
Grappling With Performance: 
Rendering Optimization Strategies In Rumbleverse

Jon Moore
Graphics Engineer
Iron Galaxy Studios

Hello everyone, I’m Jon Moore, I work as a Graphics Engineer at Iron 

Galaxy Studios, and I’d like to welcome you to my talk “Grappling With 

Performance: Rendering Optimization Strategies in Rumbleverse”



Rumbleverse
•40-Player Battle Royale

•Melee Combat

•1 km x 1 km Island Arena

•Performance target: 1080p 
60 FPS on PS4

•Shipped on Unreal 4.27.1

If you’re not familiar with the game, Rumblerse is a 40 player battle royale 

game featuring primarily melee combat on a 1km squared island arena.

Our gold standard performance target for the game is 1080p + 60 FPS on a 

base PS4 – with the game shipping across both generations of Sony and 

Microsoft consoles.

And an important detail to note – we are an Unreal licensee, and the game 

shipped using Unreal version 4.27.1, but using an engine that is not 

developed internally at IGS doesn’t discourage me from finding plenty of 

optimization opportunities for the game, which is the motivation for this talk 

today



Optimization 
Philosophy

•Choice of Engine doesn’t affect 
optimization potential – your content 
creates opportunities and exposes 
limitations of the engine

•The fastest wavefront is the one you 
never launch

•Everything worth doing in life is at 
least an 0.1 ms speedup

Before getting into specifics, I think I should preface with my personal philosophy 
on optimization, especially as it relates to work done on the GPU. These are ideas 
that formed before I started working on Rumbleverse, but my experiences here 
have only further solidified these beliefs.

First and foremost, I think there is optimization potential anytime an engine is not 
built from scratch for a particular game. It is always useful to reflect on how your 
specific content might allow the engine to be modified/configured to run it most 
efficiently. This is very true with a widely licensed engine like Unreal, but I’ve seen 
this with shared engine tech used internally between teams, or even just when 
building off the engine used for a previous game on a new project that is not a 
direct sequel.

Secondly, I have over time come to appreciate that culling out redundant/unneeded 
work on the GPU is something that can be gone back to again and again when 
looking for gains. In the simplest sense, it’s making sure that every wavefront 
running on the GPU is actually contributing to the final image.

Finally, whenever I am working on a 60 hz video game, I generally use 0.1 ms as 
my measuring stick for if an optimization is worth doing. Less than that, and I will sit 
on a change as not being worth the risk of modifying the engine. 0.1 ms is often my 
sweetspot of feeling like a change is worthwhile and enough 0.1 ms changes added 
together will eventually make a big impact. 



Part 1: 
Proactive Optimizations

From day 1 of my time on Rumbleverse – rendering was my primary focus, 

and I wanted to make an impact on the game to ensure we could push our 

look to the best it could be. This was in service of allowing artists to build 

richer environments, have more detailed materials, and avoid dynamic 

resolution drops as much as possible. This first section is focused on 

optimizations made proactively in pursuit of this goal as we set-up our initial 

configuration of rendering features across our target platforms.



Reflections + Subsurface

Let’s start by looking at the 2.4 ms stretch of frame time in Razor on PS4 

that I found myself looking at early on in development, where reflections and 

subsurface scattering are handled in stock UE4. All parts of this time were 

decided to be pretty important to the look of our game, and I wanted to try to 

reduce its cost as that is 14% of a 16.6 ms frame time.



Here is the scene in question that the trace is from. I’ll revisit this in a bit, but 

it’s pretty standard for us: we have some foliage, a character, some sky, 

some shiny metallic objects, and some reflective windows.



Let’s go back to that stretch of time in Razor with the wavefronts colored by 

batch.



Env Lighting Apply: 1.21 ms

This long section in the middle is the Env Lighting Apply pixel shader, 

clocking in at 1.21 ms. This is where indirect diffuse, specular, and 

skylighting is combined together after the direct lighting is handled by the 

deferred lighting loop.



Env Lighting Apply: 1.21 ms

SSR Trace: 0.41 ms

Before that, Screen Space Reflection tracing takes 4 tenths of a ms



Env Lighting Apply: 1.21 ms

SSR Trace: 0.41 ms Subsurface: 0.79 ms

And this time after Env Lighting Apply is 0.79 ms on subsurface scattering



Env Lighting Apply: 1.21 ms

SSR Trace: 0.41 ms Subsurface: 0.79 ms

UAV Clears

Subsurface Setup

Sep Blur
Recombine

If you’re not familiar, SSS in this version of Unreal clears some UAVs, does 

SubsurfaceSetup which does tile classification and downsamples the 

subsurface to half res, and then dispatches compute shader batches for tiles 

based on the subsurface algorithm selected by tile classification. 

