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ML modelling and deployment

Calle Lejdfors

R&D Director

Presenting for Antonio Martini, ML expert

Important: no images from the upcoming game, from here on out it’s “coder art” all 
the way
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36x compression
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Background

• Huge map with multiple biomes of varying look and feel 

• Lossy compression is acceptable, but must preserve salient 
features

• Decompression in real-time on limited hardware resources
• PC and console

• Must integrate with workflow and Unreal Engine

Solution not tied to Unreal, just integrated
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Why not use image compression?

• Image pixels have fixed size, color and point of view
• Heightfields can be observed from any viewpoint
• Materials, lighting model and light sources all contribute to visuals
• Contrast against background further amplifies artifacts
• Compression artifacts will be amplified by the above variables
• Perceptual metrics for image compression don’t transfer to heightfield 

compression
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Jpeg compression artifacts with on-disk size comparable to our approach

This is using jpeg export from Gimp at 90% quality resulting in ~33x compression rate 
in on-disk size. 
• Artifacts are largely related to quantization
• Also non-linear edge response due to perceptual model
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• Use autoencoder

• Cluster data, train one encoder/decoder pair per cluster

• Results: 16x-36x compression vs Unreal Engine!
• 4x-9x from model

• 16bit quantization of latent code (2x)

• Runtime normal reconstruction (2x)

Our approach
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• Convolutional autoencoder with fixed 
encoder/decoder sizes
• Encoder is large (1.65M parameters)

• Decoder tiny and fast (1209 parameters)

• Selectable compression ratio 
• 2x or 3x (to a side → 4x to 9x compression)

• All data available at the time of 
compression
• No out-of-sample generalization or validation 

data needed

Asymmetric autoencoder

Warning, encoder size not to scale
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Encoder

F = compression ratio

We use LeakyRelu to avoid “dead neuron problem.” See reference section for paper 
links
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Decoder

F = compression ratio
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• Uses depthwise separable 
convolutions (SepConv2d) instead of 
Conv2d
• ~100x fewer parameters: 103393 vs 

1209
• Minimal loss of quality
• Key to real-time

• Uses upscaling rather than pixel shuffle
• Shuffling gives blocking artifacts [1,2,3]

• Use LeakyRelu to avoid “dead neuron 
problem” that occurs with standard 
Relu [4]

Decompressor details Depthwise convolution

Depthwise separable convolution

Images © https://www.paepper.com/blog/posts/depthwise-separable-convolutions-in-
pytorch/ Used with permission.
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• Data partitioned by biome name 

• 2 possible clusters per biome
• Smooth or step-like

• Enable us to deal with large step-
like gradients

• Greatly reduces ringing artifacts for 
steep terrain 

• Normalization: height data is 
converted in [0-1] range

• Training data use random 
sampling of 64x64 patches

Data pre-processing 
and clustering
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• 3 terms in decreasing order of importance
• Height loss
• Edge loss
• Gradient loss

• The Canny edge loss 𝐶𝐿 crucial to preserve sharp creases and to 
prevent over-smoothing 
• Measures the difference of edge intensities between target and prediction
• Calculated by thresholding and blurring the Canny edge magnitude map for 

both target and prediction (see right)

• Weighting constants 𝛼 and 𝛽 determined by observation

Loss Function
Loss = 𝐻 − ෡𝐻 +

Input heighfield

Canny edge map

Binarized edge map 

Canny loss input

α𝐶𝐿 𝐻 − ෡𝐻 + 𝛼 = 1.6

β ∇𝑥𝐻 − ∇𝑥 ෡𝐻 + ∇𝑦𝐻 − ∇𝑦 ෡𝐻 𝛽 = 0.03 

We use Kornia for all image operations. See kornia.filters.canny
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Ringing artifacts caused by steep gradients

Ringing artifacts coming in from emphasizing edge preservation in the loss function 
when we have step-like landscapes.
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Artifacts reduced using 3x3 median filtering (optional)
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• Getting PyTorch models running outside of Python not trivial
• PyTorch C++ libs are huge with many dependencies

• No direct support for consoles

• Alternative – use ONNX intermediary format
• Model Interoperability format w/ PyTorch export functionality

• Evaluated 2 ONNX runtimes
• ONNX Runtime 

• Excellent feature set and reasonable performance - De facto reference implementation

• Large, complex codebase w/ heavy runtime (dependencies, allocation patterns, …)

• NCNN (github.com/Tencent/ncnn)
• High performance and light codebase – targeted at phone deployment 

• Limited ONNX support (opset 10, not all operators, …)

Model deployment
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• Internally developed by the Production R&D 
team

• ONNX to C++ compiler
• Generates a single function per model

• Zero runtime allocations (uses scratch pad)

• Supports most commonly used operators, easy to 
extend with new operators

• Very light runtime with no additional 
dependencies

• Combination of Eigen and custom tensors and 
operators

• Supports reasonable compiler transformations
• Tensor layout swizzling, constant/weight folding, 

pattern-based operator rewriting/fusion, dead 
code/data elimination, …

Our deployment 
solution - SeMLa

ONNX 
Runtime SeMLa

Speed-
up

Heightfield 9.20ms 5.54ms 166%

Model 1 28.44us 4.41us 645%

Model 2 215.8us 4.73us 4560%

Timings from PS5 devkit, single CPU, single thread

Photo © Visit Stockholm - https://www.visitstockholm.com/eat-drink/cafes/fat-tuesday/
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Engine Integration
Clemens Rögner
Senior R&D Programmer
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• Must integrate with existing workflow
• Setup, editor functionality, streaming systems, …

• Procedural generation of heightfields & asset placement

• Manual tweaking and editing

• ML model being lossy & convolutional…
• Did not play nice with native UE

Challenges

Reusing the existing functionality also means it is easier for people to pick up the 
system
It is important that our integration works with the existing in-engine and external 
tools, so work can be done efficiently
To enable non-Unreal support, we put our model execution code into a separate libs 
with weights embedded
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• Encoding/Decoding is 
handled at the BulkData

• Using Custom Texture 
Class would lead to:
• Difficult integration of new UE 

versions

• Would need to reimplement 
support for editing, tools, etc.

