God of War: Ragnarok’s

Visual Scripting Solution
by Sam Sternklar

Studio

Santa Monica Studio

| am a senior programmer at Santa Monica Studio

Andlworked on God of War (2018) and it's sequel, God of War: Ragnarok.

What is this talk?

® Built o new Visual Scripting language for Ragnardk
Why?
Guidelines and Details

1.
2.
3. Tools and Technology
4. The Results

5.

Summary and Conclusion -

Santa
Monica
Studio

Solwant to tell you a story about the development of God of War: Ragnarok, about the development of our new visual scripting system. In order to tell that story I've
split this talk into five key parts:

The reasons we decided to build anew scripting system,

the guidelines and details comprising our system,

some of the tools and technologies we used for our system,

the results we got from shipping the system,

and finally a summary of our findings and conclusion.

Before we get fully underway, please note that this talk has minor spailers for both God of War (2018) and God of War: Ragnarék.

Part :Why?

God of War (2018)’s Lua Scripting Solution

Santa
Monica
Studio

e
So to start our story, we have to get some background info, and that means talking about what came before Visual Scripting at Santa Monica Studio

The date was April 20th, 2018...

® % God of War (2018) shipped! S Ty
® \\/e took a close look at how we built it e T i

® Including taking a close look at our
scripting systems

Santa
Monica
Studio

We start our story right after God of War (2018) shipped, when we held a postmortem of our various technologies. The process took alot of time, but helped us
understand where we were and where we wanted to go. Among the technologies that was most commonly called out by the team as problematic was our
scripting system

God of War (2018)’s Lua Scripting Solution

® Newly implemented lua 5.2

® Modified slightly to fit our specific needs
® Greatly improved designer freedom

® Critical to our success

® Hod severe technical complications

Santa
Monica
Studio

We hadrecently implemented Lua 5.2 into our technology stack, though our version had some small extensions added to work with our object model better. Prior to
it's inclusion, the scripting tools available to designers weren't particularly strong, and the addition of Lua led to a vast increase in freedom to our designers. Being
able to shift work directly to the designers vastly improved iteration times and contributed directly to the success of God of War (2018). However, it was not without it's
share of technical complications

The Complications

® |t wosnt fast enough
® 35ms...

KCB_CPUProcessing
| Physics | kCB_ProceduralAnimation | || ke | kC || | kcB || || | kCB_Entityser | | kCE | kCB_Eventserver | ke | kCB_EventServer | kCB_Eventserver ate kc | kce|| Pk | k][¢] ke Com | kCB_Scriptser
KCB_Physic- || I | InnE.| m | Playe: Fio| | KCB_ WaitForEventThrear | BEHAVIOR PROCES: MW ice = M Bk
= 8B e e =iy] 0 (o [1]
CActiver |]+ o ([ms o]
Marer Level]s 3 5011 | | g
. .
H
- General
<mSceMsgDisiog sprc- Cursor 598 585ms
Range Start - Stop 570.182ms - 613.167ms
Seseathns Range Duration 42.985ms
<ibkemel spoc Lo E
Name: KCB_LuaHookCal
it pres Stack Level 6
Inclusive Duration 388.216us
<bScePad spre> Exclusive Duration 388 216us
Inclusive Time: 338 216us
> Display Limit
Exclusive Time 338 216us
Color 0xB0F 0000
User Marker (Ranged)
. Calls v
Total Time: 3670ms [Scheduled : 3 554ms, Descheduled - 115.816us]
b Thread: TaskManager03 Mean Time 99.179us [Scheduled : 96.049us, Descheduled : 3.13(us] @ X -
Miamkifaracer-Schedas Total Exclusive Time 3.670ms [Scheduled : 3.554ms. Descheduled : 115.816us]
—ezlianzasrchee s’ Mean Exclusive Tme 99.17%us [Scheduled : 96.049us. Ds 3.130us]
User Marker (Global) SGntCI
[¥ G Thread: TaskManages01 Longest Duration 2572ms [Frame 98] @ X M Oni ca
1 Shortest Duration 690.829ns [Frame 126] '
Fraskanacer-5ched0 Stu dlo

The first problemis that it took alot of CPU time. The razor capture you see here shows a lua scripting frame atjust over 3.5ms. Our target frame time for both God of
War (2018) and God of War: Ragnarok was 33ms, or 30fps, on a standard PS4. With such a high-octane action game, we want to fit as much awesome stuff on
screen at once. Let’s take alook at what the player was doing while this capture was taken:

The Complications

© High octane ©

The Complications

® |t wosnt fast enough
® 3.5 ms standing still, Up to 5ms in combat
® Frequent Tick usage

kCB_CPUProcessing

| Physics | kCB_ProceduralAnimation | || kC: | kC || | kcB_L| KCB_Entityser | | kCE | kCB_EventServer | ke | kCB_EventServer | kCB_Eventserver ate k| ece | Y [ke |]|+] kcB_com || kCB_Scriptser
KCB_Physic- || I | InnE.| m | Fig' | kCB WaitForEventThrear | BEHAVIOR PROCES: | MW ice = M Lﬁ Mece T«
kB Phy: | | V0 ece_riesm [C=EEEE]] (b [1]
Activer |} o ([ms o]
] B Solc | | g
!
n
General
< SceMsgDialog sprc= Cursor 598 595ms
Range Start - Stop 570.182ms - 613.167ms
Sehesthns Range Duration 42.985ms
<Sbkemel sprc- Lo E
Name: KCB_LuaHookCal
<bepre Stack Level 6
Inclusive Duration 338.216us
<RhScePad spoc Exclusive Duration 388 216us
=—— Inclusive Time: 338 216us
Exclusive Time 338 216us
Color (xB0F0000
User Marker (Ranged)
Calls 37
Total Time: 3670ms [Scheduled : 3 554ms, Descheduled - 115.816us]
b Thread: TaskManager03 Mean Time 99.179us [Scheduled : 96.049us, Descheduled : 3.13(us] @ X -
N Total Exclusive Time 3.670ms [Scheduled : 3.554ms. Descheduled : 115.816us]
eetanzageaeheds Mean Bxclusive Time 99.175us [Scheduled : 96.04%us. D 3.130us]
User Marker (Global) SCII"I tq
¥ & Thread: TaskManager01 o= i 2 523ms [Frame 9] @ X Monicc
Shortest Duration 690.829ns [Frame 1261 .
Mraskianacer-5ched01 Stu dlo

So yeah, hands completely off the sticks, no actions occurring, with only Kratos and Atreus spawned in the center of the Lake of Nine, the capture shows wete
spending 3.5ms just updating various lua scripts. Granted, the Lake of Nine is a main hub for the game, and there’s a number of level modules present in the areq, but
3.5ms is still excessive. In combat, this number gets as high as 5ms. Most of this is due to the scripting paradigm used — designers heavily leveraged ticks, and by the
time we tried to final the game there was not enough time to re-architect the vast amount of lua scripting. We might have been able to add more events to
prevent excessive polling, but that would have led to making our next problem even worse...

The Complications

® |t waos inflexible (for engineers)

® |t could be called from anywhere, and had access
to everything

® Code systems couldnt be moved to other threads
because of scripting referencing it

KCB_ CPUPjocessing KCB_ CPUProcessing KCB CF
kCe || k | kCB_I | kCB_GameEpilogue Mai | [kCB_Re | kCB_ || kCB_ AnimServer | ke kCB_C || k | Physics KCE. | [e [Tt |k T ke tos | TIOTIT Tk [ke [1][kCB_RencerPostRender ral =X
kC % | kCE | |Render | kCB_ A 1 Co | kCB_PhysicsServe: Pl [kcE [Be WOV T 0 kC KCB_RenderkickSync
ke kCE || | = KCB_PhysicsSer. F g ¥8= ™ k T P [Pushe. | Pu:
lic§ [xce ke[[l ach [kC | kGG [ko
KC kCE e I W i i
Ca -
Santa
gt\oglca
Uudaio

The second problem is that it was inflexible for engineering. This razor capture is the same frame as the previous image, now showing the entire frame. Look at the
yellow highlighted segments. During development, lua could be called from anywhere in the main game frame, including from the sections labeled Physics and
Animation. This gave designers a ton of flexibility where engine events were provided, as they could do anything in lua. The problem s, if they can do anything, that
necessarily means they must have write access to everything. And if they have access to everything, other threads can't. This locked not only scripting to the main
thread for large portions of the frame, but prevented other systems from being moved to other threads because either they called into scripting, which changed
state onthe fly, or because another system called into scripting and referenced the to-be-moved system’s data. Even on the same thread, within the same system,
we had some problems — scripts could do anything, including modify the state of currently running systems, so moving where script executed relative to a system
sometimes created incredibly subtle timing bugs. For an example, imagine you have two ovetlapping trigger volumes, where entering one will turn off the other and

perform some operation. The evaluation of the trigger volumes themselves would change the output of the system if you were to change the timing of the scripting
of the trigger volumes!

The Complications

® |t was fragile

® Our designers are not engineers

® \/arious assumptions about valid (hon-null values)
® Stale handles referenced frequently

® Single mistakes took down entire level VMs

Santa
Monica
Studio

The third problem is that it was fragile. We expected all our designers to be able to script things. Our designers, while amazing designers, are not disciplined
engineers, nor (in my opinion) should they need to be. But with a general programming language like lua, it's very easy to miss a check for nil sommewhere, and when
that happens it can leave entire levels in a bad state that require us to stop running any scripting to preserve a stable dev environment. Even though the dev
environment would still be running to provide information on what went wrong, once you shut down an entire level, it’s likely that the developer is stuck anyways,
and can't simply walk around the problem. In the final game package, any lua error will crash the game, making this situation untenable.

The Complications

® | relied on dynamic allocation and GC

® Our engine relies on a static memory model

® Frequently had to over-size memory pools for spikes
® GC leads to unpredictability frome-to-frame

® We dont like spending time on GC

Santa
Monica
Studio

The fourth problem is that luais a garbage collected language. Our engine heavily pre-allocates memory, leaving very little slack around for growable heaps. We
had very little ability to control the usage of our lua VMs, meaning we over-sized the lua memory poals for spikes — often alevel which took a few hundred kilobytes
on an average frame were sized for multiple megabytes due to unpredictable allocation on other frames. Furthermore, it's unpredictable and nondeterministic
when GC will need to run, and whenit does run it spikes. While the existence of GC allows lua to have extremely powerful data manipulation constructs, it's
unpredictability frame-to-frame with such tight budgets means that it becomes more of aliability than an asset for us as we seek more and more control of our
frame.

The Complications

t wasn't fast enough
t wass inflexible (for engineers)
t was fragile

t relied on dynamic allocation and GC

Santa
Monica
Studio

And among all of these problems, the most frustrating one was that there was nothing we could do. Sure, we could mitigate these problems — shortcuts throughout
our engine to keep speed up, more careful systems design, better designer training practices, etc — but we couldn't FIX these problems without compromising what
made lua so powerful.

So where does thatleave us?

® \We knew the sequel was going to be bigger

® Scaling with these problems would be painful

® Decided to experiment with a new longuage

® Specific to SMS, not a general purpose language

Santa
Monica
Studio

We knew from the start that the sequel had to be bigger, and that these problems don't scale. We wanted to use less memory, use less frame time, with more stable
dllocations andless error-prone designer flows, all while powering more content at once. To accomplish this, we decided to build our own scripting system specific to
us and our needs.

Part 2: Guidelines and Details

How we addressed some of those complications

Santa

Monica

Studio
T

When we went to get started with our system, we first had to design it. We came up with this set of core guidelines to fulfill the needs of our design groups alongside
aset of basic constructs to power our scripting system. Il give an overview of our basic constructs before diving into the guidelines and how we fulfiled them.

