
Creating Realistic
Facial Motion for The
Quarry

Aruna Inversin - Creative Director & VFX Supervisor
Peter Rabel - Pipeline Supervisor
Rickey Cloudsdale - Facial Rigging Supervisor

Presenter Notes
Presentation Notes
Good Morning! Just a couple housekeeping items, like a movie theatre, please silence your phones.

My name is Aruna, I am a Creative Director and VFX Supervisor for New Media & Experiential Projects at Digital Domain. Our teams work on content and creative that is outside the traditional 2D media deliverables of feature films, episodics and commercials, which means our focus is on real-time media and non-traditional asset deliveries such as modelling and rigging, character animation, and look development.

Joining me today are my colleagues, Peter Rabel, our pipeline supervisor, and Rickey Cloudsdale, our facial rigging supervisor. Together we’ll be talking about how we created realistic real-time facial emotion from over 30 hours of motion capture performances and how we kept track of it all! I’ll start with a quick production summary of the show, and then Rickey will dive into the challenges of facial performances, and Peter will follow with solutions to this challenge of rendering and managing the data.

Presenter Notes
Presentation Notes
A core strength of Digital Domain is the high standard of our work. One of our aims is to push the boundaries of these cinematic visuals in games. Part of this involves character animation, specifically facial animation. We can represent an actor's performance by mimicking the emotions captured from the motion capture stage and conveying that emotion on to a compelling character. Here are some film examples, clockwise from the top left, The Curious Case of Benjamin Button in 2008, Ready Player One and Avengers : Infinity War in 2018, and Morbius in 2022, All these films started with the facial capture of the actor underneath, and based on the character, may have been animated to the performance you see on film.

Presenter Notes
Presentation Notes
Our facial technology, called Masquerade, was originally used to solve a character like Thanos. For reference, his performance (like the one seen here) comprised about 29 minutes of Avengers: Infinity War.

Side trivia: These 29 minutes are more than the other characters in that movie, with the next up being Gamora at 19 minutes.

This in-house facial capture system was rebuilt from the ground up as Masquerade 2.0 to bring high quality facial animation to episodics, commercials, and now, games. It produces high quality fidelity facial animation at unprecedented speed and with less initial setup, without limiting actors’ on-set movement. This freedom has helped us leverage this technology for real-time projects.

Presenter Notes
Presentation Notes
Since it’s release, The Quarry has received numerous accolades Over the past year we’ve been on a number of top ten lists and nominated and won some awards. Next week, Siobhan Williams who plays Laura in the game, is up for a Bafta.

All of these character performances come from our actors. The expressiveness and unique animation seen in our film projects comes with a handicap; time. Because of the complexities of the human face, the facial shapes that drive our dialog and emotions take time to render, and this required a short test to validate facial performances in real-time.

How many here have played the quarry?

Spoilers ahead!

What you’ll see next is a brief performance that was captured in engine during the summer of 2019. This proof of concept with actor Grace Zabriskie (from horror fame), tested the compatibility of our pipeline as well as driving realistic human facial performance In Unreal Engine 4. Directly after this will be a quick behind the scenes featurette of our process.

Presenter Notes
Presentation Notes
One of our driving goals was the high bar on cinematic narrative and actor performance. These character are driven by the actors’ unique facial features and these emotions come through from their mocap performances. It was vital for Will Byles, the director of The Quarry, to be able to give our actors direction that would be readable by the game audience and convey this emotion.

So…. what’s involved in creating believable performances, and how did we set up our pipeline to be able to process and solve over 30 hours of facial performance?

● Phase 1 - Character Test
○ (~7 minutes)
○ Eliza - Jun 10, 2019

● Phase 2 - Prologue
○ (~108 minutes)
○ Laura, Max, Travis - Oct 24 and 25, 2019

● Phase 3 - Full Game Production
○ (~1824 minutes)
○ Majority of the cast HMC training and scanning - January 2020

Timeframe

Presenter Notes
Presentation Notes
This project was divided into three phases, a character test (which I just mentioned with Grace/Eliza), the vertical slice (the prologue), and the full mocap production.

CLICK
The Grace/Eliza seven-minute character test was to make sure that our pipelines worked together and iron out any inefficiencies of data transfer and methodology of importing characters and animations into engine.
�CLICK
Based on this feedback, we captured Phase 2: the Prologue, across two days in October of 2019 and delivered almost two hours of finished facial performance, eight weeks later. The prologue is comprises of the first 30 minutes of gameplay, where Laura and Max meet Travis Hackett.
�CLICK
Phase 3 began in January in 2020, and then this thing called COVID happened. After many discussions, we pushed forward and attempted a remote shoot in June of 2020. And.. (go to next slide)

● Phase 3 - Full Game Production 2020-2021
○ COVID!!!
○ Remote test shoot - June 2020
○ 1st Hackett Shoot (with on-site crew) - Nov 2020
○ 2nd Counselor shoot (with on-site crew) - January and February, 2021
○ 3rd Pickups (with on-site crew) - April and June 2021
○ Final delivery of all facial performances - Feb 2022
○ Game release - June 2022

Timeframe

Presenter Notes
Presentation Notes
This proved that remote shoots were not ideal. With all of the Supermassive team in the UK, our stage shoot in Los Angeles proved a disadvantage, with the beginning of the mocap shoot starting around 4pm and ending in the late hours of the following morning, typically 1 to 2am. Imagine directing actors through Zoom. However, we finally got everyone in person and on-location with the Hackett family (played by Lance Henriksen, Lin Shaye, Ethan Suplee, David Arquette and Ted Raimi) in November of 2020 and the full mocap shoot in Jan/Feb of 2021, with some pickups in April and June due to actor conflicts.