And then finally there is a recombine with the Scene Color after the blur. 

Classifying by algorithm was added to Unreal after our character look was 

developed, so our tiles all fall into the path using Screen Space Separable 

Subsurface – based on the technique developed by Jorge Jimenez

Separable Subsurface Scattering and Eye Rendering by Jorge Jimenez: 

http://advances.realtimerendering.com/s2012/activision/Jimenez-

Separable_Subsurface_Scattering_and_Eye_Rendering(Siggraph2012).pptx



Tile Classification
•Original Idea: improve occupancy in reflection 
apply by using tile classification

•Inspired by Ramy El Garawany’s presentation: 
Deferred Lighting in Uncharted 4

•Algorithm: 
1. analyze GBuffer
2. build lists of tiles based on material properties
3. render each using different shader 
permutations + DispatchIndirect

Mentioning tile classification on SSS is an interesting launching point to how 

I approached improving these systems. Naughty Dog first presented a 

version of the tile classification technique for reducing per-tile cost of their 

lighting in the talk Deferred Lighting in Uncharted 4 from Siggraph 2016.

I thought that the heavy time spent on reflection apply could be optimized in 

a similar way here. I would write a tile classification shader that looked at the 

Gbuffer properties of an 8x8 group of pixels and build lists based on the 

materials present. Then each list can be rendered using DispatchIndirect

with the different shader permutations bound to each dispatch.

Deferred Lighting in Uncharted 4 by Ramy El Garawany: 

http://advances.realtimerendering.com/s2016/s16_ramy_final.pptx



SHADINGMODELID_TWOSIDED_FOLIAGE

SHADINGMODELID_DEFAULT_LIT

So for example in this frame we can pretty clearly see groupings of pixels 

that are all default lit or twosided foliage.



SHADINGMODELID_TWOSIDED_FOLIAGE

SHADINGMODELID_DEFAULT_LIT

And here you can see a visualization of the tile classification in practice. The 

green tiles are default lit, the blue is all foliage, and the red contains a 

shading paths that are “complex” and run the full shader



SHADINGMODELID_TWOSIDED_FOLIAGE

SHADINGMODELID_DEFAULT_LIT

UNLIT

However, the most important thing this work took me to was the unlit tiles 

here, tiles that are culled entirely had the biggest impact on the running time. 

This got me thinking about how the tile classification could be used for 

culling workload from SSR + SSS as well, and that cost of running the 

classification would be shared across multiple steps of our rendering.

Remember, the fastest wavefront is the one you never launch!



Tile Classification 2.0
•Better Idea: skip empty waves in multiple passes 
based on a single classify step

•Cull unlit (skybox tiles) from everything

•Skip SSR trace on tiles above roughness 
threshold

•Skip SSS on tiles with no skin materials in them, 
run required clears with simplified shader 
permutation

So here’s the updated plan: cull unlit tiles from all of the passes, add a 

classification for if all the pixels are too rough to trigger SSR traces, and skip 

SSS on tiles with no skin materials on them, and run a simplified clear on 

tiles that need to be cleared but don’t need the full SSS set-up.



Tile Classify Shader

Read GBuffer

WaveOp Bitwise 
Or+And

let’s walk through a little bit of what is happening in the Tile Classify shader 

code. Classification happens on 8x8 tiles, but each group covers a 16x16 

area because subsurface scattering is happening at half res. After sampling 

the gbuffer properties with UE4’s GetScreenSpaceDataUint function, I use 

wave ops to merge the bitmasks for each 8x8 tile together.

You can see that in the code this happening with the UE4 shader API 

commands WaveAllBitOr and WaveAllBitAnd. After these wave ops, each 

thread in the wavefront is going to hold the same mask value in 

MergedResult.

One benefit to using wave ops is that the logic following the wave commands 

is all going to be scalar ALU, as the compiler knows MergedResult is going 

to be uniform across the wave



Tile Classify Shader

Select Tile 
Permutation

Increment 
Indirect Arg

Write Tile 
Location

Then the shader permutation for the tile is selected based on the bits held in 
the MergedResult across the whole wave, and the result is written out by the 
first thread. An interlocked add occurs on the counts which gets a unique 
index for the tile that maps to the Tile Locations Buffer, which holds the pixel 
location for a given tile on the screen and will be used to reconstruct the 
pixel locations for each tile in the apply shaders.