Basic Constructs — Flow Nodes

® Flow Nodes can Read and Modify state
® Must be connected by Flow

On Script Start . Print

| Strin
Helfo, World!

To start with, flow nodes are your standard function call. They can read and modify game state, but must be connected to other nodes by flow — the thick white line
representing control flow through the script.

Basic Constructs — Data Nodes

® Daota nodes can only read state
® Do not need flow connection

On Script Start

| Strin
Helfo, World!

Santa
Monica
Studio

Data nodes are basically const functions, they cannot modify state, but do not need to be connected to flow. They merely pass along data, represented by the
thinner line connecting the string to the “Message” field on the print node.

Basic Constructs — Event Nodes

® Event nodes act as the entry point to a given script
® Caon marshal state to script for evaluation

E N
venkeHs Flow Node

On Script Start ’

Message
String SEVE Y
Hello, World! Ser

T
Data Node e

Monica
Studio

kinfo e
kLibraries ®

Event nodes are the entry point to any script, representing an event from the engine. They can marshal state into the script to assist the evaluation, but otherwise
don't do much on their own.

In case you haven't noticed, the example I've used for the last three slides is “Hello, World!”

Basic Constructs — Variables

® \/ariables store script data in a safe form

® Con be accessed and modified by special nodes

M Set SomeVariable | o S P o

Message
Info e Severity - o o 7 ==
evels # Script Category ren iz =3 et S5
(SomeVarlable ——

Ty ® 5o

Categol ry

Is Value Locked 'h

Is Saveable v

seoe ‘ L
Santa
Monica

Studio

Variables are used to store script state between invocations, and are accessed and modified by special script nodes. You can see an example of the set and get
nodes for a simple Boolean variable here,

Basic Constructs — Embedded Scripts

® Embedded Scripts are macros, expanded during
compilation

® Placed in other scripts to encapsulate functionality

1 4 A}

On SCFI pt Sta rt Library: Prints a provided String and Value in the same
The Game Time Is: @ String line.
Get Game Time Value GameArt/VisualScripts/Libraries/Debug/PrintStringAndValue.visualscript
Game Time kLevels @ Category

Santa
Monica
Studio

And finally, we have Embedded Scripts, which are macro-scripts expanded during script compilation. Designers can author these embedded scripts to
encapsulate complicated functiondlity, providing some basic organization to the script. You can see a quick view of the embedded script in the tooltip, but it's not
always the easiest thing to read in such a small space.

Core Guidelines

® Al scripts run to completion, no formal halting/coroutines

® Execute with consistent, static memory

® All scripting possible from non-"OnTick” engine events

® Script Runtime should spend os little time in the interpreter as possible
® Scripts should be composable from other scripts

® Everything should be referenceable as an asset

® Complex Editor, Simple Runtime
D

Santa
Monica
Studio

Now that we've covered our base concepts, we can discuss our core guidelines. Here they are laid out. They are, in the order that Il cover them:;
Al scripting must always run to completion, with no formal halting or coroutines

Al scripts should execute with a consistent and static memory footprint

Al scripting should be possible from engine-originated events without the usage of OnTick

The scripting runtime should spend as little time in the interpreter as possible

Scripts should be composable from other scripts, representing functions or modules

Everything should be referencedble as an asset

We should aspire to have a simple runtime, pushing as much complexity to the editor where possible

Let's go through each of these in depth:

Run to Completion — Errors

® Most scripts just grabbed an object, queried some
state, then called afunction on it

® All code-side nodes gracefully fail rather than crash
® Allowed better telemetry for specific errors

On Script Start Set Collision Enabled

Game Object
This is a null asset

Game Object Asset

Enabled
Apply To Descendants

Santa
Monica
Studio

Our first guideline is that all scripts must run to completion. This means that we can't halt on a null object or missing reference. Instead of crashing, we would emit
errors and allow the script to continue. We moved much of the error checking from design’s responsibility to engineering's responsibility. The simple missing nil check

was responsible for a very large portion of God of War (2018)'s scripting crashes, so anything we could do to mitigate this issue paid dividends. Because of this, we
ended up with a much more stable executable, and with alot more telemetry for what was going wrong in the game at any point.

Run to Completion — Closures/ Coroutines

® None of our scripts needed full stack retained
® Instead we registered events with specific outputs
® \/astly simplified runtime requirements

Register For Weapon Thrown
Creature Il On Weapon Thrown Node
rue @ Auto Unregister Monitor Id

Get Player

Game Object
Creature

On Weapon Thrown
Self Reference Ml Creature

Weapon} -

Santa

Monica
Studio

In order to ensure scripts run to completion, we also avoided the use of formal coroutines and closures. We didnt ever want to worry about stack handle safety or
memory used from alarge number of suspended stacks. Instead, we allowed scripts to register for specific callbacks with specific outputs relevant to the event, and
re-guerying everything else. This vastly simplified our runtime and prevented the need for extensive handle safety checks. This also helped ensure that we were
never working with stale values caught within closures, with the performance hit for re-fetching some values being an acceptable, even preferable cost.

Static Memory Usage

® Onload, allocate for all variobles
® Set aside reuseable Imb stack buffer

® Scripts always run to completion, no need for closure
space, coroutine stacks, or multiple concurrent stacks

-
Santa
Monica
Studio

k. ’

Our second guideline is that scripts must use a static amount of memory. As mentioned, this matches our engine model, where we pre-allocate pools of objects on
init and leave very little up to general memory allocation. On loading the script, we pre-allocate space for all of the script’s variables. In order to save on stack
memory, we set aside a Imb shared buffer that all scripts reuse. Where in Lua we had very little control over our allocation and were at the mercy of the VM and
garbage collection, in Visual Script we knew where every single byte went. This had a secondary benefit of simplifying our script state management: If we had to
destroy andrecreate some pooled game object, we knew exactly what neededto be reset for it's script state rather than abandoning some set of tables within
the general level VM and running GC, hoping that nothing is improperly holding a reference to the object’s data.

Events and Eventization

® Al calls into scripting are packaged and processed
for later use, rather than occurring immediately

® Allevents execute at the same point in the frame

® Safe changes to system internals without affecting
cdlloacks or scripting internals

GhFlip

FinalizeEmitDrawcalls

RenderPostRender

RenderkickSync |
|| |[Renct | Drav. | GiDrawtist |]

1] | -

Santa
Monica
Studio

Our third guideline is that all access in and out of scripting is gated by events, especially avoiding OnTick. No matter where a call into scripting comes fromin the
frame, we package the callinto an event and process it at a specific point in the frame. The razor capture below shows all of the visual scripting execution in the
frame. This allowed us to change system internals at will without compromising the timing of callbbacks. On rare occasion, this even meant we could safely put entire
systems on other threads that were previously stuck to the main thread due to those scripting calls.

| promise by the end of the talk I tell you how much time that little segment takes, but youll have to wait a moment for performance numbers ©

Events and Minimizing Interpreter Time

® On evaluation, we redlized the first thing that
nMany of our events were doing was:

function OnEntityVolumeEnter(enteringGameObject, enteringMarkerID)
enteringMarkerID consts.PLAYER _MARKER_ID

entaringGameNhiecrt Plaver:AddFlasfl " TneidaValima™)

® Paying VM startup and exec cost just to early out

® \We identified common early-return conditions
and added event filtering for them

Santa
Monica
Studio

As we scanned our existing lua to inform the design of our system, we noticed that the first thing that almost all of our existing events did was early-out on some
condition relevant to the event. While it's good to restrict work done, we still had to pay the full cost of setting up the VM every time we called that function. We
introduced event filtering for common early-return conditions to deal with this.

Events and Minimizing Interpreter Time

® Designers set up filters directly on the nodes

On Entity Volume Enter
Volume Object Volume Object Pin
Volume Objects 0 Marker Id
Marker Ids O Marker Object
Marker Ids 1

Marker Names 0

Game Object Asset
entityZone

Marker Kratos

® Fiters are evaluated at compile time, nodes
accelerated by common filters
-

® Canbe effectively batched for instances of script — sama_

Studio

Rather than checking the data once the event was being processed, we instead put filters directly on our event nodes. These are compile-time values, used when
constructing acceleration structures for each node type. Before starting the VM, we check all of the accelerated pre-fiters, and early out if any of them fail. What this
does is move one of the most expensive parts of our scripting directly into C++, skipping much of the script VIM execution we'd otherwise have to dol After all, if most
of your scripts just early out, why not just move the early out into C+ and leave the rest to the designers? If the filter is completely independent of any context of the
script, you can even batch them together, allowing you to evaluate hundreds of nodes’ worth of behaviors at once without even setting up a fullinterpreter
environment. This assists with our fourth guideline, that we should spend as little time in the interpreter as possible. This wos so effective that we were able to treat all
of our events as broadcasts by default, which also allowed designers to freely script without needing to create scaffolding between different scripts that would

have received more targeted events!

Encouraging Event-Based Scripting

On Entity Volume Enter
Volume Object Volume Object Pin
Volume Objects 0 Marker Id
Marker Ids O Marker Object
Marker Ids 1

Marker Names 0

® This only works if we have the events

® Any time we add a query for a state,
add an event for that state changing

On Entity Volume Exit
Volume Object Volume Object Pin
Volume Objects 0 Marker Id
Marker Ids O Marker Object
Marker Ids 1

Marker Names 0

® Educated designers on best practices

® \Worked closely with designersto build ~ —— AEFEIHTES

__——=#Volume Object

Ony reqUired runCtionO"ty kEntity ¢ Volume Type

Santa
Monica
Studio

One of the challenges with this event-based scripting approach is that it only works if we have alot of events and dont need to leverage un-fiterable events like
OnTick. We made arule for ourselves that any time we added a query for some engine state, we also add an event for that state changing. Between that and
educating designers on best practices, we made the path of least resistance to any scripting in the game be one of the most common paradigms for improving
script performance. We also regularly worked with designers to build any missing functionality as quickly as we could to ensure that they would not need to deviate

from this golden path.

Composable Scripts

® Embedded Scripts naturally encapsulate state

® Designers can build their own complex behavior
with embedded scripts

® Engineers have seamless drop-in replacement

Santa
Monica
Studio

Our fifth guideline is that our scripts must be composeable from other scripts. We already mentioned embedded scripts, which solve this problem for us. What might
not be obvious is that with such well-encapsulated state, programmers have an easy drop-in replacement point for commmon behaviors. This was so important that
our editor had a dedicated button for packaging up sections of logic into their own miniature sub-scripts.

Composable Scripts — Behaviors

® Thisis our “Show All” script: T]
® Before programmer intervention:

Nav Curves
Context Actions

- Interact Zones
1 Decals
q Trigger Volumes

5 Set Components Enabled 5 |
Game Object &4 Game Objects 0 ® < New Output>
Additional Game Objects =% Game Objects 1
< New Input>¢ Game Objects 2
True 9 Enabled
True @ Apply To Descendants

Santa
Monica
Studio

e
An example of this is our “Show All” script. During general iteration, a designer created the first iteration of the script, which just goes through every possible
component on a game object and enables them. This is inefficient when used extensively, since so much of the behavior occurs directly in scripting, so a
programmer made the second node below, which wraps up all of that logic in nice C++. We'll revisit this example later in Part 4.

Composable Scripts — Modules

Santa
Monica
Studio

One of our other usages of scripting is to wrap up large swaths of scripting into modules. These modules can be placed directly into any script to inherit large pieces
of functionality. The “Interactive Object: Two Way” node you see on screen now is used in all of our door and gate scripts that separate spaces from one another,
without needing to manage either script inheritance or component interoperability.