[SMG026] Minutes of Performance - Google Sheets

● Number of people per department
○ 140 artists
○ Biggest departments

■ Integration (Tracking & Solving) - 21
■ Technical Directors - 14
■ Model - 11
■ Rig - 11

● Compute resources & time required
○ ~250 million frames processed per ~32 hours of facial performance
○ ~112,000 artist hours
○ ~16 million proc hours, but efficiencies reduced to ~10.5 million proc hours

● Manual intervention
○ 11 animators to fix things that Machine Learning couldn’t figure out
○ Only 26 out of nearly 4,500 mocap takes (0.5%) were adjusted with animators

which resulted in nearly 8,700 shots in the game!

Resources

Presenter Notes
Presentation Notes
In order to pull this off, we needed resources, of the human and machine kind!

There was a core group of people,
CLICK
Of around 140 artists, TDs, and production crew that worked on the show, with some of the biggest departments listed here. These 140 weren’t on during the entire production run, as some departments phased in during critical moments.

CLICK
There were a lot of frames processed as well,

Nearly a quarter billion frames processed for those 32 hours (this includes rendering all of our QC and validation passes)
Over a hundred thousand artist hours (nearly 53 years!)
And while everything ran in real-time on console, we still needed to solve and QC all these performances, with close to 11 million processor hours

CLICK
There wasn’t a lot of animation intervention, but we did need some

Our 11 animators covered a cumulative 30 days to fix items that Machine Learning couldn’t figure out. Like mentioned in the previous video, those 4,500 takes eventually became 8,700 shots in the game.

I’ll pass this over to Rickey, who will cover some of the facial processes that we use and discovered.

Masquerade 2.0

• HMC Markerless Tracking

• ML Marker Removal

• ML Feature Tracking

• HMC Marker Tracking

• Marker Cleanup

• Marker Uprez

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Hey I’m Rickey Cloudsdale, Facial Rigging Supervisor, and I will be covering the facial technologies used on the Quarry.
�Internal Facial technologies include:
�We have Head Mounted Camera Markerless Tracking through our software Bulleye-Handles: Best fits Blendshapes to a depth map from the HMC.
Next up there is ML Marker Removal using our internal CycleGAN: GAN to remove Markers from plates.
ML Feature Tracking leveraging our inhous Feature tracker for eyelids and iris, GazeML
HMC Marker Tracking is done using Bullseye-Markers: This is an automatic blob tracking for HMC plates.
Marker Cleanup is handled by Masquerade-Cleanup for Stabilization and Gapfilling of Marker Data.
Marker Uprez Infers hi resolution deformation from markers using Masquerade Uprez.
Direct Drive: Workflow for transfering of performances between meshes (going from actor to character).
Copycat : Our in house Non-Linear Blendshape solver for FACS Network
Chatterbox: Compressed representation of FACS for Realtime.
�Now to discuss how all these technologies work together and helped make The Quarry possible.

This project made complete use of Masquerade 2.0, our suite of tools currently used for offline capture to make the solving process as automatic as possible, which had to happen due to the scale of the project. We could not possibly go in and have to correct every shot in 30+ hours of capture. A large component of the automatization was in the area of tracking in both markers and features.
�
�

Masquerade 2.0

Presenter Notes
Presentation Notes
(How things connect)
Everything starts off with the HMC.

From there we can begin generating depth and normal renders.

These renders are to be used in 4D Tracking.

The 4D Tracking is used to provide training data for our HMC Marker Tracking.

Along with depth renders, there is also the generation of Markerless plates.

These are to be passed to our feature tracker for eyelids and gaze.

The feature track data gets converted into a similar format as the HMC Marker to allow both of these to be ingested into Masquerade to generate a hi res actor mesh.

This performance can then be transferred onto our character mesh

Then it can be solved to the FACS blendshapes allowing animation to pick it up.

CLICK
We can go the standard vfx pipeline,

CLICK
but also leveraging chatterbox our compressed facs representation, we are able to run in realtime in unreal.

• HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

On Set Shoot and Calibration

Presenter Notes
Presentation Notes
With the input to Masquerade 2.0 starting with the onset HMC capture it makes it one of the most important steps. Corruption or poor capture at this point will result in poor solving results.
�For the Quarry, the Techno-Props stereo head mounted camera (HMC) was used, shooting at 2k 60fps in IR. At the start of each shooting session there is a rigorous calibration process to help make certain we have the most robust camera model to produce the best results. Leveraging a grid to fill the frame in all angles to capture the most information possible for solving the intrinsics. We also use a found object during the calibration process to assure that model is producing accurate results.
�When setting the cameras up for the actor we want to have as much of the actors face in focus as possible, as well as making sure the face is framed away in both cameras to allow for full range of expressions. Even when placing the markers on the face there is a back and forth with the makeup artist to make sure that markers are on the ridges of the valleys of the folds to help capture all that great data.
�The 1st shoot we have is a tech shoot that is used for generating the hmc actor specific training data and preparing the asset for shot production. The performances for the tech shoot generally consist of ROMs for the face and eyes, as well Viseme performances given in a range of emotions. The idea is to try and cover as much as possible for multiple scenarios that could appear in the production.
�

• HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Depth/Normal Renders - AOVs

Presenter Notes
Presentation Notes
As soon as the data is brought online we can begin ingesting and processing the plates to step into our first piece of tooling, Bullseye-Handles. From the images we first extract rough scans from the head cams, using standard photogrammetry techniques, to render depth and normal maps out as AOVs, Arbitrary output variables. This allows us to store, and later extract, the positional data of each vertex from the camera.
�Bullseye-Handles will take 4d training data and a set of blendshapes and best fit them to an AOV of depth and normal map render from the HMC. The solver will try to stabilize the performance and provide a mesh that will be representative of the renders. ��

Jose Serra, Lucio Moser, David McLean, and Doug Roble. 2021. Simplified facial capture with head mounted cameras. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Talks (SIGGRAPH ’21 Talks), August 09-13, 2021. ACM, New York, NY, USA, 2 pages.

Bullseye Handles • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
The bullseye-handles process consists of a 4 core steps: setup, register, anchor, and track. Each step ingesting the previous step’s solve. The setup command is used for setting pathing information about the plates, AOVs, cameras, and mesh data.
�Register, as seen above, is a static non-rigid registration, traditionally a neutral pose that is as close as possible to the neutral for your model. Internally this is an iterative process where the solve will 1st rigidly align the mesh, then solve to the blendshapes, and rinse and repeat to user defined number of iterations. Register will produce a single frame alembic that best fits our mesh and blendshapes provided to the renders, along with a transform to position the mesh back to camera space. ��CLICK
The anchor step takes a set of frames that are flagged as similar to the registration and fits the registered cache geometry to the depth map while trying to keep consistent registration amongst the selected frames. This command will use optical flow between all the selected frames and minimize the error while trying to find blendshape weights and head transformation.
�CLICK
The final step, track, is using optical flow solving the frames in between the anchors resulting in a single cache that will best fit to the plates. Each of these steps also allow for 2d constraints on a per frame basis to really hone in the solve and make sure you are getting the results you want. This whole process is a bit timely processing wise, but while not optimal on a shot production workflow it is helpful for creating initial training data..
�Now that there is a consistent mesh provided by Bullseye-Handles a simple plate projection can happen on the initial registration frame. This can be used to properly bind markers to the mesh and write out an animated marker file, to be used for training in bullseye-markers, and giving us our neutral marker positions for the day. This new method of providing training from bullseye-handles helped remove the need of manually tracking frames and iterating on the training until enough frames have been provided to be robust enough for most performances. Now with marker training from Bullseye-Handles, we can move onto bullseye-markers
�

Lucio Moser, Mark Williams, Darren Hendler, and Doug Roble. 2018. High-quality, cost-effective facial motion capture pipeline with 3D Regression. In Proceedings of SIGGRAPH ’18
Talks. ACM, New York, NY, USA, 2 pages.

Bullseye Markers • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Bullseye-Markers will first produce a rough estimation of the markers placement based on training data, this can be seen on the right side plates,

CLICK
and then refines the tracking through blob detection and a series of checks and balances, with the final result being seen on the left. #
�This initial estimation is based on Cascaded Pose Regression. Given pairs of examples of images and 3D positions of tracked features, this tool learns how to locate the same features in unseen images. It can be used on plates where the actor has markers applied or not. Additionally this tool requires for each image sequence an associated 3D camera track file, so it knows how to sample the images from 3D positions. The 3D position training data does not need to be perfect as it also relies on blob tracking to snap the markers to the marker blobs on the actors face. During the training phase a greedy based algorithm grabs 300(N) samples creating a model with enough of a correlation to automatically produce 90-95% of the tracks for the day.
�After the initial estimation, we leverage optical flow across the entire frame range to connect blobs from consecutive frames to assign same IDs for connected ones for each camera. This also allows to connect blobs that separated in time due to things like occlusion. Then using optical flow between two cameras at each frame we check the blobs for the entire sequence and assign the same IDs for both cameras, reducing the work of the final job to correctly assign the blobs to the same markers.
�Each shoot day usually a new model is trained that is specific to that days marker layout. This can be achieved by leveraging the previous model on the new plates and cleaning up the track as needed, or by running Bullseye-Handles on the new set of the plates as done initially. The main point to drive home here is that an artist will not need to create training data manually from scratch. Generally on a per day basis a set of parameters are re-evaluated to get the optimal solves out of bullseye-markers. This includes things such as blob size to help make sure only make up markers are identified, and a bounding box for the area of the face to prune portions of the image that are not important.
�Once trained though you can evaluate the model using any input image sequence. The resulting 3D positions are exported in the same format used for training (C3D or alembic),and a static camera file (XCP/Agisoft-XML) is generated which can used to QC the results against the plates.
�Make notes of “Siggraph 2018 - High-quality, cost-effective facial motion capture pipeline with 3D Regression” and link/research footnote?
�

CycleGAN • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Rickey:
CycleGAN models have been curated to HMC footage to remove the marker make up from the plates allowing the use of same take in gazeML.
�Originally there were corresponding captures of markerless ROM and Viseme takes during the Tech Shoots to build a robust model that works well on the specific actors, but we have a generalized enough model at this point that we do not require corresponding markerless takes.
�

GazeML • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Rickey:
Now with markerless plates, we can infer the eyelid and gaze track from GazeML to have a cohesive performance with the rest of the face and markers.
�One of the areas that are lacking directly from the markers are the eyelids due to lack of coverage in the upper eyelid region, as well as there not being any information on the actual eye gaze. GazeML is used to help fill that gap as our feature tracker for the eyelid and iris. Originally the model had been trained on a large generic dataset and then furthered refined with HMC specific training data to help improve the overall quality when using HMC. On inference only a set of markerless plates are required to produce a solved feature track. The markerless plates are required as the markers can cause confusion for the features to track, but due to CycleGAN we able to insure all the animation is from the same source to not create any inconsistencies in the solve. These results can then combined with our hmc marker data to create a complete facial performance.

CLICK
The GazeML solve comes in the form of 2D coordinates but with everything being in the same HMC we are able to to take the distorted 2d points, undistort them, and then with a transform we get from our masquerade-cleanup, a tool discussed later, we can place the eye spheres in camera letting us do a projection to find the 3D placement for the lid and gaze markers. The eyelid marker data can then be fed into masquerade-uprez allowing for more accurate eyelid fidelity, and the gaze marker data can be used to drive the anim rig eye gaze.

Masquerade Cleanup • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Rickey:
Now that we have a bullseye-marker track, it’s time for masquerade cleanup. This will involve taking raw track from bullseye markers, which we can see as the initial set of markers, on the left. 1st the markers gets stabilized to our actor space, and then any missing data gets gapfilled which you can see in the red markers.
�The setup needed for masquerade cleanup is quite straightforward with setting up a yaml with the needed files for evaluation, which is just neutral markers and training data. This marker training data can come from our same 4D training data by simply attaching the markers to 4D mesh and storing out a marker tracked file. Similar to bullseye-markers this process is done in a per shoot basis due to placement changing for markers on each day.
�Stabilization and gapfilling process both rely on standard sklearn covariance modules as a way to best fit the input data to the training data. These are automatic processes that happen when running the evaluation with settings for gapfill to help push things more towards the training or more towards to the tracked marker input. These settings are configured on a show level, but can be tuned to sequence or specific shots.
�

Masquerade Cleanup - Stabilization • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Rickey:
One of the larger issues that needed to be addressed on the show were stabilization issues that arose during the later shoots with the extreme action scenes when running around and jumping. The main improvements from stabilization came from leveraging extra FACS information in the training data that was specifically for the markers stabilization as well as a weight mask for the specific markers to stabilize against. The main problem areas came from the forehead and how that motion interacts with the top of the helmet. The skin is often times just sliding around which can be a bit hard to represent inside of the training. Weighting some the markers allowed for much more stable results in action sequences without being overly detrimental. Using FACS also helps ensure that the data is very stabilized, and allows for easily creating new unique poses.

WPSD • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Before going to much further want to discuss WPSD or Weighted Pose-Space Deformation. In short it lets us store delta corrections for N number of examples based on edge strain of a low res mask called a feature graph.

This solver is used in various places throughout Masquerade 2.0. The setup consists of a feature graph used to calculate edge strain, neutral mesh, and base example mesh(es) with corrected example mesh(es). The edge strain at the neutral pose and base pose(s) is stored out with corresponding delta between the base and corrected example mesh(es). A trained WPSD model can be applied to any performance with a corresponding feature graph. Using an RBF solver the various target deltas are triggered based on the current feature graph edge strain. The main benefit of this workflow is the sparse nature of the needed frames to result in large overall gains.

Masquerade-Uprez relies on a WPSD Solver during the final stage where it is applying the actor details back to the high resolution mesh.

WPSDs are also used during the the Direct Drive process to help push the transfer towards any need corrections. The delta in these corrections could reduce or be removed altogether over time if the same performance is being used for training data in masquerade. ��

Lucio Moser, Darren Hendler, and Doug Roble. 2017. Masquerade: Fine-scale details for head-mounted camera motion capture data. In Proceedings of
SIGGRAPH ’17 Talks, Los Angeles, CA, USA, July 30 - August 03, 2017, 2 pages.

