Canny edge map

Binarized edge map

Canny loss input

α𝐶𝐿 𝐻 − ෡𝐻 + 𝛼 = 1.6

β ∇𝑥𝐻 − ∇𝑥 ෡𝐻 + ∇𝑦𝐻 − ∇𝑦 ෡𝐻 𝛽 = 0.03

We use Kornia for all image operations. See kornia.filters.canny

13

Ringing artifacts caused by steep gradients

Ringing artifacts coming in from emphasizing edge preservation in the loss function
when we have step-like landscapes.

14

Artifacts reduced using 3x3 median filtering (optional)

15

• Getting PyTorch models running outside of Python not trivial
• PyTorch C++ libs are huge with many dependencies

• No direct support for consoles

• Alternative – use ONNX intermediary format
• Model Interoperability format w/ PyTorch export functionality

• Evaluated 2 ONNX runtimes
• ONNX Runtime

• Excellent feature set and reasonable performance - De facto reference implementation

• Large, complex codebase w/ heavy runtime (dependencies, allocation patterns, …)

• NCNN (github.com/Tencent/ncnn)
• High performance and light codebase – targeted at phone deployment

• Limited ONNX support (opset 10, not all operators, …)

Model deployment

16

• Internally developed by the Production R&D
team

• ONNX to C++ compiler
• Generates a single function per model

• Zero runtime allocations (uses scratch pad)

• Supports most commonly used operators, easy to
extend with new operators

• Very light runtime with no additional
dependencies

• Combination of Eigen and custom tensors and
operators

• Supports reasonable compiler transformations
• Tensor layout swizzling, constant/weight folding,

pattern-based operator rewriting/fusion, dead
code/data elimination, …

Our deployment
solution - SeMLa

ONNX
Runtime SeMLa

Speed-
up

Heightfield 9.20ms 5.54ms 166%

Model 1 28.44us 4.41us 645%

Model 2 215.8us 4.73us 4560%

Timings from PS5 devkit, single CPU, single thread

Photo © Visit Stockholm - https://www.visitstockholm.com/eat-drink/cafes/fat-tuesday/

17

Engine Integration
Clemens Rögner
Senior R&D Programmer

18

• Must integrate with existing workflow
• Setup, editor functionality, streaming systems, …

• Procedural generation of heightfields & asset placement

• Manual tweaking and editing

• ML model being lossy & convolutional…
• Did not play nice with native UE

Challenges

Reusing the existing functionality also means it is easier for people to pick up the
system
It is important that our integration works with the existing in-engine and external
tools, so work can be done efficiently
To enable non-Unreal support, we put our model execution code into a separate libs
with weights embedded

19

• Encoding/Decoding is
handled at the BulkData

• Using Custom Texture
Class would lead to:
• Difficult integration of new UE

versions

• Would need to reimplement
support for editing, tools, etc.

Unreal Engine
Landscape overview

Landscape Comp.

Texture

Landscape Actor

BulkData

0011101011010…

BulkData+

The illustration on the right is a simplified view of the system.
Implementing our system at the BulkData-Level all the other systems just work with
the (de-)compressed data, EXCEPT the editing. It is also the path of least effort for us.

20

• UE heightmap format: RGBA8
• Normals

• derived from Height

• Borders
• 1 texel shared with neighbors

heightmap

• Sections
• Duplicate texels inside the

heightmap
• Used for better LOD-ing

Unreal Engine –
Heightmap details

Height

Normal

Border

Section Seams

R

G

B

A

The last three “meta”-aspects of the heightmap texture all caused us difficulties
during our integration (due to the interaction with the ML-model)
Unlike what the editor options for landscape suggest, there can be more than 2x2
section on one texture

21

Process (Initial)

Original
Heightmap

Decompressed
Heightmap

Latent Representation

Median
Filter

(optional)

FP16
Cast

FP32
Cast

ENCODER

DECODER

Editor

In-Game & Preview

Subset of Mips
compressed

?

?

We have several options for compressing mips at different rates:
• 2x for all mips for areas where quality is more important than compression rate
• 3x for all mips for areas where compression rate is more important than quality
• 2x for the lowest mip and 3x for all following to give a good mixture of both

22

Engine Integration - Borders

Artifacts due to border discontinuities

23

• Problem
• Encoding & Decoding adjacent tiles does not give the same border values
• Due to convolutions in the model

• Solution
• Adjacent tiles agree on the border values (average)
• Stored along latent representation & reconstructed when decoding

Borders

Filter result
Tile 1

Filter result
Tile 2

≠

The problem can be summed up via: a filter with one input does not give the same
results as a filter with another input