It's notable that we accomplished this level of abstraction by treating all embedded scripts as true macros, expanded during compile time, rather than attempting
to re-use the same set of node data for multiple instantiations of a single embedded script. As we just mentioned, we put a lot of static data on our event nodes to
let pre-interpreter fitering work. Without treating embedded scripts as expandable macros, there would be no clean way to map static data exposed via an
embedded script back to the various events that would be later evaluated. The added complexity would have drowned us in work, and the nodes themselves
were not that big, so we didn’t worry too much about it. There were afew cases we had to optimize late in the project, but they were isolated occurrances.

Assetization

® Anunfortunately frequent paottern:

function OnScriptStart(level)
someObject - level:FindGOByName("SomeG0").Child.Children[2]:SendHook("SomeEvent™)

® Did not have strong tools to reference
objects from game data

® Could only look up objects by name

Santa
Monica
Studio

Our sixth guideline is that almost anything that could be treated as an asset should be treated as an asset. An unfortunately common lua pattern was to grab some
root game object in alevel, then traverse it's children until you reach some other arbitrary child object. We could only find objects by name, andif it's an instanced
object there’s no clean way to grab some child without traversing the entire game object tree for it. We had few tools to build strong references to any game data.

Asselization — The Asset Database

® Built o database from build outputs of object paths
® Runtime lookup of GUID->Object handle

: WAD: TB_LevelScriptingTests ¥ show Unbuilt: O
Type: ModuleOnly: O NGO Flagged: O A refe rence to Kratos
Name a cuD

BasichavMesh L ingTests*z: Y i Jevelscri mb*BdbOT7E6-45e3-1775-0163-139610c606bb) -
. ¥ BasicSheet {TB_Le Tests*z.)| 088-9098-0af5-d780b908306b} G O b t A t
Sheet {TE_L Tests*zAinta\p — 4088 9008-Daf5-d780b908306b+6fBcdde-aeBo-4101-001f-cc02e1374412) a me Je C S) e
DisableLoadGate {TB_Le ingTests*z:)| mb*efe715e4-431a-fa4f-6da2-0eb1fd2b6d64}
EnsbleLoadGate L ingTests*z: y . Aca2-fe00-4483-6a67 16360204} h e ro a O O
entityZone {TBL Tests*zAna\p gameplay\ib_ Mb*632b3dA4-4fed-f6c6-64bb-
entityZone2 {TB_Le Tests*z:)| mb*393f2aTe-4cf4-T00c-2225-500690322a46}
v Essentials {TB_L ingTests*z! | fd 504-0b82-7b47811f14e1)
L i {TB_Le Tests*z.)| 504-9b82-7b47811f14e1*c6a67161-4ccd-34e7-b7aa-a58b8f635112)
TBLightRig {TB_L Tests*z\intd\p gi play\th_| 504-0b82-7b47811f14e1*1 2ada015-65ef-44c9-81dc-a42718e27e71}
LoadWad {TB_Le ingTests*z:)| i .| il *67d 4-4390-ba81-a493-d38fabacd234}
pCube2 L ingTests*z: y i Jevelscr mb*61837d6a-46e2-b6ad-7733-cObaBGedTATE)
. pCubed (TBL Tests*zAna\p gameplay\ib g mb*fadef1d Dect}
Last query time: 0.43829869 ms D) T -
Clear Cancel

Santa
Monica
Studio

e
Toresolve this, we built an asset database that tracked the GUIDs of each object and leveraged an existing runtime lookup of GUID path through the scene to
game object to marshal data into the scripting engine. What you see on aleft is the editor window that shows the object, with the node on the right being a direct
reference to a game object. The asset database allowed us to track every scripting reference to an object, and helped us identify when any asset reference was
potentially erroneous. Without that, the simple act of debugging a missing reference wouldn't have been possible.

Asselization — Relative Assets

® Given a pair of representative objects, rebase path
from Input to some other olbject in the scene elow it

® Indistinguishable from direct reference ot runtime

Attributes

- - Relative Game Object
Flyer Den Relative Game Object |{ Locators Reset Defaults
Locators Representative Objecs Choose Game Object
- = - Current Item: *FlyerDen
Flyer Den Zeg{;;ee "E__?!)'Z’e Object ActiveFX Root Object: FiyerDen_root

Root Source File: z\int9\gameart\modules\.
Refnode Path To Object: /ZooModules_Josh

Relative Game Object uild Wat
(Flyer Den)—1 B aaceatana FX }—(DamagedStage1FX) T
Representative Target: Locators
Relative Game Object omment
(Flyer Den)—{ DamageStage2FX }—4 DamagedStage2FX) c
Relative Game Object
(Flyer Den)—i e eStat oS FX }—(DamagedStage3FX)

Flyer Den Begggﬁ(f;é"g'?)‘?“‘ DestroyedFX
Relative G Object
Flyer Den beOad;/i Barrg;k aJte;I 5 Breakable S%
Relative Game Object : Monica
Flyer Den tZE_Vér eaz;nlfabieec StemObject Studio

Some of our modules rely oninput references. Since those input references may be to that same root object we hadin the lua example, and we needed some way
to safely fetch child objects within the scene, we also created a relative asset lookup. Because we stored the whole path of each object reference, given a
representative base and target object, we can find any arbitrary child object by appending the relative path from the base object to the target to whatever
runtime object we are searching for. Standard mapping issues apply when a designer deletes and re-creates an object, but in general this allowed us to create a
robust and far less error-prone representation of any game object in our scripting system.

Complex Editor, Simple Interpreter

® Our compilation and build system are deterministic
® Our fullgame simulation is not
® Easier to debug deterministic dato

® Safer and easier to test for changes in compiler
output than complex runtime changes

Santa
Monica
Studio

Our seventh and final guideline is that we wanted our interpreter to be as simple as possible (as noted on other slides), and that we were to push as much
complexity to the editor as possible. We're not language designers, and debugging realtime applications is difficult. We much prefer debugging deterministic
compiler output than we do a complex runtime. Being honest with ourselves, we knew we were going to make mistakes and that catching them would be difficult,
and so we had to choose the safest route. With safety comes security, and with security comes trust. And a designer must trust their compiler, or else every issue a
designer ever encountered would suddenly become the compiler’s fault (whether or not it actually was)

Examples — Spinning Cube

Let’s talk examples. One of our earliest test cases was this simple spinning culbe you see now. When you step onthe pad, it either starts or stops spinning based onits
previous state.

Examples — Spinning Cube

And this is the entire script used to make this work. When Kratos enters volume “entityZone”, we play or pause an animation based onwhether or not the object was
dlready spinning or not. As this was one of our first tests, you can see artefacts like araw Unigue ID that would nowadays be part of an embedded script.

Examples — Nornir Chest

A slightly more complex and shipping example is this Nornir Chest, or as it's called internally, a Triple Chest. The puzzle is relatively straightforward — break three
gnomes, or otherwise solve three mini puzzles matching the runes on the chest to open the chest and claim the spoils. These chests are often paired with other
mechanics that may obscure individual pieces, like the geyser in this video.

Examples — Nornir Chest

On Breakable Broker

Runic Breakable o

In: Owning Triple Chest

Set PassedRunel

Set PassedRune2
(Rune y-tioa o Set PassedRune3

In: Number Of Runes

Triple Chest

What you can see here are excerpts fromn a number of different scripts. In the top left, you see what is placed in each level script — a module script representing the
chest and it's three breakables gnomes. In the top right is some scripting from the breakable statue script, showing that when the object breaks it will send an event
to the triple chest script. The eventis caught in the images below and to the right, which perform some arbitration depending on which rune was broken before
triggering state changes like lights and FX on the chest, and eventually opening the chest itself,

Part 3: Tools and Tech

What tools did we need to fulfill those guidelines?

Santa

Monica

Studio
T

So, now that we've covered our guidelines, we have to talk about the tools we built to make this all work and to make it easy to iterate on. All of these tools are in
some way related to our editor tools.

Missing Pieces — Asset Database

® Core plan requires an asset database
® \We did not have an asset database

® \We appended a MySQL DB to our build pipeline to
capture build outputs

.T-‘[.é-

Santa
Monica
Studio

To start with, our core plan required an asset database in order to support assetization and editor lookups, which we didnt have at the start of the initiative. We
appended a MySQL DB and asset scraping service to our build pipeline as a quick way of getting this stood up.

Missing Pieces — Asset Database

® Requires frequent scene scans just to populate DB
® Scales poorly closer to completion

® Hod to make custom build modes to reduce
overhead

-
Santa
Monica

Studio

However, because the database feeds into the scene, and the scene feeds into the database, this required frequent scene rebuilds just to populate the database.
This dependency is in part because of how our scene is structured, but that's a topic for another talk. While the database itself held up well, this workflow scaled
poorly as more assets were added to the game and required an asset-database-specific mode to our build system to reduce unnecessary overhead during
database refresh builds. Given the state of our scene structure at the time that we were figuring out the workflow, we didn't really have a better option, so we did
the best we could with what we had.

Missing Pieces — Editor

® \We did not have an editor
® Our sister studio, Guerrilla, did for their engine
® They gave us a copy to retrofit to our tech

() DECIMA’

b ;é,a

GUERRILLA -

Monica
Studio

Any visual scripting system needs an editor to manipulate script data. We did not have an editor. Thankfully, our sister studio Guerilla did for their engine, and were
happy to let us take a copy of their codebase. We gutted and retrofitted their technology to work with our own, and while that took alot of time upfront it also gave
us atruly priceless starting point that we leveraged into better functionality.

Missing Pieces — Editor

® Editor took longer than everything else put together
® 5 human-years of requests generated in 1month

Santa -

Monica Santa

Studio Monica
Studio

That is not to say that the editor was a small endeavor. Designers requested almost 5 human-years of features in just the first rnonth of usage alone!l Across the
whole project, the editor got by far the most work. However, we did somewhat expect this, what with us wanting a complex editor and simple interpreter.

Managing Editor Requests

® Users provided feedback through teom
ambassadors, voting on commaon pain points

® \Weekly triages of common issues with Design and
Engineering both present

® Easily accessible bug reporting within the tool itself
with encouragement to report anything seen

Santa
Monica
Studio

In order to manage the work, we had users provide workflow feedback through team ambassadors, who would organize votes on common pain points. Weekly
triages of commmon issues were set up to ensure we were getting the most bang for our buck that we could. We also added an easily accessible bug reporting tool
within the tool itself, which both tripled the number of bugs coming in and increased the quality of feedback that team ambassadors were getting — once the

average user felt empowered to provide feedback at all, they were much freer with their thoughts

Managing Editor Requests — Create Issue Buttqps

/' W Asset Manager + th_levelscriptingtests X - g

Ele Edt Vew Game Toos Window Hep

Toolbar &X Fnd (-5 4
L) 2 1
BE.c O, 0, & - = @ A e
Open Save Undo Build Hot Reload Enable Add I/0 Nodes Function Add Portal Nodes ~ Asset Browser Create Issue Global Selection Only
= = vy Attributes & X

i 0 -
T Pre-Start Fired |

level_scripting.vseditor.Diagram
v Diagram Attributes

Owner

Filename: t Chests/TrileChest/ [=
Brief Description =1 et Already Spinning | Associated WAD =
Start Disabled
Editor. Visual Script b Save Enabled State v
I
Issue Type: Choose Issue Type. ¥: Is Instanced
Blocker: (&}
Long Description:
Use Cases Set Timer |
Attachments; OAttachments 4~
Cancel
,,,,,,, e Attri In.. | SaiptVar Giobal Va, P4Histo. No H.
Error Log & X Breakpoints 8x
Info | Wamings = Erors Clear all breakpoints Breakpoint Type Al v
Name File Rem
Code Breakpoints +
Node # Rem

‘s Clear

Validation | Error Log Debug Callstack ~ Cinematic Tmeline ~ Watch Breakpoints

(Press Alt+F1 for QuickHelp)

When | said that the tool was easily accessible, |meant it — we had buttons within all common editor views, as well as a tool-wide report issue button. | spend time on
this only because of how critical getting good feedback was to our general success.