Masquerade Uprez • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Masquerade-uprez is our in-house software for inferring hi resolution deformations from a sparse marker set, with it we are able to drive the hi resolution topology directly with the cleaned up marker data from masquerade-cleanup and have all of that nice actor specific detail come through.
�(Details)
The training for upres is a bit more involved compared to the the masquerade-cleanup setup. It is caching out initial barycentric coordinates for binding data to be used in laplacian deformation as well as all the WPSD model information. This includes N number of training frames which are selected using a similar greedy based algorithm that was used during for CPR model with Bullseye-Markers, and all of the corresponding data needed for the WPSD model: edge strain, rbf weights, delta corrections. Like the other setups that require marker data as an input, this must be trained on a per shoot basis due to the change in marker placement.
�The uprez evaluation process utilizes three main steps internally to produce the high resolution mesh, with the last step relying on the training data for adding back in the actor specific details. The first step is a laplacian deformation of the actor mesh being directly driven by the 3d marker data. Followed up by smoothing the mesh to get rid of the artifacts from the laplacian and to provide a clean base on for the wpsds. The final step is the wpsd step which applies back the actor specific detail to the smoothed mesh. Having the WPSD model already trained allows for the process to only take minutes per shot instead the hour or so it takes to train initially.
�The masquerade-uprez results can then be applied to our character mesh using our direct drive process.�

Direct Drive • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Rickey:
Direct Drive is our process for deformation transfer on faces.
�A transfer rig is built to handle the deformation transfer from the masquerade asset to the character asset, and to generate the needed data for copycat, our in house blendshape solve. In the case of The Quarry there was a 1:1 vertex relation between the masquerade and character meshes, but this is not a requirement and we are able to rely on triangle correspondences or UVs as well. There is a standard UV set used on all face topologies which has a texture associated with it to quickly and easily show the flow and correspondences. This helps ensure there are now mis-alignments between the two topologies.
�Once the results are on the character mesh it is applied to a low resolution mask to be solved by copycat.
�

Copycat • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Rickey:
Copycat is our Nonlinear BlendShape Solver, and is used to apply animation solves directly to the FACS sliders.
�Copycat requires 3 main files before solving, a marker file of the blendshape deltas, a combos mapping file, and a slider mapping file. This is allows Copycat to understand the blendshape network and how the sliders map to the facs. All that is needed then is a live marker performance in scene to be solved. The projected iris data from GazeML earlier can be applied to the animation rig triggering the eye look around blendshape values based on rotation. These blendshape values can then be taken into account when solving the performance in Copycat. This helps distinguish between the eye look around animation and the rest of the animation. A delta is then calculated between the direct drive result and the copycat solve, and placed front of chain on the anim rig achieving a 1:1 result to the direct drive.
�Once animation has been applied to the rig any artist edits or augmentations can happen. As the result are being derived from the actor’s training data or Actor Specific FACS this can be rolled back into masquerade as extra training data. This results in all new solves being able to leverage more than just the original 4D training.
�With the animation on the FACS Rig , this data can now go into a standard vfx pipeline or can go into unreal as a fully functioning FACS rig.
�

Chatterbox • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Rickey:
Chatterbox is a node that drives a compressed representation of the FACS rig through a linear mapping. This allows us to have a full functioning facs rig in realtime inside of unreal.
�We will take the full FACS network and compress it down using Principal Component Analysis to achieve the optimal representation of the shapes. The main benefit of leveraging PCA shapes was a decreased shape count, while still keeping as much quality as possible. This was largely beneficial at the time of the start of The Quarry as we wanted to effectively represent the FACS network live inside of Unreal. Having the plugin in Unreal as well allows for live take over of the facial animation if needed for such thing as controlling eye movements and blinks or anything that can be represented from the FACS rig.

Chatterbox - Unreal • HMC

• Depth/Normals

• Bullseye Handles

• Bullseye Markers

• CycleGAN

• GazeML

• Masquerade

• Direct Drive

• Copycat

• Chatterbox

Presenter Notes
Presentation Notes
Here is an early example showing the live control inside of unreal.

You may have noticed slides with footnotes, these will take you to our publications for a deep dive into the individual technologies that can be accessed from the PDF in the vault.

I will hand you off to Peter to discuss the pipeline and the improvements that happened to help make the Quarry possible.

● Scale
● Adaptability
● Troubleshooting
● Rapid integration

Pipeline

Presenter Notes
Presentation Notes
Hello, I’m Peter Rabel and I’m here to talk about the pipeline we developed for The Quarry. Over the course of the project, we learned a number of lessons about
+ scale
+ adaptability
+ troubleshooting strategies and
+ how to integrate new technology into our workflows more rapidly.

Original Pipeline

● Basic pipeline after Infinity War

○ Limited resources

○ Low demand for automation

○ Hesitance to formalize changing

parts of the workflow

● Solid foundation

● Rudimentary front-end

○ Many stand-alone GUI’s

○ Step-by-step process

○ Sufficient for most features work

Presenter Notes
Presentation Notes
To better understand our pipeline journey, I’ll briefly highlight what we were starting from after our work on Infinity War, where the Masquerade 2.0 process was first production-proven.

+ The initial facial capture pipeline was pretty elementary. This was due mostly to three factors:
+ limited engineering resources
+ limited scale (Infinity War had about 29 minutes of capture to process, which fell well within the means of a simple pipeline)
and + hesitance to invest in locking down the process whilst R&D pushed relentlessly forward with new approaches.

+ The foundation of publishing, version control, dependency management, farm submission and QC rendering, was solid and a pretty standard implementation for something like this in our facility.

+ The shortcomings were primarily in automation and the front-end. The tooling consisted mostly of
+ stand-alone GUI’s for each step of the process. They amounted to forms for configuring inputs and settings, with some smarts to auto-populate fields based on other inputs and the state of our database.

