
AT GDC2023

MEET
LIGHTSPEED STUDIOS
March 20-24, 2023 | San Francisco, CA

Lead Technical Artist of UNDAWN,

LIGHTSPEED STUDIOS

Exploring the Technical Arts in the
Development of UNDAWN

March 20-24, 2023 | San Francisco, CA

Engine Team Lead,

LIGHTSPEED STUDIOS

Technical Arts in UNDAWN

March 20-24, 2023 | San Francisco, CA

Lead Technical Artist of UNDAWN,

LIGHTSPEED STUDIOS

Introduction

• UNDAWN is a next-generation MMORPG mobile game developed by LIGHTSPEED STUDIOS , powered by Unreal Engine 4 with SOC

(Survival, Open World, Crafting) as its core experience.

• Players can use a variety of firearms to experience a multitude of gameplay options and an engaging storyline in the open world.

This includes scavenging in abandoned cities, collecting and hunting in the wilderness, driving across the continent, searching for

surviving towns, competing for strongholds and settlement battles, and finding partners to survive.

Technical Arts
1. Ocean Simulation

2. Techniques for the Buildings

3. Vertex Magics in VFX

Ocean S imulat ionI

• Order-independent-transparency consumes a huge amount of bandwidth, causing the GPU to overheat.

• Tessendorf FFT is relatively expensive for mobile platforms and heavy for the CPU to simulate convincing buoyancy.

𝐷
→

𝑥
→
, 𝑡 = ෍

𝑘
→

−𝑖
𝑘
→

𝑘
ℎ
~

𝑘
→

, 𝑡 𝑒𝑥𝑝(𝑖𝑘
→

∙ 𝑥
→
)ℎ

~

𝑘, 𝑡 = ℎ0
~

𝑒𝑥𝑝 𝑖𝜔 𝑘 𝑡 + ℎ0
~ ∗

𝑒𝑥𝑝{−𝑖𝜔 𝑘 𝑡}

ℎ0
~

𝑘 = (𝜉𝑟+𝑖𝜉𝑖) 𝑃 𝑘 /2

𝜔2 𝑘 = 𝑔𝑘(1 + 𝑘2𝐿2)

Limitations on Mobile Devices

Tessellation doesn’t work on all targeted devices. Even on high-end mobile
devices such a feature is still a performance killer.

Limitations on Mobile Devices

• The ocean is expected to be compatible with all of our targeted devices, given that it is directly linked to the gameplay.

• We have allocated very limited CPU and GPU performance budgets for the ocean.

• Yet we still desire an ocean surface that is transparent.

Ocean Simulation in UNDAWN

• Utilize Projected Grid to avoid tessellation and CDLOD calculations.

• Use 4 Gerstner Waves in the Vertex Shader for significant wave displacements and buoyancy simulation.

• Use a 4-channel tiled noise texture for additional displacement details via VTF.

Ocean Simulation in UNDAWN

• OIT is totally beyond discussion.

• Double Pass works, but the water plane contains more than 30,000 vertices, taking up a large portion of the screen. We

cannot double the vertex shader nor overdraw.

• Since the mesh is always projected from the view space, the relative order of mesh primitives on the screen will never

change.

• If we ensure that the "lower" a primitive is on the screen, the smaller its primitive ID is and enable depth writing, we can

make sure that water pixels behind it will not pass the depth test.

• Although this is not a true "Transparency Sorting," it still gives satisfactory results.

Tricks on Transparency

Everyth ing went on smooth ly

UNTIL …

• The vertex density dramatically reduces as the distance increases.

• Based on parameters including FOV and etc. in UNDAWN, we have 50 vertices per meter around our character, yet that

number dramatically drops to 0.06 on the water plane 200 meters away.

Why Bumpy?

• Squeeze the vertices on Y direction to make sure
no vertex is clipped – make each and every vertex
into use.

• Introduce Virtual Camera to fix flickering under
grazing angles – When the camera shoots
horizontally it is unlikely to see the distant of
ocean anyway.

• Re-arrange vertex density on the water plane.

Solution to flickering

Ocean Simulation in UNDAWN

I thought that was a wrap

BUT …

• The ocean waves are supposed to be more
gentle on the shoreline.

• We used an orthogonal camera 50 meters
above the player and point it down to render
rocks and landscapes to the Overlook Depth
Texture.

• Determine the amplitude of waves by
comparing overlooking depth and the height of
water plane in Vertex Shader.

• Overlook Depth Texture is not updated per-
frame to save performance. It is also used by
rain-roof collision and snow footprints feature.

Overlook Depth for Amplitude attenuation

Techniques for the
Bui ld ings II

• There are PLENTY of buildings in the Lost
City of UNDAWN.