Also, this is what our editor looks like, in case you were curious. These editor requests brought us a number of powerful tools features, which | want to show off a bit.

Editor Features — Portals

® Node graphs can become unruly, wires crossing
can e hard to read, looks like literal spaghetti code

® Portals redirect logic for cleaner-looking scripts

Portalln
On Script Start Trigger

grielo word: ((ff
String < New Input>
| Heifo, world 1’/

PortalOut
Trigger
Hello, World! Message
' < New Output> ' kinfo e Severitg -
kLevels e Script Category Santa
Monica
Studio

As anyone who regularly uses node-based scripting should know, they become amess very quickly as people try to coordinate logic. To help us manage this, we
created Portal nodes, which redirect logic from one part of the graph to another. They are purely syntactic sugar, completely removed at build time, but serve an
important role at helping designers keep their scripts clean.

Editor Features — Data Portals

® Data, being one-to-many, gets special named portals
® Served os effective named references
® Quickly proliferated everywhere

ez,
Message
To Pn nt o—-"/”k—l:\f:)—: Severity

kLevels ® Script Category

(' SomeVariable

Choose By Condition

String Conditi oupn {0, :
Hello, World! True Chaloe ToPrint
False Choice
String
Goodbye, World! S-cnta
Monica
Studio

In addition to general portal nodes, we also created specidlized “data portals” which connect one source of data to as many outputs as the designers want. Again,
they are syntactic sugar, but proved invaluable in maintaining script readability. They served as both miniature functions as well as a kind of helper variable, and
ended up being one of the most used editor features.

A quick note about portal nodesis that they are not a silver bullet for messy scripts. Clean scripting will get cleaner with them, but poor scripting will be just as difficult
toread, just alittle more spread out. That said, they redlly pull alot of weight towards improved readabllity.

Editor Features — Hot Reload

® Needed a quick way to test changes from editor

® Simply replaces any currently loaded version of the
script with the new version

® Scripts only run at one point in the frame, and there’s
NO coroutines/closures, so we can easlly safely replace
SCripts

Santa
Monica
Studio

One of our biggest concerns was making sure our scripts could be effectively iterated on, as reloading the game every time you make a change is time-consuming,
so we implemented hot-reload functionality that replaces the running copy of a script with an updated version of it.

Since scripting only runs at one point in the frame and always runs to completion, we just cache any hot-reload requests until right before we run all scripts for the
frame, with no concerns for any “running” processes.

Editor Features — Force Event

® Quick way to test behavior triggered by script

® Simply set up atest case, and force it to occur directly
from the editor

ThisWillNeverFire en Edit

+~ Cut
B Copy

§ {§ Duplicate

B Paste

P Add Group Comment 13

Debug

Breakpoint

Code Breakpoint

Force Event

Force Event On Selected Creature

O Toggle Bypass

True
True WACCEp

r Add as Favorite

g ¢ Santa
L Create Snippet... Moni CG
Siar(ih StUdiO

Following the needs of Hot Reload, sometimes you want to iterate on a specific segment of scripting without performing all of the steps to get there like areal player.
We created a way to directly force an event to run to aid that iteration. As we went to close the project, we found this feature invaluable.

Editor Features — Debugger

Z W asset Manager % embed x [Il - R
File Edit View Game Tools Window Help

Toolbar 88X Find X
BR.¢ @®. 0.~ ol P 1 = =m A E 1 e e ‘

Open _Save Undo _Fedo

Build___Hot Reload Disable Ereakpoint Pause Stepin Step Over Step Out _Add /0 Nodes Encapsulate Function Add Portal Nodes _AssetBrowser Create Global Selection Only

Attributes & X
level_scriptingvseditor.Diagram <1
¥ Diagram Attributes
Owner
Associated WAD =
Start Disabled
Save Enabled State v
Is Instanced

string
EntityZone Event Occurred

atrb. | Ind. | SaiptVai. GobalVai. | PaHsiory. Nod. |

History & x

> 47 *Preparing for save (]
46 *Clearing selection.
Eretog X waih &%
Info(3) | Warnings ! Errors (10) Search
x| Name A Value Path
e L D Already Spinning false b_Jevelscriptingtests <invalid GameObject>
L18C0e(0-247-4480-2306- 1o ICBIE 10k First i Object: b <invalid GameObject>
Prink Error <b393048e-bie0 4065 54 1ceeah> " % o
‘Error <5250704 3855 45bc Blec 66c732341730> izl Eif b e e
Timer 0660132 b Jevelscriptingtests <invalid GameObject>
| Nothing nmmh:nm::h (4] = !
vaidaoon Emortog DebgCalsiack | CrematcTinelne wath | Bresipont:
Watch. View real- il is enabled. (Press Alt+F1 for QuickHelp) (Press Ctrl+Shift+F1 to Edit)

e ———————S—
Sometimes things don’t work how you expect them to, and a debugger is a very powerful way to figure out why. We support a full debugger suite. We can puta
breakpoint on any node or embedded script. Once hit, values show up for every pin in scope of the execution. We support stepping in to, out of, and over the
currently running node, with a full debug calistack helping the user track exactly where they are and how they got there,

Some Notes About Debugging...

® Everyone does it
® Any time spent improving tools will yield dividends
® Stay in contact with power users for ideas

® Breakpoint on Selected Object Only

® “Code” Breakpoints

Santa
Monica
Studio

Animportant note about debugging is that everyone who touches scripting does it, designers and programmers alike. Your debugging capabilities are often
limited by your debugging tools, so any time spent on providing stable and reliable introspection tools will pay off in the long run as you try to understand what state
your game got into. As with everything else, we dlso found it incredibly useful to understand our power user’s debugging workflows, where we could provide more
esoteric logic like ony breakpointing when anode is hit relevant to the last selected object, or triggering a scripting breakpoint whenever anode of a certain type
was hit in order to figure out where an errant usage of a node was coming from.,

Editor Features — Bypass

® “Commenting out” behavior tokes a
lot of clicks for a common operation

Normal

Show All

® | ess user inputs for common
operations is lbetter

® Compiler just skips that node, treats
as A NO-0pP

Santa
Monica
Studio

As part of the creation of the editor we also created alot of quality-of-life features One that we found particularly useful was our Node Bypass feature,
“Commenting out” anode takes alot of clicks for such a common operation what with disconnecting wires and connecting them elsewhere, and the less user
inputs for common operations the better, so we just created a shortcut to do it. If anode is bypassed, it gets faded out and the compiler just skips that node entirely
asifit was ano-op. The node also gets some markup on the flow itself to help signifyit's bypassed state.

Editor Features — Node Insertion

® Adding behavior to the middle of a flow takes o
lot of clicks for a common operation

® | ess user inputs for common operations is better

Santa
Monica
Studio

Another quality-of-life feature we added was a node insertion feature. Adding a node in the middle of an existing flow takes a lot of clicks, and as we said before
the less user inputs required for a common operation, the better. By just holding control while dragging a node onto an existing wire, the node will be automatically
insertedinto the flow.

Editor Features — Multi-Connect

® Connecting one pin to a collection of nodes is
time consuming and reguiires a lot of clicks

® | ess user inputs for common operations is better

Seguence
Sequences 0 Break Breakable
Sequences 1 Game Object
Sequences 2 Apply To Descendants
Sequences 3 All Stages

Hitter

Get Creature

Game Object Found
Creature
Not Found

Game Object Asset

® Message -

kinfo Severity Santa
kLevels e Script Category MOI’IjCO

Studio

N

Yet another quality of life feature was our multi-connect feature. If you have to introduce some new connection or overwrite a bunch of existing connections, that's
alot of clicks. In alot of places, we just used data portals to avoid this issue, but the desire for something better when we needed it still remained. At the risk of

sounding like abroken record, the less user inputs required for common operations, the better. Being able to set up many connections at once helped take care of
larger refactors when amodule’s core layout changed.

We could have chosen not to do any of these quality-of-life features, but it was important to us that we provided designers with the tools they asked for, even if we
thought that it would be used by a small subset of power users. If the designers didn't believe they'd be able to get new features, how could they trust that we'd be
able to provide critical support when they redlly needed it? You would also be surprised just how widely used many of these features were — just because you intuit
that afeature is just for power users doesn’t mean that you're right, it can be hard to predict what features become workflow staples.

Editor Features — Diff

/" M asset Manager m< -oEE
Fle Edt View Game Tools Window Help

Toobar & X Find ax
BE.o¢ ., ¢« m m E | ¥ - BB |
Open Save Undo Fedo Validate Enable Breakpoint Function ta S Gobal Selection Only

P4 History Diff aXx
Previous Revision v
Nested O Curr value v []
Filter: Position Diffs 8 Object Diffs B Name Diffs B

Selected Diffs O Minor B

Search

Path Type PrevValve CurVale

| Atwb. | Ind. | SoptVani. GobalVi. | pabstory.. | Ned. |

Error Log BX Watch &X
Warnings Search

| DebugCalstack Watch | Breakponts

(Press Alt+F1 for QuickHelp)

As development proceeded it became obvious that we needed tools that let us track how a script evolved over time. With code we use diff tools, so we created a
diff tool for our visual scripting system. At any point, a user can select what revisions they want to compare against in a special diff window, and get a printout with
highlights of all changes from a prior version of the script. If they so desire, they can open a more traditional two-window diff tool that will directly show the older
version of the script as well. Both sides of the diff mirror any changes, whether that’'s changes in the diagram’s viewport, what auxiliary window is shown, or what
nodes are selected.

Editor Features — Merge

/' MR Asset Manager

Fie Edt Vew Game Took Window Help

Project Browser

Forge Files Only

> BB GameArt

> I lib

» B Playgrounds
asdfbtree

Z jfints-data/main/GameArtjisualScripts Modules/Breakable/Breakable_LootFot. vist ipt #7/10 <text+>
sh

v Show modified files only Filter Clear
(Press Alt+1 for QuickHelp)

It turns out that once you have a suitable diff suite, merging is not too far behind. A user can start a merge from perforce like they would atext merge, using a
wrapper to forward commands to the currently running instance of the editor. Editing of the to-be-merged script is locked while the merge is underway. We go
through and create diffs of the base-to-target, base-to-source, and target-to-source versions of the file. If something was added in the target, but does not conflict
with anything in the source, it can be safely added to the merged document, and vice versa. If however, something has changed in both target and source, and

they are notidentical, that is a conflict. If conflicts arise, they are displayed to the user to resolve, A user can then make further edits to the merged script to ensure
everything is correct before it is saved out, and the user can return to perforce to complete the merge.

Some Notes About Diff/Merge...

® Merging datais hard and dangerous

® Have strong editor abstractions before doing it
® Time and labor intensive

® Worthit

Santa
Monica
Studio

There are many complexities to the merge process, including what occurs when multiple interdependent files have conflicts, but thankfully our editor abostractions
can gracefully handle missing data most of the time. If you ever determine that it can't be gracefully handled, you have a maximum-priority issue that requires an
immediate fix or else yourisk breaking user data. | say this because we ran into one very late in development, and it jeopardized trust in the merge tool as a whole.
One thing that we learned is that if your editor model and runtime model diverge at all, do the merge with the editor model's logic. Your merge toolis operating on
editor data, and must understand the rules surrounding your editor, even if it is conceptually simpler to do it as your runtime expects. This was one of the features with
the longest running total development time, clocking in at almost three months just to get it stood up with even more time dedicated to testing and bug fixing, but it
was truly priceless to development to get away from needing to exclusive-checkout our visual scripts. It is hard to overstate how much more effective we were
after this tool's creation, especially once we began making dedicated branches for playtests and release candidates.