+ Users had the option to daisy-chain the rest of the pipeline on submission with default settings only - mostly to accommodate an initial iteration from which to work. For the most part, artists would run one step at a time, so they had more control over settings for each step in the process.

+ This was sufficient when you had individual operators responsible for one or two steps, and artists to fine-tune the outputs.

+ Here you can see an example of one such interface. It’spretty simple, but it got the job done.

● Scale
○ Thanos - 29 minutes with 30 animators.
○ The Quarry - 1,933 minutes (7,732%) with 9*.

● Mantra
○ Automate everything
○ Work in bulk

● Rapid integration
○ Prototype
○ Testing and workflow conception
○ Pipeline development

● Big red button
● Layers of configuration

○ Encapsulated in a nested graph
○ Bulk interface

New Pipeline

Presenter Notes
Presentation Notes
+ Earlier, Aruna shared some statistics about the difference in scale between The Quarry and our typical magnitude of work on a feature film like Infinity War.

++ We had over 70 times the amount of data to process and we wanted to do it without any animators. In the end there were 26 takes that needed finessing by animation to hit the mark.

That comparison was an important one for the story of this project. We realized we needed to revamp the whole pipeline to be able to handle this class of workload. Without the typical luxury in the feature film world, of having a host of artists to finesse individual shots,

+ our mantra quickly became
+ “automate everything” and
+ “work in bulk”.
These are difficult asks when working in an active R&D environment, where the processes and IO requirements change rapidly.

+ The happy story for pipeline engineers is
+ for researchers to prototype new technology,
+ artists to test and develop their process for using it,
+ then finally for pipeline to make a product out of it for use at scale. The flexibility to continue iterating easily on both the technology and workflow in perpetuity was important to us.

+ One of the supervisors at the time said he wanted the interface to be just one big red button that would process everything on the show. While we ended up somewhere slightly more elaborate, I like to think that we didn’t miss the mark by far.

As Rickey illustrated, there are several steps to go from HMC plates to deliverable animation and when you get into the details, there are dozens more not significant enough to extol here.
+ The approach we took was to encapsulate layers of configuration
+ into a nested graph and encapsulate that graph
+ within a simplified bulk interface.

This is especially important when you consider not only the raw magnitude of data to process, but the quantity of iteration required. Over the years of this project's duration, the rigs or model assets underwent some form of change at times. Those events always triggered re-solving all of the performances for the characters.

Presenter Notes
Presentation Notes
The architecture of our underlying API is now also logically a graph. That both clarified its relationship with DDG, making plugin development very straightforward, and improved the maintainability and extensibility of the code base.

Presenter Notes
Presentation Notes
Now let's get into some more details about these systems.

At the time we began designing a new facial capture pipeline, the internal application DDG had been in development for some time and had seen limited use in other departments in the company. DDG is essentially a node-based visual programming interface for Python, similar to what you may be accustomed to with Houdini or Blueprints in Unreal Engine.

We decided to develop the pipeline as a Python API, with plugin wrappers for DDG, representing the pipeline as nodes in a graph.
This killed two birds for us out of the gate:
The user interface - as artists are well acquainted with working in graph-based tools.
Orchestration - DDG had a convenient interface for handling serialization, process management and integration with our render farm.

We exposed the pipeline to our more technical artists this way, enabling them to continue experimenting with different ways to process the data to achieve better results. It also provided pipeline developers the means to quickly swap out parts of the pipeline without much overhead, enabling rapid integration.

Presenter Notes
Presentation Notes
Here I have a contrived example for demonstration purposes, showing how one can quickly prototype new workflows. Users can drop down a script node, configure its inputs and outputs, wire it into place and write arbitrary Python code that can be tested immediately in the context of the greater pipeline. Later, their work can be formalize as new node types and templates for others to use.

http://drive.google.com/file/d/1wY0XoWAxbpz0nRgWDCIwdWTMqJZ3BnyA/view

Presenter Notes
Presentation Notes
This is what the graph looks like at a high level. Just one node to select the performances to process and one node to do the processing. By nesting the graph deeply, we control the interface for the end-users. The nodes can be configured at any level, but the deeper you go, the more technical and less abstract it becomes.

Presenter Notes
Presentation Notes
If we dive into the processing node…

http://drive.google.com/file/d/15qLi-zyejsmifGTiC-zG03L-8HPnDY5c/view

Presenter Notes
Presentation Notes
You can see what the high level processing graph looks like. This exposes the main operations Rickey described earlier. If a user wanted to tweak the settings for any given step, they would do so here.

Presenter Notes
Presentation Notes
I’ll dive in one more level…

Presenter Notes
Presentation Notes
Just to illustrate some of the complexity we encapsulate within those higher level nodes as you continue to dive deeper and deeper.

Presenter Notes
Presentation Notes
Of course, we would have been throttled by the artists if we just handed them a bunch of nodes and told them to wire up their own pipeline. We developed a simple interface we called PGB, Performance Graph Builder, that we could configure to generate graphs for any sub-section of the overall pipeline. This would become our big red button for processing the show. The user could select any number of HMC performances they wanted to process, specify which steps they wanted to run and it would generate a graph accordingly. From this tool, you could either generate a graph that you could then edit before submission, or just submit the processes directly to the farm without ever seeing a graph. That ended up being the primary mode of operation. Most of the time, users did not need to interact with the graph.

