
Fixing Bugs by Cloning Them 
in The Last Clockwinder
Matt Blair, Pontoco



Hi! I’m Matt Blair.

Founder at Pontoco

● Game design
● Engineering
● Management





http://www.youtube.com/watch?v=OYuqfUznuIg&t=10


How did we pull this off with just two (part time) engineers?



Input Replay system

● All bugs reproducible

● Fast iteration time in VR

● Automated gameplay testing

● Debug hardware issues without the hardware



Part 1: Fulfilling the gameplay promise

Part 2: Turning the mechanic into the workflow



Part 1: 

Fulfilling the gameplay promise



The Promise of Clockwinder
● Puzzle-automation game with looping clones
● Mechanic should be as generous as possible
● Clones reproduce the player’s actions perfectly, every time

“If I can do something, then my clone can do it too” *

* = Some terms and conditions may apply



Cloning Strategy
Two paths:

1. Record player actions and apply them like an animation
○ Only process necessary data

2. Record player inputs and simulate the resulting actions
○ No need to define which data is necessary

✔



Cloning Strategy

Inputs

Actions

Outcomes

“trigger button pressed”

“start hand grab”

“fruit is grabbed”

👀



Cloning: Inputs
Unity InputSystem package

https://github.com/Pontoco/InputSystem/tree/asg/v1.4.2

We ❤ InputSystem

https://github.com/Pontoco/InputSystem/tree/asg/v1.4.2


Cloning: Inputs
Recording inputs

Input Device (real)
Device Layout

State Buffer [0]

Input Recording File

State Buffer [1]

State Buffer [2]



Cloning: Inputs
Replaying inputs

Input Recording File
Device Layout

State Buffer [0]

Input Device (fake)

State Buffer [1]

State Buffer [2]



Cloning Strategy

Inputs

Actions

Outcomes

“trigger button pressed”

“start hand grab”

“fruit is grabbed”

✔

👀



Cloning: Actions
PlayerRig
● Player logic
● Physics colliders
● Interaction triggers

ClonePlayerRig
● Clone mesh
● Animators

RealPlayerRig
● Camera
● Teleport Tool
● Cloning Tool
● Inventory



Cloning: Actions

When the player is able to do something, clones 
are able to do it by default.



Cloning Strategy

Inputs

Actions

Outcomes

“trigger button pressed”

“start hand grab”

“fruit is grabbed”

✔

✔

👀



Cloning: Outcomes
What makes clones not do the same thing as the player?

Anything that is not part of the recorded inputs.



Cloning Strategy

Inputs

Actions

Outcomes

“trigger button pressed”

“start hand grab”

“fruit is grabbed”

✔

✔
Time



Cloning: Outcomes



Cloning: Outcomes
Can we record frame times?

No, because we have to update many clones in the same frame.

● All clones recorded and replayed at the same, fixed frame rate.
● All game logic goes in FixedUpdate. 🦀



Cloning Strategy

Inputs

Actions

Outcomes

“trigger button pressed”

“start hand grab”

“fruit is grabbed”

✔

✔
Time

PhysX



Cloning: Outcomes
Outcome of certain collisions depends on physics engine state.

● For important collisions, skip physics and use a custom solver. 🦀



Cloning Strategy

Inputs

Actions

Outcomes

“trigger button pressed”

“start hand grab”

“fruit is grabbed”

✔

✔
Time

PhysX

✔



https://docs.google.com/file/d/1N4-D982yvGmMY5q4nVfc1JAfIM0i-R04/preview


The Promise of Clockwinder
● Puzzle-automation game with looping clones
● Mechanic should be as generous as possible
● Clones reproduce the player’s actions perfectly, every time

“If I can do something, then my clone can do it too” *

* = Some terms and conditions may apply

✔



Part 2: 

The mechanic becomes the 
workflow





Session Replay

We can extend replays to the entire development workflow.



Session Replay
Everything just worked! 

… just kidding. 



Session Replay: Challenges
● Replays need to start with the exact same saved data.

○ Add tools for copying and overriding save data.



Session Replay: Challenges
● Replaying a full game session takes a long time.

○ Add fast-forward modes to session replay. 🦀



Session Replay: Challenges
● Loading scenes takes variable time. 

○ Record number of loading frames, then simulate same number of 
frames during replay.



https://docs.google.com/file/d/16SOVqKDEwxMlJO7jp_PIYjhoUJhAOhro/preview


Session Replay: Perks
● No more phantom bugs! 

○ If we have replay data, we can see the bug again. 
○ We can replay the session again to verify the fix.



Session Replay: Perks
● Fast iteration on features!

○ Record a session where you play the part you’re working on.
○ Replay that session over and over as you iterate.



Session Replay: Perks
● Recordings become automated tests!

○ Record a player doing a sequence of actions.
○ Replay the recording in the test runner to verify the outcome.



Session Replay: Perks
● Simulate devices that we don’t actually have! 

○ Get a remote player to capture a session recording on their 
hardware.

○ Replay that session on our own machines and simulate any 
problems that are occurring with the different hardware.



Next Steps
There are some 🦀 to deal with.



Next Steps
🦀 Sessions must be replayed from the beginning.

○ Jump to points in the recording using state snapshots (DOTS)



Next Steps
🦀 Outcome of collisions depends on physics engine state.

○ Use UnityPhysics package



Next Steps
🦀 All game logic must occur in FixedUpdate.

○ Record time with input frames, apply recorded time during replay.

(If you know how to make Unity do this, let’s talk!)



Next Steps
Use this in more games! 
(i.e. your games)



Art of ‘The Last Clockwinder’: Visual Cohesion
Anita Tung, Wednesday@10:30am

“Stuck in a Loop”: Designing the Clones of ‘The Last 
Clockwinder’
John Austin, Thursday@5:30pm



Thank you!
@matteblair
@matteblair@xoxo.zone

Interested in what we’re doing next?
https://pontoco.com/jobs

https://twitter.com/matteblair
https://xoxo.zone/@matteblair
https://pontoco.com/jobs