The Last Editor Slide

® This was a ton of work!

® Required a dedicated engineer and several other
rotating contributors

® Our situation was unique
® Do not underestimate how much time to budget!

Santa
Monica
Studio

As stated earlier, this was a ton of work. In addition to a rotating group of talented contributors, it required a dedicated engineer for the entire project, to the point
where even when they were low on work our leads and directors refused to move them off due to how much work could be added at any point. Our situation and
ability to provide for our designers feels somewhat unique, given that we didn’t have to build the entire editor framework ourselves, so even though it was a lot of
work to build these features it wasn't nearly as much as if we needed to start from scratch.

Part 4: The Results

The part with performance details

Santa

Monica

Studio
T

So with all this talk of principles and editor features done, you may be wondering if we accomplished what we set out to do. We already spoke at length about the
workflow improvements, but | haven't touched much on performance numbers. | apologize, | had to build suspense somehow!

Sodidit work?

® Previous Script Budget: Std Avg 3.5ms, Max Avg 5ms

kCB_CPUProcessing

Physics kCB_Proceduraldnimation | || kC | kc || [kcB L[/||| kcB Entityser | [kC: | kCB EventServer kCE | kCB_EventServer kCB_EventServer ate ke |kt ke T [+ T kB Com [T ke ScriptSer
KCB_Physic:|[1] [1] | [BEr [Player |[Figl | kCB_WaitForEventThreac | BEHAVIOR PROCES: |] xces [Mkce Tk
L8 phy: | |- (e ece e e |3 (e mes || 1R it A
ActiveBre | |« KB AIC| || (sl
Marker Levefl|5 KEB_Solci | AlCreat | || e
Marker Level: 8 ! kCB Sol
Marker Level 7
Marker Level 8 General
<libSceMsgDislog spre Cursor 598.595ms
) Range Start - Stop 570.182ms - 613.167ms
ehasthns Range Duration 42 985ms
T User Marker (Event)
Name kCB_LuaHookCall
<ghc.pre Stack Level 6
Inclusive Duration 388.216us
“HbSeePad sprc Exclusive Duration 388.216us
. _ Inclusive Time 388.216us
> Display Limit
Exclusive Time 388.216us
N Color (= B0FF0000
Calistack Level 0 H’[]
Calistack Level: 1
Calistack Level 2 Calls 37
Total Time 3.670ms [Scheduled : 3.554ms, Descheduled : 115.816us]
b & Thresd: TaskManager03 Mean Time 99.1790s [Scheduled : 96.043us, Descheduied : 3.130us] @ X

| e
daBoe BHRaB _ = o = o o oo LD oI TIICIIITIIIoITIToTTIoTITTTTT
59.17%us [Scheduled : 96.045us, Descheduled : 3.130us]

Mean Exclusive Time

User Marker (Global) | -
b & Thread: TaskManager01 @& K

Longest Duration 2.522ms [Frame 59] "
e e —————— " el ——————————————
Shortest Duration 690.829ns [Frame 126] santq

| b
Monica

Studio

As areminder from the start of this talk, we started from a place where we spent an average of 3.5ms per frame on lua scripting just standing still, with an average
combat maximum of 5ms per frame.

Sodidit work?

® Prev Script Budget: Std Avg 3.5ms, Cmbt. Avg 5ms
® Current Script Budget: Std Avg Tms, Cmbt. Spike 2ms
® *olus another ~Ims of remaining lua

CPUProcessing
Gamey mez=UpdateParallelWithDrawListProcessir
RenderCollec | renChunk | || AnimServer T G=] | pr || Creaturemot ||| [] PhysicsServer procedura ||| Cemba: |[|| [][1 Event: [Behavicrires
{[renChuni renchunic we] | LTI TITIMML AT Avimciieni] [ani] ILaallll | [Il Frnim | [l WP T physics simutation | | [Ipcar | |} [] [om |N| |[][Praye: ||| | BenaviorTreexTic | Behavior: | &]
[1 TN o 1 goeinneri= I I I 1 1| General el pell - [postpl || [<tal [Soaic| {-Hf-—HHHHHE— - THH
(I Particie [V WL CHONC RN &t Anernaate | A RO I | Curor 72955 [N B [Lua ||
LI O OO CHOERHN- Cotl- Corisan— RN M- Range Start-Stop 7.278s-7.321s HH
Ty RIEE | BRI T 42.807ms
| | l User Marker (Event)
Name LevelScripting
S Stack Level 2
IE--IIIIIIIII-I--I—Ill-.l---ll | e e {7/ J /- [/i | |
e :
| T W T] BeveTusten s6se | I T I IR AR TR
<ibSceRazorCpu.spne- Inclugive Time 871.242us
S L R R 1 S 111 R] B R R R B H Exlc\usiveﬂme ::;?:;D -t | e [[B 1
olor
FELEI | If FIH 1 User Marker (Ranged) [| | — |
<ibSceGnmDiiver_padebug sprce
Calls 1
> Display Limit Total Time 871.242us
| Total Exclusive Tme ~ 448.653us -
T User Marker (Global)
e e T Longest Duration 1.759ms [Frame 10] Sqnt.q
Shortest Duration 464 237us [Frame 39] MOI’IICQ

Studio

At the time of shipping God of War: Ragnarok, we have an average standing-still scripting budget of Ims, which we rarely use all of, with combat spikes to 2ms. Itis
worth noting that we did not eliminate alllua, which I will cover momentarily, but we still see an almost 45% drop in processor time for the lua we did replace. You can

see inthe capture that for the selected frame, from a capture in combat, the selected frame took 0.8ms, with a maximum spike over the course of the capture of
176ms.

How about memory?

® Previous Average LuaHeaop Size: ~31mb
® Current Average Visual Script Heap Size: ~0.7mb

® Previous Worst Case Lua Heap Size at ~20mb
® Current Worst Case Visual Script Heap Size ot ~6mb

Santa
Monica
Studio

Okay, so performance is great, how about memory budget? Our previous average lua heap was around 3.1mb per level, with our current average VSheap at
around 700kb. Our previous worst case lua heap not including the Ul was almost 20mib, with our worst case visual script heap is at around émb. This doesn’t come as
much of a surprise due to how much we had to dllocate to deal with the spiky heap allocation of lua, but it's nice to know we did well We also cheat this number
quiite a bit with our shared visual script stack buffer, but even accounting for the extra megabyte we are still far better than any of our standard lua cases.

It appears to have worked!

® % The game shipped successfully! S

® |t's fast enoughl

® | ate-stage optimization wasn't too dangerous!
® \We hit a smaller budget most of the time!

® \We had noticeably less bugs come from
script instability!

® Our designers don't totally hate us! D

Monica
Studio

Overdl, this initiative seems to be a massive success. Not only did our game with More Stuff ship successfully, our visual scripting performed faster than our previous
lua implementation and with less memory. We were able to optimize systems surrounding scripting in a way we weren't able to last time. Furthermore, we had far
less bugs from script instability, all while our designers didn't totally hate us for doing itt All must be well, right?

Caveat Emptor

® % The game shipped successfully! S

® It's fast |

® | ate-stage optimization wasn't dangerous!
® \We hit a smaller budget |

® \We had noticeably < bugs come from
script instability!

® Our designers don't hate us! =

Monica
Studio

Oh, how | wish that were truel

Is it fast?

® Cutting our frame utilization by that much implies our
INnterpreter is fast

Santa

Monica

Studio
T

The first thing to address is the question of how fast our interpreter actually is. With such a large reduction you'd think that some of it comes from smart decisions in the
interpreter making it sornewhat fast at executing script

Is it fast?

® Cutting our frame utilization by that much implies our
INnterpreter is fast

® |tis not

Perf/Language on PS4 Hello World (x1000) Prime Sieve (N=100000) Mandelbrot (800x800)
C++/x86 2.807ms 0.87Ims 498./ms
Lua 5.2 (modified) 3.258ms 43.33ms N676ms (11 seconds)
SMS Visual Scripting 3.565ms 17Ims 347017103ms (347 seconds)

-

Santa

Monica

Studio

| cansay itis not. The numbers in the table you see here are taken from a shipping version of the game running on a standard PS4 devkit, with the only modifications
being whatIneeded to set up and run the benchmarks. You can see that in every case our visual scripting is orders of magnitude slower than C++ andlua alike, the
difference increasing with the scale of computation. Each benchmark implementation was as close to identical as possible, as | didn’t want to just show off how fast
SIMD instructions were in C++. Suffice to say, our visual scripting is slow at general computation.

So where does the speed come from?

® Design’s better event-based practices

® Pre-interpreter filtering efficiently skipping work
® Aggressive pre-interpreter filter acceleration

® No Garbage Collection

® General Compute !=Your Scripting Workload -

Santa
Monica
Studio

So where does the speed come from? As mentioned before, we set up our entire system to help design teams script better. Design effectively leveraged event-
based practices, meaning we ran less code overall on any given frame. Of the code that did run each frame, aggressive pre-interpreter filkering and acceleration
thereof prevented the vast majority of “waste” work from occurring. And we didn't spend one nanosecond of visual script time on garbage collection, meaning
both our average frame is lower AND we know deterministically what's happening on any particular frame,

We planned for and expected all of this from the very start, as laid out in our core principles. It just goes to show that while games do bilions of complex calculations a
second, general compute is not always a great analogy for your game'’s scripting workload, and you need to consider what you can do with your scripting
environment as a whole alongside your general interpreter semantics.

So where does the speed come from?

® Eventization allowed us to optimize other systems

® Scripting being deferred allowed us to move things
around without potential script timing issues

® Events could be sent from other threads safely

® Remaining Tms of time is either system overhead or
Ticks that we couldnt getrid of in time

Santa
Monica
Studio

It's also worth pointing out that while it’s not reflected in the numibers I've shown you directly, eventization allowed us to optimize other systems entirely. We were
able to restructure entire systems safely with respect to scripting in a way that we couldn't before, and could even move entire systems to other threads. A great
example of this is our trigger volume system (which we refer to as Entity Volumes), which was previously locked to the main thread but due to the eventization was
able to be moved entirely to a worker thread without disrupting scripting at alll Most of the remaining Tms of our average frame is a combination of static overhead
to manage the acceleration structures, and ticks that we just couldn’t remove,

Did we hit budget?

® Yes, mostly
® Sometimes heavy workloads were unavoidable

® Combat ggyld cause ~Ims spikes

[Scri]| Gameooic ||

1] T TRENEN D || Seript: gameartwisualscriptsicreaturesieinherjardymainais. | | || | || sorpt: |
General T emngger [Eecute |[ILEI [1F =
Cursor 378.678ms |
Range Start - Stop 366.077ms - 401.981ms
Range Duration 35.903ms
User Marker (Event)
elf= Name LevelScripting 10/10 0
Stack Level 2
Inclusive Duration 1.755ms
Exclusive Duration 466.936us
atsens Inclusive Time 1.759ms
Exclusive Time 466 936us
Color]
sprc= User Marker (Ranged)
Calls 1

Total Time 1.755ms -

Total Exclusive Time ~ 466.936us

User Marker (Global) SCI n t_Cl
Longest Duration 1.759ms [Frame 10] MOI’IICQ
Shottest Duration 464.237us [Frame 3] Studlio

e
In general, we were able to hit our budget. In certain segments we just had to pay the cost of extra work. Combat, for example, caused some frequent Ims spikes
while resolving events. You can see an example of such a frame in the razor capture here, where an einherjar is resolving some expensive damage event against
multiple hit targets. For the most part, the Tms spikes were eaten by general slack we hadin the frame to compensate for such one-off workloads.