Unreal Engine 
Landscape overview

Landscape Comp.

Texture

Landscape Actor

BulkData

0011101011010…

BulkData+

The illustration on the right is a simplified view of the system. 
Implementing our system at the BulkData-Level all the other systems just work with 
the (de-)compressed data, EXCEPT the editing. It is also the path of least effort for us.
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• UE heightmap format: RGBA8
• Normals

• derived from Height

• Borders
• 1 texel shared with neighbors 

heightmap

• Sections
• Duplicate texels inside the 

heightmap
• Used for better LOD-ing

Unreal Engine –
Heightmap details

Height

Normal

Border

Section Seams

R

G

B

A

The last three “meta”-aspects of the heightmap texture all caused us difficulties 
during our integration (due to the interaction with the ML-model)
Unlike what the editor options for landscape suggest, there can be more than 2x2 
section on one texture
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Process (Initial)

Original 
Heightmap

Decompressed 
Heightmap

Latent Representation

Median 
Filter 

(optional)

FP16 
Cast

FP32 
Cast

ENCODER

DECODER

Editor

In-Game & Preview

Subset of Mips
compressed

?

?

We have several options for compressing mips at different rates:
• 2x for all mips for areas where quality is  more important than compression rate
• 3x for all mips for areas where compression rate is more important than quality
• 2x for the lowest mip and 3x for all following to give a good mixture of both
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Engine Integration - Borders

Artifacts due to border discontinuities 
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• Problem
• Encoding & Decoding adjacent tiles does not give the same border values
• Due to convolutions in the model

• Solution
• Adjacent tiles agree on the border values (average)
• Stored along latent representation & reconstructed when decoding

Borders

Filter result 
Tile 1

Filter result 
Tile 2

≠

The problem can be summed up via: a filter with one input does not give the same 
results as a filter with another input
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Reconstructed Border values
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Seams due to compressing line of duplicate values
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• Problem:
• UE splits the texture maps into sections with duplicate texel values along the section 

seams
• Seams with duplicate values cannot be accurately compressed as is

• Solution: remove seams on encoding, reconstruct them when decoding

Sections

Convolution “spreads” 
the duplicate values

Section

R

G

B

A

Again, we have a problem where the design of the ML (specifically convolutions) 
affects the integration into an already existing system in curious ways
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Removing and reconstructing section seams
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• Problem: we don’t encode normal vectors, just heights
• UE calculates normal vectors by averaging face normals of the surrounding 

3x3 neighborhood
• Solution : Store one more pixel outside the texture & calculate normal 

vectors at decompression -> additional 2x compression

Normal Vectors

Height

NormalPoints needed to 
calculate vertex 
normal

Additional Border 
needed

Compared to what unreal does, calculating the normal vectors during decoding gives 
us an additional 2x compression rate
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Process (Finalized)

Original 
Heightmap

Collapse
Sections

Decompressed 
Heightmap

Reconstruct
Sections

Extract
Borders

Reconstruct
Borders

Latent Representation

Encoder

Median 
Filter 

(optional)

FP16 
Cast

FP32 
Cast

ENCODER

DECODER

Decoder

Calculate
Normals

Editor

In-Game & Preview

Those are the logical steps that happen, disregarding obvious optimizations

The resulting process ended up a bit more complex than initially anticipated
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• Problem:
• Lossy compression means 

different height values
• Objects, Waypoints, etc. Appear 

to be floating / sunk-in

• Placement of assets must use 
compressed data

Lossy Compression

Everybody working on the levels needs to be aware of the lossy compression
Side note: Editing is only supported on original data
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Memory & Runtime Performance

256x256 component Time(ms)

Model 5.7

Reconstruct normal 1.9

Median filter (optional) 2.6

Total (w/ median filter) 8.4/11

Timings from PS5 devkit, single CPU, single thread. 
Decompression time does not vary significantly with 
compression rate

4km x 4km Ratio MBytes Diff (MB)

Original 80

Compressed

2x 13 67

3x 7.5 72.5

2x / 3x 11.9 68.1

Memory statistics taken from Unreal Engine on a map consisting 
only of a 4km x 4km landscape with 256x256 components
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Questions?
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• The model was trained with batch size 128 and the Adam 
optimizer using a reduce-on-plateau learning rate scheduler 
with a LR starting value of 0.001. 

• For a 1024x1024 tile, we sample 16384 64x64 patches from 
random locations.

• We use Kornia (https://github.com/kornia/kornia) for all 
differentiable image operations. See kornia.filters.canny in 
particular.

• LeakyRelu coefficient is 0.2 in all cases.

Training and model details
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https://github.com/kornia/kornia
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