Presenter Notes
Presentation Notes
Graphs could be produced for any sub-section of the overall graph to run only specific steps as desired. The steps presented in this interface ran in one of two modes - “generate” or “query”. Generate, to run or re-run a particular step to generate new data, or query, to re-use already generated results for a particular step downstream.

Once the plates, calibration and metadata have been ingested and the asset development complete, a single user could essentially hit the “I’m feeling lucky” button and submit the entire show to the farm. This would, however, be ill-advised. Burning the assignment loop in our farm software to the ground with the sheer quantity of enqueued jobs aside, we iterated throughout the production on what settings produced the best results by default. It was better to submit a few performances at a time early on to zero in on the configuration for each step that would bear the ripest fruit globally. After some iteration, larger batches of jobs would be run overnight or over the weekend, producing various QC renders to review the results.

http://drive.google.com/file/d/1rxTrQvrBTN1EEQN9VciVfJ3EWfAXvQtY/view

Presenter Notes
Presentation Notes
Our system does a remarkable job of capturing minute details in facial performances. That however, comes as a double-edged sword. It means that it is hyper-sensitive to small errors in calibration and stabilization. Minor issues had cascading effects that accumulated to bigger problems in the performance. That made it important to generate effective QC renders of each step in the process. When users would run a couple hundred performances over the weekend, if unsatisfactory results were produced, we needed the ability to trace the problems back to their source as quickly as possible.

This meant quite a few renders for every solved performance. That translates to more core hours and more disk to account for. Although we had limited pipeline engineering resources, it was worthwhile to invest our time into optimizing these QC’s.

Presenter Notes
Presentation Notes
A bonus of using this system that we did not consider up front, was that it made it much easier to debug certain classes of problems on failed processes.

Here we’ve updated our example from earlier to raise an exception. You can see that DDG clearly highlights errored nodes in red. You can simply dive down the red graph nodes to the lowest level to see the cause of the problem.

Presenter Notes
Presentation Notes
You can select the errored node to see the traceback in the lower-right log pane. So far, nothing out of the ordinary.

Presenter Notes
Presentation Notes
The real win is that we also get all of the resolved values of every node that executed successfully, including the inputs to the failed node.

We get this as a byproduct of DDG’s orchestration. It serializes all of these values to facilitate inter-process communication, allowing us to introspect every process upstream of the failure without explicitly logging every value as it’s resolved.

It’s similar to having a remote debugger connected to all of your processes at all times. No need for a pipeline engineer to take steps to reproduce an artists problem, when the state of the graph is serialized every step of the way.

In some cases, operators were able to troubleshoot problems themselves without support from the pipeline department.

Debugging

Avoiding
Failures

Presenter Notes
Presentation Notes
We frequently encountered some issues that caused jobs to fail. While DDG streamlined the process of debugging and rectifying errors, a cost is incurred by virtue of a process failing after submission.

A user might submit a hundred shots to solve overnight or over a weekend. If many of them fail relatively early on, they have wasted an evening or weekend of processing time and iteration, having to resubmit once the issue is resolved. Not to mention the core hours burned on our farm nodes for jobs that would need to be re-run.

These were sometimes simple problems that could easily be fixed, such as data having been taken offline that needed to be restored. That, in particular, was not an uncommon occurrence. The Quarry had a much longer lifespan than a typical Visual Effects project, so older data would frequently be archived to manage our active disk capacity.

Presenter Notes
Presentation Notes
To mitigate the farm and human resources expended on failed iterations, we developed a pre-flight check system for users to run before submission. This closely resembled a unit test runner that artists could use as an early-discovery system for problems before submitting lengthy batches of shots.

The lesson we took to heart here was essentially, “fail fast” becomes a more important design ethos at scale. We front-loaded all of the queries from various parts of the graph so we could quickly verify if the submissions were likely to succeed and fix any problems before we hit them.

This tool would provide succinct explanations for failures and offer instructions for how to rectify them.

Adaptation
● Asset-centric workflow

○ 3d deliverables
○ Production tracking

● Versionless files
○ Sidecar manifest files
○ Embedded UUID’s

● Frame count
○ Parallelize operations

■ Bullseye marker solve
■ CycleGAN marker removal
■ GazeML projection

○ Frame padding

● Windows-centric
○ Cross-platform testing
○ Deployment

Presenter Notes
Presentation Notes
I’ll leave you with a brief list of some details we encountered when adapting our VFX pipeline to a games project. We ran into a number of small, but unanticipated issues.

+ We needed to adapt our shot-centric world to an asset-centric system for games. No longer were we packaging renders as our final deliverables, but 3d assets and animation data directly. That had some effect on the semantics of our production tracking internally and required a new delivery toolset to be developed.

+ It was easiest for Supermassive to receive files with static versionless names, to update assets in the engine. While we did generate sidecar manifest JSON files with metadata and versioning information for our deliveries, that proved inconvenient to track on the client side. So we started embedding UUID’s into the files as well, so that we could cross-reference with our internal versions to enable troubleshooting.