Did we redlly hit budget?

® Some areas were just naturally more expensive
® Usually negotiated frame budget from other systems

! ! I ||| Seript: gameartwisualscripts\creatures\hafgufababy00\main visualsarip <]
General [Ce 0 o D T A A T O T [O TR [T
Cursor 1.138s
Range Start - Stop 1127 - 1.162s
Range Duration 3.687ms
User Marker (Event)
el Yo Name LevelSeripting 10710 0
Stack Level 2
<bkemel sprc> Inclusive Duration 1.814ms
Exclusive Duration 303.775us
<ibScelibecintemsl. sprc: e 1814ms
Exclusive Time 303 775us
e, pre-
Calor (B0F0000
<ibSceRegMgr.sprc- User Marker {Ranged)
Calls 1
* Display Limit Total Time 1.814ms -
Total Exclusive Time 303.775us
User Marker (Global) Santa
Longest Duration 2.734mg [Frame 34] H
Shortest Duration 1.814mg [Frame 24] Mor‘.lca
w & Thread: TaskManaaer04 StUC“O

There are occasionally, however, some areas that are always that bad. This example, sitting at an average of 2.Ims for the entire scripting frame. was taken standing
stillin the middle of the a fairly open area after completing a late-game sidequest, where we had 125 instances of a certain entity constantly processing to update
their position. Normally, 125 scripts wouldn't be of too much concern with our aggressive acceleration and pre-filkering, but each of them had to tick, meaning we
couldn’t do anything to avoid the cost of running them. However, this is our absolute worst “average” case, and we were able to negotiate some budget from other
systems that weren't using their full budget in the affected area.

Did we redlly hit budget?

® The worst case of our system is high compute cost
that cannot e filtered

® Script initialization after loading is such a cost
® Reset internal module states
® Error-check progression state

On Script Start

Santa
Monica
Studio

So like OnTick, any place that we can't do effective filkering means we lose most of the benefits of our system. The whole thing was built assuming that we could
elide more work than we performed, after all. While we did a good job generally getting rid of ticks, there’s another major contributor of such events: Script
initialization. On init, scripts have to handle alot of state in ways that can't always effectively be moved to code. Whether it's resetting internal states or error-
checking the game progression, the work simply must be done.

Did we redlly hit budget?

® On Script Start can't be fitered, caused 5-7ms spikes
® Worst cases approached 60ms spikes

® “Solved” the problem by breaking scripts up and
spreading safe flows over multiple frames

Santa
Monica
Studio

On average, this caused spikes of anywhere from 5-7ms, At it's worst, this meant almost 60ms spikes on base PS4 when scripts hadto perform alot of work. There are
alot of reasons for why we got here, from our engine not having great ways to define initial states, to some questionable behaviors in our save state management
over the course of development leading to an over-reliance on scripting to perform fixups. At the end of the day, the work had to be done, so we “fixed” it by
smearing less-important script initialization across multiple frames to make the spikes less severe, as you can see in the image below. The proper fix to this requires a
deep dive into why we have so much scripting running on init, and seeing what we can do to fix it for whatever we do next.

How did we optimize it?

® Expensive embedded scripts replaced with cheaper
nodes that batched operations

® “Outside the Interpeter” includes “Inside of a Node”
® N nodes -> 1node removes N-1nodes of overhead

> \ POTIC ULPULS
Game Object ¥——— % Game Objects 0 # < New Output>
Additional Game Objects &—————————4% Game Objects 1
< New Input>® Game Objects 2
True 9 Enabled
True @ Apply To Descendants

Santa
Monica
Studio

e
The natural next question is to ask how we optimized any of our scripting. One of our principles was that we wanted to spend as little time in the interpreter as
possible, as well as have a good encapsulation of common operations. The earlier “Show All” embedded script is a great example of our efforts, because it helps
show that “outside the interpreter” s flexible. By moving a set of nodes into one code-driven node, we can avoid hundreds of script operations’ worth of overhead,
whichis less time spent interpreting and more time spent doing important logic.

How did we optimize it?

® Expensive scripts were given
special attention and reworking
by programmers

® Some expensive scripts moved
completely into code

Santa
Monica
Studio

As always, this wasn't a siver bullet. Certain expensive scripts got special attention by programmers, as you can see to the right with this special-case node with over
100 inputs for a very specific evaluation. And some scripts got moved completely into code, such as the crank script that drives a number of puzzles and ran into
complexity issues, the breakable pots that are peppered throughout the world for causing too much overhead in the scripting system with over 600 running scripts
at once, and the water sluice used in specific puzzles because the script was so large that any attempt to optimize it's raw instructions’ size would have taken away
from other efforts. While we like to minimize the amount that we comandeer ownership of design’s modules, we recognize that it's sometimes necessary to get
things to ship.

How did we optimize it?

® \Where relevant, added new pre-interpreter filters to
avoid over-executing flows

® Refactoring many scripts took alot of time

® Hod to be careful not to make general cases worse
by adding filters for specific situations

® Profiler-guided optimization efforts to the interpeter

Santa
Monica
Studio

Where we could, we dlso added new pre-interpreter filkers. While we have a decent idea about what will be checked when we expose a new event by just
checking what data it outputs, we aren't perfect and sometimes we miss things. This sometimes meant refactoring large segments of scripts, and there were cases
where we ended up making other areas worse by adding extra filters that we couldn't efficiently accelerate, And lastly, as with any optimization effort, we relied on
profiler data to tell us what parts of the interpreter were the slowest, and did our best to address the worst offenders. For the most part, this was the management of
the stack, fetching values when we needed them and calling the actual node functions with them. We never attempted common interpreter optimizations like tail
call elimination in the core interpreter loop, reverse postordering of interpreter registry entries, or any sort of just-in-time operation elision, entirely out of lack of
necessity — the mere act of fetching values itself proved to dominate every other possible optimization.

Was it stable and safe?

® Once it was fully stood up, it was stable
® Assetization allowed robust trackable errors
® Negligible crash rate

® But we still had many logical errors
® Does not crash = Does what you want

Santa
Monica
Studio

The good newsiis that for the most part, the interpreter was stable. Compared to lua, where a single missing check brought down the VM, we have a truly negligible
crash rate with visual scripting. We were able to gather robust information about which scripts were referencing missing assets or were performing invalid
operations on otherwise valid assets, allowing us to stop a ton of bugs before they occurred. The majority of scripting crashes in the game come from the few
remaining usages of luain the engine.

The unfortunate side of this is that we didnt do much to affect the rate of logical errors. There were still alot of places where blocked progression occurred due to
scripting errors, like where someone exited a puzzle in an unexpected manner. The implication here is that we're still missing tools to help our design partners
structure their logic in ways that reduce efrors, and that future advancements must consider how we encourage our designers to structure logic in the system. At the
end of the day, our QA progression percentage over time looked similar between God of War (2018) and God of War: Ragnarok primarily due to these logical
errors, which is something we need to take ahard look at. We aren't keen on repeating this a third time.

Designer Perspective — Positives

® Some of our less technical and newer designers did
not feel comfortalle with text-lbased scripting

® For the groups that were included in initial discussions,

there’s positive sentiment
o

Ncreased runtime statility and commitment to
constant improvement built trust

Santa
Monica
Studio

At the end of the day, all of these tools are primarily for designer use, and feelings regarding our scripting system among our design departments are mixed. These
mixed feelings come from almost every department, and vary wildly from person to person. On the positive side, visual scripting is more approachable for less
technical designers. These days, it's not rare to find designers who may feel uncomfortable being handed a general computing language and being told to get to
work, and they greatly appreciated the move. For the design groups involved in initial discussions, we find generally more positive sentiment as their needs were
directly considered and thus experienced less friction. The increased runtime stability and our commitment to constant improvement built trust over time that also
garnered positive sentiment. These are all the things we planned for, and the things we planned for went well

Designer Perspective — Negatives

® Build/DB iteration times were frustrating

® Not all design groups were included initially

® Fidelity issues stemming from deferred events
® Some designers dont like visual scripting ot all

Santa
Monica
Studio

Unfortunately, we could not plan for everything. The aforementioned build system and asset database iteration times were a frustration that left many designers
wanting for a better solution, and generated negative sentiment towards the tools. Not all design groups that ended up using visual scripting were included in those
early discussions, and because of that they had needs that weren't met. On multiple occasions we were left scrambling for lost time trying to help those groups get
stood up, and had we known they would be using the tool, we could have planned for them better. And finally, for our combat team in particular, some of our
decisions around eventization created unexpected gameplay fidelity issues throughout the project. And some designers just dislike visual scripting as a paradigm.
As with how the things we planned for went well, the things we did not plan for went poorly.

We didn’t plan for: Our Asset DB Workflow

® Our tacked-onto-build DB was not originally shipping
® \Were unable to correct with a more general system

® | esson: Dont bet on something that doesnt exist, plan
to ship your interim solution!

ol

Santa
Monica
Studio

Aninteresting fact about our Asset DB is that it wasn't originally intended to be a shipping solution. We had intended to replace the tacked-onto-build workflow with
asystem that would dynamically listen for changes in the scene and quickly update themselves, rather than require constant rebuilds. Unfortunately, project needs
shifted, and the more general DB solution never materialized. The only reason that we were successful at all shipping our interim solution is that, from arelatively early
point in the project, we anticipated that a production-ready backup solution might become necessary, and put the requisite work into it to make it a serious piece of
engineering. While the shipping workflow was slow due to dependency on certain aspects of the existing generdlized build system to reference final game assets,
the fact that we planned for the worst while hoping for the best is one of the main reasons it shipped at all.

We didn'’t plan for: Widespread Usage

® Initially, this tool was buiilt for level design only

® Hod to scramble to rework decisions across the board
as more teams leveraged it

® Hod to build goodwill with groups initially uninvolved

Attributes 5 X
level_scripting.vseditor.Diagram
¥ Diagiain ALiNDUTes
Owner
Associated WAD

Start Disabled -

Save Enabled State v Santa
s Instannard Monica
Studio

You may have noticed in a number of ilmages in this presentation the phrase “Level Scripting” shows up. This is the name we used internally for the tools for
Ragnarok, because it was originally built for our level design team. By the end of the project, it was used for combat, narrative, progression, audio, virtually every
design group touched it. Scaling to our initial group of users went well, scaling to the entire design team brought some pain — we had to revisit adimost every decision
we made to make proper adjustments and had to scramble to build goodwill with the groups that werentinitially involved. The results speak for themselves, but
there’s still some negative sentiment.

We didn't plan for: Fidelity Issues

® \What if another system needs to tell scripts to do
something based on some specific frame”?

® Deferral to single point makes tuning difficult

Santa
Monica
Studio

One major unintended consequence of bringing groups on late were fidelity issues. Systems downstream of scripting, like our combat state machine, sometimes
wanted to send events back to script to handle complex behavior. If that behavior was visually timed to any element on screen, it became very difficult to tune
changes against a variable framerate. Our development environment doesn't always run at target, so changes that look good there may not look as goodina
final package. For a high-octane action game with as high a quality bar as God of War: Ragnarok, even a couple frames’ difference can be jarring, and deferrals
did not make our designer’s jobs easier. The two images you see here are one frame apart at 30fps, and help illustrate just how precise we try to get our timing.