• Other environment props have already
occupied a large amount of GPU
performance.

• We had an extremely tight budget for
texture memory, triangles and draw calls
for buildings.

Challenges for Buildings

• Encode Vertex Color RGBA attributes of
meshes in binary for 16 material IDs.

• Map between Vertex Color and real UV
coordinates in Vertex Shader.

• Perform FMOD operation in Pixel Shader for
UV coordinates to complete tiling.

Solution – Tiling based on Atlas and Dynamic UV

• Supports texture reuse to reduce texture
memory consumption.

• The mapping relationship is stored in
Instance Buffer rather than Uniform Buffer
to support instancing to reduce draw calls.
(Same mesh, same atlas, different block
combinations)

• Supports tiling to reduce the number of
triangles.

Solution – Tiling based on Atlas and Dynamic UV

But no PAIN no ga in …

• The FMOD operation on UV coordinates should be accompanied by Mip levels derived from DDX&DDY.

• Use texture block padding to resolve Mip Seam problems.

• Calculating UV coordinates in Pixel Shader involves Dependent Texture Fetch which is bad for GPU cache and
texture-prefetch. Approximately 1% - 5% overhead could be introduced.

• Hence our pixel shader has relatively more instructions. However since UV tiling saves more than 30% of
primitives while a significant number of building pixels are occluded by foliage, we consider it a gain.

Problems and Explanations

• We optimized Interior Mapping Shader
instructions and our solution only needs 1
Box – Ray Intersection calculation.

• Perspective Projection Transformation is
simulated in Object Space.

• We use one single Perspective 2D Texture
for five walls rather than using a cubemap,
which further improves memory and
texture sampling performance on mobile
platforms.

Perspective Interior Mapping

• We did an extra plane-ray intersection to
support the middle layer, enhancing the
feeling of perspective and parallax.

• Finally, we implemented a front layer
based solely on Vertex UV, yielding effects
such as glass, decals, and curtains.

Extended Perspective Interior Mapping

That ’s enough for exter iors .
But what about

Interiors?

1. Rendering indoor environments presented even greater challenges.

2. UNDAWN features a dynamic TOD system, which means that the lighting environment changes constantly. As a

result, the baking solution must be able to adapt to these changes.

3. Using lightmaps could potentially consume a significant amount of texture memory. Therefore, we must carefully

balance visual quality and performance to ensure optimal results.

Challenges for Interior Baking

• A per-building baking solution
for optimized streaming.

• Bake Ambient, Indirect, AO and
artificial lighting separately.

• Combine the greyscale of those
lightmaps into 1 RGBA texture.

• The color is then calculated in
real-time based on dynamic
lighting in the scene.

Baking for Dynamic lighting – Dentro

AO Artificial Lighting for night

Baking for Dynamic lighting – Dentro

Indirect Lighting for Averaged Directional Light Ambient Lighting for Skylight

Baking for Dynamic lighting – Dentro

This conc ludes our Bu i ld ing

Technique, a BATTLE with

performance…

Vertex Magics in VFXIII

• Transforming multiple objects per frame is heavy on CPU for the mobile platform.

• Pre-bake all the transform data into mesh attributes and access that data in Vertex Shader.

• With the help of Pivot Painter, we can achieve many unique VFX for mobile games.

Pivot Painter for Transform

Pivot Painter for Transform

• Real-time destruction physics is too heavy for
mobile games.

• Simulate RBD Fracture and Rigid body physics
in Houdini.

• Pre-bake the transform information of each
fracture into Texture.

• Access the transform data of each frame in
Vertex Shader.

Rigid body Simulation based on VAT

• We used Houdini for Rigid body simulation.

• Houdini provides multiple fracture types and
dynamic solvers to meet our need.

• Consider each fracture as an atomic unit, store the
pivot of fracture into vertices attributes.

• Write each fracture’s transform information into
the texture frame by frame.

Rigid body Simulation based on VAT

Based on

What it looks like in Unreal Engine

What it looks like in Unreal Engine

Based on

• Real-time ray-object detection is expensive for effects which do not involve gameplay.
• Ray-object detection on CPU doesn’t work on alpha test foliage.
• We used a depth buffer for visibility checks and moved the transformations of the flares into the Vertex Shader, while the

parameters were stored in the Instance Buffer.
• This enabled us to achieve sophisticated Lens Flares with only a few draw calls.

Lens Flare

Our Team

• Current Lead TA of
UNDAWN.

• Houdini Simulation, Pipeline
& VFX.

• Animation & Rigging.

• Lead TD.

• Character & VFX TA.

Lhil Yang Xurong Ge

Zhenhao Zhang

• Environment & VFX TA.