24

Reconstructed Border values

25

Seams due to compressing line of duplicate values

26

• Problem:
• UE splits the texture maps into sections with duplicate texel values along the section

seams
• Seams with duplicate values cannot be accurately compressed as is

• Solution: remove seams on encoding, reconstruct them when decoding

Sections

Convolution “spreads”
the duplicate values

Section

R

G

B

A

Again, we have a problem where the design of the ML (specifically convolutions)
affects the integration into an already existing system in curious ways

27

Removing and reconstructing section seams

28

• Problem: we don’t encode normal vectors, just heights
• UE calculates normal vectors by averaging face normals of the surrounding

3x3 neighborhood
• Solution : Store one more pixel outside the texture & calculate normal

vectors at decompression -> additional 2x compression

Normal Vectors

Height

NormalPoints needed to
calculate vertex
normal

Additional Border
needed

Compared to what unreal does, calculating the normal vectors during decoding gives
us an additional 2x compression rate

29

Process (Finalized)

Original
Heightmap

Collapse
Sections

Decompressed
Heightmap

Reconstruct
Sections

Extract
Borders

Reconstruct
Borders

Latent Representation

Encoder

Median
Filter

(optional)

FP16
Cast

FP32
Cast

ENCODER

DECODER

Decoder

Calculate
Normals

Editor

In-Game & Preview

Those are the logical steps that happen, disregarding obvious optimizations

The resulting process ended up a bit more complex than initially anticipated

30

• Problem:
• Lossy compression means

different height values
• Objects, Waypoints, etc. Appear

to be floating / sunk-in

• Placement of assets must use
compressed data

Lossy Compression

Everybody working on the levels needs to be aware of the lossy compression
Side note: Editing is only supported on original data

31

Memory & Runtime Performance

256x256 component Time(ms)

Model 5.7

Reconstruct normal 1.9

Median filter (optional) 2.6

Total (w/ median filter) 8.4/11

Timings from PS5 devkit, single CPU, single thread.
Decompression time does not vary significantly with
compression rate

4km x 4km Ratio MBytes Diff (MB)

Original 80

Compressed

2x 13 67

3x 7.5 72.5

2x / 3x 11.9 68.1

Memory statistics taken from Unreal Engine on a map consisting
only of a 4km x 4km landscape with 256x256 components

32

Questions?

33

1. W. Shi, et al., “Real-Time Single Image and Video Super-Resolution
Using an Efficient Sub-Pixel Convolutional Neural Network,” in
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1874-1883.

2. A Aitken, et al., “Checkerboard artifact free sub-pixel convolution:
A note on sub-pixel convolution, resize convolution and
convolution resize,” in arXiv 2017

3. A. Odena, et al., "Deconvolution and Checkerboard Artifacts,” in
Distill 2016, http://distill.pub/2016/deconv-checkerboard

4. L. Lu, et al., “Dying ReLU and Initialization: Theory and Numerical
Examples,” 2020 Communications in Computational Physics. 28.
1671-1706

References

34

• The model was trained with batch size 128 and the Adam
optimizer using a reduce-on-plateau learning rate scheduler
with a LR starting value of 0.001.

• For a 1024x1024 tile, we sample 16384 64x64 patches from
random locations.

• We use Kornia (https://github.com/kornia/kornia) for all
differentiable image operations. See kornia.filters.canny in
particular.

• LeakyRelu coefficient is 0.2 in all cases.

Training and model details

35

https://github.com/kornia/kornia

	ML inference
	Slide 1: Advanced Heightmap Compression Using Deep Learning in Dune: Awakening
	Slide 2: ML modelling and deployment
	Slide 3
	Slide 4: Background
	Slide 5
	Slide 6
	Slide 7: Our approach
	Slide 8: Asymmetric autoencoder
	Slide 9: Encoder
	Slide 10: Decoder
	Slide 11: Decompressor details
	Slide 12: Data pre-processing and clustering
	Slide 13: Loss Function
	Slide 14
	Slide 15:
	Slide 16: Model deployment
	Slide 17: Our deployment solution - SeMLa
	Slide 18: Engine Integration
	Slide 19: Challenges
	Slide 20: Unreal Engine Landscape overview
	Slide 21: Unreal Engine – Heightmap details
	Slide 22: Process (Initial)
	Slide 23: Engine Integration - Borders
	Slide 24: Borders
	Slide 25
	Slide 26
	Slide 27: Sections
	Slide 28
	Slide 29: Normal Vectors
	Slide 30: Process (Finalized)
	Slide 31: Lossy Compression
	Slide 32: Memory & Runtime Performance
	Slide 33: Questions?
	Slide 34: References
	Slide 35: Training and model details