Why would anyone prefer text?

® Text-based tools have alot of support
® Many different editors
® Power user tools (like regex searching)

o - .
Customizeable plugins o
— Higher information density | Feifo, World: Wﬁégw

o LeSS C"Cks print("Hello, World!™)

Santa
Monica
Studio

Lastly on our major list of complaints, some people simply prefer text. It's not hard to see why, there’s no shortage of text editors with sophisticated text manipulation
tools, whether you edit with vim, visual studio code, sublime text, or what have you. Some of our designers even wrote their own plugins for their favorite editors.
There’s amuch higher information density to text, no matter how much you try to compress a nodegraph’s visuals it’s near impossible to beat monospace font. You
do not move your hands as much with text, staying entirely on the keyboard instead of moving between the keyboard and mouse. These are hard benefits to beat,

and we did our best to mitigate these with all the editor features we provided, but personal preference is persondl.

Is there any lua left?

® Ulond Camera, ond parts of Kratos

® Ulond Camera need to do much more complex
operations in script than others

® Kratos was left in place due torisk
~Ims of the frame

|-| IIlI-II PhysicsServer [Proc][Combe || T[] [_EventSe W BehaviorTee [[T Luz_If G | Saip = || o | 1] FinalizeEmitDrawcalls -
U LI WL oo st | s T com! 111 oo (e[ITAN Lo COIT o 1| oo
oI e e e ey e n L8 W T D FOg 0
| 'l ELOIEe e 1] [m M fobenter Trmees T -
A melll (] I [henc | orov [Ghomawts |
B I G sSanta
Monica
Studio

Solastly |mentioned that there’s some lua still remaining. The primary users are the Ul and Camera, and parts of Kratos. We left these in place because we didn't think
the version of visual scripting we had could support them well. Visual script is good when we can do simple sets of operations and skip work with events. Well, our Ul
has to do some very large transformations on progression data and handle a deep and complex state machine, while our camera needs to change what sets of
cameras it’s submitting for blending every frame. Kratos was the outlier, where we simply weren't certain we could safely convert the scripts over in time without
compromising part of what made the game feel so good — another consequence of the fidelity issues. Overal, it takes an average of Ims of the frame, whichisn't
great since that's the sum of all other scripting in the game on an average frame, but we can do alot better just by continuing to develop the scripting system.

Part 5: Summary + Conclusion

God of War: Ragnardk’s Visual Scripting Solution

2zt

Il of that information out in the open, we can now fully evaluate the effects of our core principles and postmortem what went well and what didn't

Principles Summary — Running to Completion

® Coroutines Closures Registered Events!

® Simplicity saved time and eased development
® Design never requested these functionalities

® Programmer error handling provided stability

® Did not manage to reduce logical errors

Santa
Monica
Studio

From the perspective of running to completion, registered events provided the subset of behaviors we would have needed from coroutines and closures without
overcomplicating our runtime. The associated simplicity eased development significantly and helped us adhere to some of our other core tenants. Design never
requested those functiondlities back. Programmer-driven error handling also proved robust enough, giving us good hints to where things weren't going right while
also avoiding many of the problems we had with halting on null objects. However, designers still fellinto several logical traps, implying the need to look further at tools
to help designers express their logic in more controlled ways. One example may be a general state machine library, which at the time of giving this talk we are
actively investigating.

Principles Summary - Static Memory

® \We never looked back

® Designers had to manage max size of arrays,
otherwise no added complexity

® Memory overages were extremely rare
® NO GCll

Santa
Monica
Studio

e
As far as static memory goes, we never looked back. It better matched our engine, it had a far smaller footprint, memory overages were extremely rare, and we
didn’t have any garbage collection whatsoever. The lack of memory overages drastically dropped our remaining scripting error rate. The one downside is that

designers had to manage the maximum size of their arrays, but otherwise there was no added complexity. The limits on static memory usage did mean that it was
sometimes harder for design to structure their own state machines, but programmers often stepped in to assist.

Principles Summary — Eventization

® Pre-interpreter filtering worked out wel

® Opportunities for aggressive acceleration

® Gave usthe freedom we needed to optimize

® Fidelity with downstream systems is an ongoing issue

Santa
Monica
Studio

On eventization, things went mostly to plan. Pre-interpreter event filktering and aggressive acceleration likely account for almost all of our performance gains over
lua between reducing OnTick polling to near-zero and moving some of the most expensive interpreter operations to after the first few early-returns. lt gave us alot
of freedom to optimize other systems too by ensuring that everything runs at one point in the frame. It was so efficient that all but a few special case events are
broadcasts, rather than targeted function calls' However, as we extended the tool for use with other design teams, fidelity issues became a concern. A door
opening a couple extra frames after Kratos finishes interacting with a crank is one thing, a projectile spawning in an enemy’s hand a couple frames late as it hurls a
baseball-sized fireball at Kratos is going to look weird. We need to investigate ways to keep the benefits of our limited frame execution while addressing these
fidelity issues. The performance gains associated with this approach speak for themselves, but pose an interesting question with the work that could not be elided,
such as OnScriptStart logic, as to what logic belongs in scripting at dll.

Principles Summary — Composability

® \Worked pretty much how we wanted it to

Jvoid GemeModulelLootPotClient::OnBreakableBr
{

oken()

TriggerRumble();
// only Kra ent this labor
1 if (goPlayer:: etCreature()->GetNameHash() == CreatureNames::gKratosHash)
1
progression: :Tacts::IncrementFact(cFactName, 1.T);
stdNameHash conditionHash;
1 switch (m_lootType)
{
case LootPotType::Hacksilve
conditionHash = cHacksilverLootCondition; on Script Pre Start
mark used
: 1 ipti 1 j i i 00 ot: Se 00 ype
svrRoot: :GetlevelScriptingServer()-»MarkObjectAsUsed(GetUniqueGameObjectId()); Loot Pot: Set Loot Type
SaveGame: :QueusSottSave();
break;
case LootPotType::Health
conditionHash = cHealthLootCondition;
break;
case LootPotType:: =
conditionHash = cRagelootCondition;
N("Unhandled loot type!™);
/ grant loot condition
1 if (progression::LootRollResult* result = progression::loot_manager::GrantCondition(conditionHash, nullptr))

* distribute

progression: : loot_manager: :DistributelootRollResult(result, clLootDistributor, GetOwnerGameObject(), nullptr);

svrRoot: :GetLevelScriptingServer()->0nL

Santa
Monica
Studio

ootPotBroken(*GetOwnerGameObject());

On composability, this worked almost exactly how we wanted it to. Programmers were able to take entire modules that were previously in script and seamlessly
move them into code when necessary, while designers were able to effectively organize their own scripting. The example you see on screen now is a good portion
of the loot pot module that was previously just under a hundred nodes that would be instantiated hundreds of times in each visual script, reduced down to asingle

interface for when we needed
were imperfect. Treating embe
copied hundreds of times — we

to override specific loot pots with behavior. Proper encapsulation of scripting paid huge dividends, even when design’s abstractions
dded scripts as macros also didn’t cause too many problems with the size of our scripts, even though some sets of nodes were
still had our total allocation far under what existed for lua.,

Principles Summary — Assetization

® Saofer runtime lookups and error tracking

® Design requested more of this at every opportunity
® Build limitations meant increased DB iteration time
® Time spent on interim solution well worth it!

ol i

Santa
Monica
Studio

Assetization was a mixed bag. On the one hand, we had safer runtime lookups and error tracking, and design seemed eager to request more of this at every
opportunity for the tracking and editor functionality benefits. Putting serious engineering effort into ensuring our asset database solution was consistent and robust
paid off and provided us the tools necessary to provide all of that tracking and editor functionality. On the other hand, while powerful, certain limitations of our build
system itself are inherited by our asset database and create a cyclical build dependency that exacerbated dlready frustrating build times. Work is already
underway to address these limitations in order to provide up-to-date asset info without committing to a full scene scan.

Principles Summary — Simple Interpreter

® Syntactic sugar was easy to manage
® A/Btesting complex changes against stable runtime

® Simplicity leads to stability, stability leads to trust, and
users MUST trust their scripting language

® \We provided a well-featured editor

® *n large part from the generosity of our sister studios
-

Santa
Monica
Studio

On having a complex editor for a simple interpreter, this tradeoff paid off big. A/B testing complex changes against a simple runtime routinely paid off in allowing us
to make complex changes to our tools to better serve our designers, including any change where we introduced some new form of syntactic sugar. Whether it was
portal nodes, embedded scripts, exotic non-standard default behaviors, or whatever else, having a simple runtime to target helped us validate that everything was
as we expected it to be. Simplicity leads to stability, stability leads to trust, andif you ever lose that trust you are never going to get it back. Despite all conventional
wisdom to the contrary, we were able to provide a well-featured editor with a single dedicated engineer and a few other contributors, though whether we could
have done it or not without Guerrilla” generous donation of code is unknown

The Date was November 9, 2022...

® Including taking a close look at our
scripting systems

We end our story right after God of War: Ragnarok shipped, when we held a postmortem of our various technologies. The process took a lot of time, but helped us
understand where we were and where we wanted to go. Given it's prevalence in 2018's postmortem, we wanted to take a hard look at our scripting systems and
their complications

The New Complications — Spikes

® |t hos large spikes... but we con make it faster
® None of it's principles are interpreter-dependent
® \We can swap the interpreter for an x64 backend

® \We con create better tools to define initiol gome
state and avoid OnScriptStart

Santa
Monica
Studio

The first problem is that the system has some notable very large spikes. Specifically surrounding OnScriptStart, but in general combat events doing a lot of processing
can get quite bad as well The good news is that we can make it faster. AllI've discussed in this presentation regarding performance is event-driven programming
and the importance of good acceleration structures, none of that is language dependent. We could swap the current interpreter backend for something alot

faster, like LLVM x64, and we can investigate better tools external to scripting for defining initial states of modules so that we can avoid so much logic running on
script start.

The New Complications — Tools Support

® The tools are limited... but we can iterate on them
® We're not going to stop providing editor support
® We'e fixing the Asset DB iteration times
® \We're talking about better ways to structure logic

Santa
Monica
Studio

The second problem is that our tools are limited. But it's not like we're going to sit on what we have, we're going to keep improving our editor, and were actively
building solutions to our build iteration times which will keep our asset database updating as fast as possible. And we're going to find better ways to structure logic so

that we can reduce the number of logical errors our designers have to contend with as well. We won't be satisfied until scripting the game is as easy as speaking
one’s own first language.

The New Complications — Fidelity

® Delays make tuning hard... but we can fix that
® Cleaner mechanisms to avoid deferral
® Potentially running scripting more than once
® Bt still ot defined safe points!

Santa
Monica
Studio

The third problem is the fidelity issue, but there are relatively straightforward ways to fix that. We can create cleaner mechanisms to avoid unnecessary deferrdls.
We're also not above potentially running scripting more than once in the frame, so long as the points in the frame we run it at are safe to do so rather thaninthe
middle of other systems. The solutions to this problem will need to be considered carefully, but they are eminently solveable.

Conclusion

® There are different problems, but we think theyre
solvable without changing languages again

® The system is measurably more efficient and stable,
with a smaller memory footprint

® We believe we made the right choice

® “It's a miracle this system came together as well as it
did” - Jon Burke, Gameplay Tech Director, GOW'R

Santa
Monica
Studio

In conclusion, at the end of the day, we face different problems than we did with lug, but we think we can solve those problems. Compared to lua, where we
thought we had hit a dead end, this is an immensely better place to be. In addition, the system is measurably more efficient and stable by any metric that we
actually care about. We believe that we made the right choice and did afine job with it. The tech director overseeing the project once dedared it amiracle that
the system came together as well as it did, that major game systems do not typically come online and function this well within a single project. Hopefully this talk
gives you enough information to repeat this miracle for your own team, solving your own problems.