Kenny Liu

Our Team

March 20-24, 2023 | San Francisco, CA

https://www.lightspeed-studios.com/

LightSpeedStudiosGames

LIGHTSPEED STUDIOS

LIGHTSPEED STUDIOS

Open Position:
• Technical Art Director

• Senior Technical Animator

• Senior Rigging TA

• Procedural Technical Artist

• Senior Technical Artist

Location:
United States, Canada, France, Japan, South Korea, New

Zealand, United Kingdom, Singapore and United Arab

Emirates.
If you are interested, please contact: rubylei@lightspeed-studios.com

https://www.lightspeed-studios.com/

Engine Team Lead, LIGHTSPEED STUDIOS

Real Time Irradiance Probes
An Indirect Lighting Approach in UNDAWN

March 20-24, 2023 | San Francisco, CA

Big World Dynamic Crafting

Survival - Open World
- Crafting

UE4.21

• Android - Mali T860 /
Adreno 505 / RAM 3G +

• IOS - IPhone 6S+
Windows

Indirect Lighting
(for mobile platforms)

Preprocessing Time

Disk Storage

Quality

Artist Work Flow

Dynamic World

Dynamic Weather

• Store the Irradiance or PRT SH in textures off-line

limitedly used in the game(inner buildings…)

Baking Light-map/PRT SH

Current Solutions

Good quality (full details, specular, AO)

Huge storage (Big world) Only support static objects
(Dynamic crafting)

Current Solutions

Screen Space

• A pass of image post-processing

• Our team have implemented the “VPL based SSGI” (Presented in UOD ShangHai 2021)

Real-time

Not accurate
(only few VPLs)

Not efficient
on low-end

• Store the irradiance (always SH) in discrete space proxy points

• Always pre-calculated in today's solutions for runtime efficiency.

We tried the realtime probe approach !

Fewer storage Limited probe quantity

Details lost, no specular or AO

Storage and calculation
work is limited for big world

Assisted with SSAO, IBL…

Current Solutions

Probe

Smooth Frame

• Generate Progressively
• Near to Far

• Limit the number
• Key position
• Around the player

Realtime Probe Generation

Generation Efficiency

• We capture the scene at each probe position in each direction for
indirect sampling.

Huge draw calls at each probe view direction !

• Replace the scene with simple boxes

• Full GPU pipeline can be utilized, 1dc
for 1 probe direction!

• Mesh shape is not important

Original Scene(1445 draw calls)

Scene With Simple Boxes (1 instancing draw call)

Realtime Probe Generation

Lighting Quality

Others
• Anti light leak
• AO
• Multiple bounce …

• 3rd level SH just “average” the indirect color

• Probe lighting seems just “brighten the scene”

Probe Lighting Quality is Always Poor ! “Large flat color boards” are used
• Only Prominent mesh color is kept

• Not physically right, but artists like the tool.

Realtime Probe Generation

Progressively Irradiance Probe from Flat Colored Boxes

Probe Placement and Reuse (Automatic Position, Cache)

Flat Colored Boxes Scene Rendering (Mesh Preprocessing, GPU Pipeline)

Probe SH Calculation (with PRT)

Probe Lighting （Ambient Cube, Anti Light Leak, Sky AO, Multi Bounces)

Our Indirect Lighting Solution

Probe
Placement

Probe
Capture

to PRT SH or
Ambient Cube

Shading

Probe Cache

Environment Changed

Inject SH to
View Texture

Relighting
G-Buffer

Progressively

Light Changed

Flat colored scene rendering

Framework Overview

• Place around the player automatically from near to far

• Probes in sparsely populated areas waste memory.

• Invalid positions: inside the wall.

• Oct-tree is used to culling the sparse area

• Test ray intersect to find the valid positions

Uniform Distribution

Sparse Distribution

Probe Placement

Oct-tree is used to culling the sparse area

Probe Placement

Ray intersect test is used to find the valid positions

Probe Placement

Preprocess mesh to a flat-
colored box.

Replace the scene with a flat-
colored box.

Start a GPU-pipeline to render flat-
colored boxes.

Rendered results

Probe Capture (Flat Colored Boxes Scene Rendering)

• Automatically processed when a new resource is imported to the workspace.
• Artists can also assign the face color manually

Original Mesh Calculate the “main color”
OBB calculation

Capture each face

Offline Mesh Preprocessing

1 draw call for 1 probe cube map face

Colored Box Instance Buffer Culling in CSFlat Colored Boxes Scene

Indirect Draw
Cmd Buffer

Culled Instance Buffer Rendering

Gpu Pipeline Rending

Albedo Position Normal

• G-Buffer is captured for future relighting purposes.