+ The duration of each individual performance was also about an order of magnitude greater than what we would traditionally see in vfx. Shots in films are usually quite short, on the order of a couple hundred frames. Performances on The Quarry were in the thousands and in a few cases over ten thousand frames long. As a result, we needed to parallelize some of our longer processes, such as the Bullseye marker solve, markerless plate generation and GazeML projection, to solve memory issues and enable iteration in a reasonable amount of time. Amusingly this also caused some issues with insufficient frame padding in a number of places. The devil really is in the details.

+ It’s worth mentioning that the vast majority of VFX studios are very Linux-centric and DD is no exception. Our tools are prevailingly developed with only CentOS in mind. We do have a separate virtual production network that operates on windows, which is what we use on stage and to test products in Unreal. As a result, our tools needed to include cross-platform testing and had additional steps to deploy.

Now I’m going to hand you back to Aruna.

○ Solving 30+ hours of Performance Capture.
○ Acquisition of model data ahead of mocap shoots

to prepare motion capture.
○ Chatterbox QC Anim Tools in UE4.

What went well

Presenter Notes
Presentation Notes

Thanks Peter and Rickey! Let’s recap! So, what went well? Well, we succeeded in solving 30+ hours of varied mocap performances,

CLICK
like this extreme take of Zach (Jacob in the game) tackling a dummy on set. This is a result of accurate HMC stabilization, which allows our actors to perform on set without restrictions. I mean, you might break a head mounted camera or two, but you’ll get a good performance. Note: No HMCs were destroyed during filming.

CLICK
Since we scanned our actors prior to the mocap shoot, Supermassive was able to outfit the characters and they could see their performances on their versions within the game. This allowed greater feedback on set as the actors and director could talk about the ambiance and performances in the scene. A lit mocap stage is very different from the dark Hackett house.

CLICK
Our Chatterbox QC Tools enable us to review each of the performances independently before pushing into the game. It was important to review all shots/takes within Unreal to confirm that rigs and animations were correct, and having a breadcrumb trail of versions that we could doublecheck throughout the pipeline.
.

○ Brute Force
○ Over 1900 minutes of facial animation

○ Additional Actor Performances
○ Human emotion is important

○ Changing Rigs
○ More Rigs = More Trouble!

○ Machine and Human Interaction
○ Still need people!

Things we learned

Presenter Notes
Presentation Notes
So some important items we learned.

CLICK
Brute Force - You can’t animate by brute force 1,900 minutes of facial animation. You really need to have a method to track and automate a large number of processes and QC along the way, and fix items as globally as possible.

CLICK
Additional Actor Performances - in our original training set, we didn’t capture a large enough variation of human emotion, which involved going back into the rigs and adding facial shapes AFTER the initial model creations. This let to..

CLICK
Changing Rigs - Facial rigs changed constantly, and with 18 different character rigs, across different type of meshes for each of the various outfits that the characters were in. Ideally only one facial rig should be required per actor.

CLICK
Machine and Human Interaction - While a large number of our processes are aided by Machine Learning, artists are still required to make changes and tell the machine when things are wrong and also to start the machine.

○ More Actor Performances
○ Facial Fidelity

○ Optimization & Overhead
○ Characters on screen
○ Facial Shapes
○ Platform Delivery

○ Review in Game Context

Things to improve

Presenter Notes
Presentation Notes
Some things we are already improving, which include

More actor performances
Getting the full range of actor performances which are very important at the beginning of acquisition. It is important that the actor is in character when these takes are done.
NEXT SLIDE

Facial Fidelity
We only had 96 facial shapes for each character to represent all performances in the game. The eventual increase of this fidelity is a Venn Diagram of +1) game play optimization and overhead, +2) number of characters on screen +3) number of facial shapes, and of course, +4) platform delivery.
NEXT SLIDE

Review in Game Context
While our Chatterbox QC Tools allowed reviewing facial performances, they were very much Hall of Presidents style, that is, head in a jar. In future projects, seeing how lighting and texturing play with the facial work is just as important.

○ Markerless Tracking
○ Daily photogrammetric rig
○ Chatterbox 2.0

Future Work

Presenter Notes
Presentation Notes

Future Work
Some of our future work
NEXT SLIDE
includes the continued development of markerless, high fidelity, facial tracking. This shows great promise and is nearly ready for production.

NEXT SLIDE
We have also improved onset reconstruction and QC with a custom facial capture rig for daily photogrammetry, which will enable much more refined and accurate facial solving. Day to day correspondence over many shoot days is important.

NEXT SLIDE
We are also finalizing the development of Chatterbox 2.0, which is currently showing a nearly 10x speed improvement from Chatterbox 1! This will allow for both more characters and more nuance in actor performances!

END!

Aruna – inversin@d2.com
Peter – prabel@d2.com
Rickey – rickeyc@d2.com

RECRUITING@D2.COM – mention GDC2023 / The Quarry

WE ARE HIRING!

Presenter Notes
Presentation Notes
 We are hiring across multiple disciplines.

We have a litte time for some Q&A.

Like your favorite ride share service, please rate us five stars in the evaluation forms you receive, anything less, let us know in the comments how to improve!

Thank you!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49