A Team Effort

Josh Phelan (Editor owner, runtime interpreter, event dispatching, compiler, codegen, visual script frontend for diff/merge, debugger,
optimization, touched almost everything really)

Sam Sternklar (Runtime interpreter, event dispatching, compiler, codegen, engine interface, diff/merge core, editor work, optimization)
Darren Rannali (debugger, profiler, asset database integration)
Phil Wilkins (codegen, eventization scheme, initial interpreter)
Fernando Secco (optimizations and misc. bug fixes)

Sam Willis (Initial ediitor build-out)

Jeff Miller (diff/merge core)

Yanbing Chen (additional editor support, diff/merge core)
Koray Hagen (asset database integration, build assistance)
Enrico Gasperoni (nitial concept, runtime interpreter)
Federico Bianco-Prevot (codegen and schema framework)
Paolo Costabel (codegen and schema framework)

Jon Burke (Director oversight)

Mike Grattan, Fatir Ahmad, Rob Meyer, Adrian Lopez, Adam Oliver, Alex Ortiz, Rene Nones, Henry Lee,
Marc Nguyen, Vicki Smith, Zach Bohn (Design Council)

Maitty Studivan, Tina Sanchez-O’Hara, Dustin Dobson, Katie Tigue, Bobby Garza (Production support) Santa

® Guerrilla (editor framework) Monica
Studlio

Before we end off, it's worth taking a moment to acknowledge everyone who contributed to the visual scripting solution. It would not have been possible without
the contributions of every single person on this list, and every single one of them deserves credit for their craftsmanship. | want to give a special acknowledgement
to Josh Phelan, who has done so much quality work that he has become synonymous with the visual scripting initiative within the walls of SMS.

i
Santa Monica Studio

Our journey
Your story

We're hiring for what's next!

We're expanding our family across disciplines and would love
to meet you. Please visit sms.playstation.com/careers for all
openings or drop us a line at sms.recruiting@sony.com

@ santamonicastudio , @ SonySantaMonica “ @ santamonicastudio

And finally, if anything |just spoke about looked interesting or cool to work on, we're hiring!

http://sms.playstation.com/careers
mailto:sms.recruiting@sony.com?subject=We're%20Hiring%20Inquiry

JOIN US AT GDC 2023 %Q& OF’W&%

SCHEDULE.GDCONF.COM
C NN R

% e BRUNO VELAZQUEZ ¢ ANIMATION DIRECTOR STEPHEN MCAULEY + LEAD RENDERING PROGRAMMER

DAVID GIBSON ¢ ANIMATION DIRECTOR : Rendering War arék’ e Programming

ERICA PINTO ¢ LEAD NARRATIVE ANIMATOR WEDNESDAY. MARCH 22 # 2:00PM - 3:00PM ¢ ROOM 303, SOUTH HALL
7 MEHDI YSSEF ¢ LEAD GAMEPLAY ANIMATOR
e %V Animation in ‘God of War Ragnarék’ e Animation Summit - ERIC GOTTESMAN ¢ SR STAFF DEVOPS ENGINEER

& MONDAY, MARCH 20 9:30AM - 10:30AM ¢ ROOM 303, SOUTH HALL Modernizing multiplayer services for .
Production & Team Leadership ¢ Prese

SUE PACETE ¢ SR USER RESEARCHER WEDNESDAY, MARCH 22 ¢ 2:00PM — 3:00PM o GDC PARTNER STAGE, EXPO FLOOR NORTH HALL
Playtesting God of War Ragnaroék A sibility Options ¢« UX Suminr
MONDAY, MARCH 20 o 1:20PM - 1:50PM ¢ ROOM 2001, WEST HALL

SAM STERNKLAR ¢ SR PROGRAMMER
‘God Of War Ragnarok’s’ Visual Scripting Solution ¢ Programming
THURSDAY, MARCH 23 ¢ 10:00AM - 11:00AM ¢ ROOM 2006, WEST HALL

PAOLO SURRICCHIO ¢ SR STAFF PROGRAMMER
Reinventing the Wheel for Snow ringe Advanced Graphics Summit
MONDAY, MARCH 20 o 1:20PM — 2:20PM ¢ ROOM 301, SOUTH HALL

ADAM OLIVER ¢ SR COMBAT DESIGNER

riers: Combat A bility in

THURSDAY, MARCH 23 ¢ 2:00PM - 2:30PM ¢ ROOM 2002, WEST HALL

] of War Rag

BEN HINES ¢ SR STAFF DEVOPS ENGINEER
Automated Testing at Santa Monica Studio e Tools Sumrr
MONDAY, MARCH 20 o 4:40PM - 5:10PM ¢ ROOM 3004, WEST HALL

GOKSU UGUR + Al LEAD
Practical Tools for Transitioning Into L rship Roles ¢ Leadership
THURSDAY, MARCH 23 ¢ 2:00PM — 2 30PM ¢ ROOM 303, SOUTH HALL

XUANYI ZHOU ¢ PROGRAMMER

Real- al T
Machine Learning Summit
TUESDAY., MARCH 21 & 2:10PM - 2:40PM ¢ ROOM 2010, WEST HALL

ZACH BOHN ¢ SR STAFF TECHNICAL Ul DESIGNER
God of War Ragnarék’: Bu ng The Ul For a AAA Title ¢ De
THURSDAY, MARCH 23 ¢ 4:00PM - 5:00PM ¢ ROOM 303, SOUTH HALL

ETHAN AYER ¢ SR ENVIRONMENT ARTIST

The Art of Making Vistas ¢ Art Sumrr SALAAR KOHARI ¢ PROGRAMMER

TGP

TUESDAY, MARCH 21 # 3:00PM — 3:30PM o ROOM 3007, WEST HALL Companion Traversal in ‘God of War R) e,
FRIDAY, MARCH 24 ¢ 10:00AM - 11:00AM ¢ ROOM 2002, WEbT HALL
GOKSU UGUR ¢ Al LEAD
Preparing Al Systems For God o r Ragnardk ePr ning TENGHAO WANG ¢ SR PROGRAMMER
6 WEDNESDAY, MARCH 22 ¢ 9:00AM - 10:00AM ¢ ROOM 303, SOUTH HALL Joint-based Skin Deformation in ‘God of War Rc Ok’e Programming
FRIDAY, MARCH 24 ¢ 1:30PM - 2:30PM ¢« ROOM 2006, HALL
X VICKI SMITH ¢ SR STAFF LEVEL DESIGNER
‘@r The Final Battle of "]« d of War Ragnaroék’: Techniques For Delivering HARLEIGH AWNER ¢ TECHNICAL NARRATIVE DESIGNER
High-stakes Seque >s ¢ Design How to Build a Home: Designing Narrative For Sindri’s House in ‘G of o]

Ragnardk’s Des
FRIDAY, MARCH 24 ¢ 3:00PM - 3:30PM ¢ ROOM 2001, WEST HALL

-
Santa Monica Studio GODC

\I\/EDNESDAY MARCH 22 ¢ 10 EOAN\ - 11:00AM ¢« ROOM 2002, WEST HALL

ﬂ@@@)ﬁmﬂiﬁ!

Thank You!

God of War: Ragnardk’s Visual Scripting Solution
By Sam Sternklar

LinkedIn: ssternkiar

Twitter: @Aureon/1

-
Santa
Monica

Studio stubpios

That's it. Thank youl

	Slide 1: God of War: Ragnarök’s Visual Scripting Solution
	Slide 2
	Slide 3
	Slide 4: What is this talk?
	Slide 5: Part 1:Why?
	Slide 6: The date was April 20th, 2018...
	Slide 7: God of War (2018)’s Lua Scripting Solution
	Slide 8: The Complications
	Slide 9
	Slide 10: The Complications
	Slide 11: The Complications
	Slide 12: The Complications
	Slide 13: The Complications
	Slide 14: The Complications
	Slide 15: So where does that leave us?
	Slide 16: Part 2: Guidelines and Details
	Slide 17: Basic Constructs – Flow Nodes
	Slide 18: Basic Constructs – Data Nodes
	Slide 19: Basic Constructs – Event Nodes
	Slide 20: Basic Constructs – Variables
	Slide 21: Basic Constructs – Embedded Scripts
	Slide 22: Core Guidelines
	Slide 23: Run to Completion – Errors
	Slide 24: Run to Completion – Closures/ Coroutines
	Slide 25: Static Memory Usage
	Slide 26: Events and Eventization
	Slide 27: Events and Minimizing Interpreter Time
	Slide 28: Events and Minimizing Interpreter Time
	Slide 29: Encouraging Event-Based Scripting
	Slide 30: Composable Scripts
	Slide 31: Composable Scripts – Behaviors
	Slide 32: Composable Scripts – Modules
	Slide 33: Assetization
	Slide 34: Assetization – The Asset Database
	Slide 35: Assetization – Relative Assets
	Slide 36: Complex Editor, Simple Interpreter
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Part 3: Tools and Tech
	Slide 42: Missing Pieces – Asset Database
	Slide 43: Missing Pieces – Asset Database
	Slide 44: Missing Pieces – Editor
	Slide 45: Missing Pieces – Editor
	Slide 46: Managing Editor Requests
	Slide 47
	Slide 48: Editor Features – Portals
	Slide 49: Editor Features – Data Portals
	Slide 50: Editor Features – Hot Reload
	Slide 51: Editor Features – Force Event
	Slide 52
	Slide 53: Some Notes About Debugging...
	Slide 54: Editor Features – Bypass
	Slide 55: Editor Features – Node Insertion
	Slide 56: Editor Features – Multi-Connect
	Slide 57
	Slide 58
	Slide 59: Some Notes About Diff/Merge...
	Slide 60: The Last Editor Slide
	Slide 61: Part 4: The Results
	Slide 62: So did it work?
	Slide 63: So did it work?
	Slide 64: How about memory?
	Slide 65: It appears to have worked!
	Slide 66: Caveat Emptor
	Slide 67: Is it fast?
	Slide 68: Is it fast?
	Slide 69: So where does the speed come from?
	Slide 70: So where does the speed come from?
	Slide 71: Did we hit budget?
	Slide 72: Did we really hit budget?
	Slide 73: Did we really hit budget?
	Slide 74: Did we really hit budget?
	Slide 75: How did we optimize it?
	Slide 76: How did we optimize it?
	Slide 77: How did we optimize it?
	Slide 78: Was it stable and safe?
	Slide 79: Designer Perspective – Positives
	Slide 80: Designer Perspective – Negatives
	Slide 81: We didn’t plan for: Our Asset DB Workflow
	Slide 82: We didn’t plan for: Widespread Usage
	Slide 83: We didn’t plan for: Fidelity Issues
	Slide 84: Why would anyone prefer text?
	Slide 85: Is there any lua left?
	Slide 86: Part 5: Summary + Conclusion
	Slide 87: Principles Summary – Running to Completion
	Slide 88: Principles Summary – Static Memory
	Slide 89: Principles Summary – Eventization
	Slide 90: Principles Summary – Composability
	Slide 91: Principles Summary – Assetization
	Slide 92: Principles Summary – Simple Interpreter
	Slide 93: The Date was November 9, 2022…
	Slide 94: The New Complications – Spikes
	Slide 95: The New Complications – Tools Support
	Slide 96: The New Complications – Fidelity
	Slide 97: Conclusion
	Slide 98: A Team Effort
	Slide 99
	Slide 100
	Slide 101