• 64-128 cube map face (dc) / frame

• Very low resolution (64-128）
• Very limited instance (significant objects)

Progressively

Optimizations

Probe Capture Rendering Results

From Captured
G-Buffer

Integration of function products
= Product of SH basis

(Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments.)

view directionW0Surface normal p

Why SH (Spherical Harmonious Function Basis)?

Each incoming Indirect
direction Wi

Indirect Lighting
Samples

BRDF

Lk & Tk are SH basis weights of L() & T()

SH is rotation
invariant

Ignored as for
Lambertion

• Tk is a fixed value for Lambertion

• The only problem is to calculate Lk

• Monte-Carlo Integration From G-buffer samples

• One direction

3-level
SH(L)

Monte-Carlo Integration

Sampling G-Buffer to Generate SH

Normal N

lerp

Indirect Color

• Inject the probe SH in current view into a texture

• Sample(bilinear) the texture for each of the 8 probe

• Lerp the 8 results to get the final indirect lighting

Shading with Probes

• When shading: 54 samples (3 channels × 9 bases × 8 probes)
• Volume-texture filter could not be used to prevent light leaks.
• Used on high-end devices

PRT SH

Ambient Cube

PRT SH

Ambient Cube

5*5 texture
Transfer normal to 2d UV

G-Buffer
Integration

Back

Back

Left Left Top Right Right

Front

Front

• Calculate the six-faced irradiance of a probe and store it in a
5x5 2D-texture.

• Transfer normal to oct representation map UV and bilinear
sample

• 1 sample/probe

• Quality Loss
• Used on Low-end devices

Shading with Probes

Caching Area

• Dynamic probe is an expensive resource, try to reuse !
• Player wanders locally
• Outdated probe is OK
• Generate more probes when idle

• Injected to current viewport shading texture
• Processed in high priority

• Always kept (may be outdated)
• Processed in low priority

Lighting Area(last frame)

Lighting Area

Probes not
changed

Probes with
high priority

Probes with
low priority

Probes with
low priority

Caching Area

Lighting Area

Probe Cache

Probe lighting penetrates the space between the inside and outside.

Anti Light Leaks

• The far surface has more probability to be occluded

• P is the occluded probability ：Capture the depth map (x)
from each probe and compare with the probe-surface
distance(t)

• Utilized by DDGI in UE4.27

• Still leaks somewhere

Anti Light Leaks—Chebyshev's Inequity

• Tag the probe with “IN” & “OUT”

• Surface inside only affected by inside probes

• Using a top view depth texture to decide “IN” & “OUT”

• Limitation: semi-open architecture

In-room probe leaks outside In-room probe doesn't affect
outside

Anti Light Leaks—Probe Tag

• Until now… only bounce for once

• Using the probes to light the probes will generate multi bounces

• Monte-Carlo integrates the surrounding 1st generation probes

1st-gen probes 2nd-gen probes

Multi Bounces

Record the sky visibility when capturing the G-Buffer.

Original + Irradiance Probe
(lighting up the inside)

+ Irradiance Probe + Sky AO
(darken the occluded corners)

Sky AO

Game Scenes

Probe lighting gives the "color bleeding" effect, lightening the shadowed areas.

A player-created houseA part of a static scene

Result

• On the SD855 device, 300 probes per second are processed in an area of 15m x 15m x 8m, which is the main surrounding of the player.
• With appropriate probe caching, preloading, and idle time probe processing, real-time probe has no lag.

Player Moving

Result

Dynamic Crafting

Result

Applicable on the majority of mobile devices
• Compute shader required
• Indirect Draw required

Configurable Parameters
• PRT SH or Ambient cube
• Probe generation speed
• Caching size
• Probe density

probe

storage

probe

speed

caching

probe size

probe

density

Low-end

Android

Ambient

Cube

150/secon

d
256*256 4meters

Middle-end

Android

Ambient

Cube

300/secon

d
512*512 2meters

High-end

iPhone
PRT SH

600/secon

d
256*256 1meter

Device Scalability

2.5

3.

2.

0.

0.8

1.5

2.3

3.

3.8

cpu render thread inc (ms)

SD430 SD855 iPhone13

0.

1.

2.

3.

4.

SDP430 SDP855 iphone13

GFX(ms)

Gbuffer Render Update ViewTex Indirect Lighting

0.

1.

2.

3.

4.

SDP430 SDP855 iphone13

Compute(ms)

Gbuffer Lighting SH Compute SH to Ambient Cube

CPU Increase GPU Increase

Performance

AT GDC2023

MEET
LIGHTSPEED STUDIOS
March 20-24, 2023 | San Francisco, CA