Note that I selected 8x8 tiles because those are the size of 1 wavefront (64 
threads) on GCN. Uncharted 4 used 16x16 tiles – which cuts the memory 
needed for the tile lists to 25%. Tile location lists require memory equal to 
max tile count * permutation count. 8x8 tiles will allow tighter bounds on 
expensive material paths. I’ve opted for 8x8 partly because our permutation 
count is more limited. For example, it’s in my backlog to try adding a path for 
tiles that contain foliage and default lit, as that is our most common boundary 
case falling into the complex path, but that would require more memory.

We have 10 shader permutations currently – which results in a 1.296 mb tile 
locations buffer for 8x8 tiles at 1080p. I should be able to reclaim 48 kb if I 
didn’t over-allocate for the half-res tile lists, but most of the memory is 
coming from the 8 permutations used for SSR+Reflection Apply



It’s worth noting – one really great thing about this shader is that those calls 

to sample the gbuffer properties all map back to just a single texture read. 

Epic has conveniently already packed all that information into just one 

Gbuffer target for us, which holds both Roughness and Material ID, which 

I’m showing for my shot here.



Tile Classify: 0.18 ms

Now back in razor let’s look at the cost of running this classification shader –

it takes a modest 0.18 ms on a base PS4 at 1080p, and can execute as 

soon as the decals are done modifying the gbuffer



Async Tile Classify: ~0.08 ms

And we can actually do better, this classification job very nicely overlaps with 

shadow depth rendering using async compute, here you can see it 

overlapping with some vertex shading work before some pixel shader waves 

for masked materials run. This is frame dependent, but I generally see 

running it async save ~0.1 ms of frame time which makes the cost 

approximately 0.08 ms on a PS4.



Env Apply Shader

Overwrite Shading 
Model  ID

Read GBuffer

Reconstruct 
Tile Location

Before we look at the performance of the apply steps – let’s look at just the 

compute shader apply for Environment Lighting apply. This was just a full 

screen pixel shading pass in the original implementation, and this compute 

shader path runs using repeated calls to DispatchIndirect with different 

shader permutations.

The shader begins by using the GroupId to look up into the tile locations 

buffer and then unpacking to an individual pixel location based on 

GroupThreadId. You can see here that after the Gbuffer is read, an overwrite 

of the ShadingModelID will allow the optimizer to perform dead code 

elimination based on the preprocessor macros defined based on the shader 

permutation.



Env Lighting Apply: 1.21 ms

SSR Trace: 0.41 ms Subsurface: 0.79 ms

UAV Clears

Subsurface Setup

Sep Blur
Recombine

Now we need to look at what this 0.08 ms is buying is in the application of 

SSR, Reflection Environment, and SSS. Here is the original sequence of 

shading that I showed before.



And here is our new frame.



TiledReflectionApply: 1.08 ms

Here we have the Tiled Reflection apply shader at 1.08 ms, an 0.13 ms

improvement. About half of this benefit is from culling sky pixels in this 

frame, so not really worthwhile in frames without sky pixels. One micro-

optimization I would point out here is that I have slower waves with lower 

occupancy ordered first after the initial barrier and then have the fastest 

waves at the end. This helps reduce cracks between the batches – believe 

this is from lower occupancy waves waiting on more registers to become 

available. The lower occupancy waves also tend to be longer running, so 

putting the fastest batch last helps to ensure work drains quickly before the 

next barrier.



TiledReflectionApply: 1.08 msSSR Trace: 0.11 ms

While TiledReflection apply is getting a small benefit, Screen Space 

Reflections is conversely seeing a really good benefit. 0.3 ms better and that 

is actually a conservative improvement because the waves are getting better 

overlap with DFAO history update. There is no need for a barrier as these 

are writing to separate buffers that both feed into the reflection apply. These 

results with SSR were what first gave me confidence that this was going to 

be a worthwhile optimization



TiledReflectionApply: 1.08 msSSR Trace: 0.11 ms Subsurface: 0.21 ms

And then Subsurface after the reflection apply, which also sees a huge 

improvement, 0.58 ms better. 



TiledReflectionApply: 1.08 msSSR Trace: 0.11 ms Subsurface: 0.21 ms

Recombine

Sep Blur
Tile Clears

Subsurface Setup

Here you can see the set-up and tile clears get really nice overlap with the 

tile clears having much shorter waves than the full setup shader. The blur 

steps are similar from the stock tile classify and the recombine is very fast as 

only tiles with skin in them are run.



Env Lighting Apply: 1.21 ms

SSR Trace: 0.41 ms Subsurface: 0.79 ms

UAV Clears

Subsurface Setup

Sep Blur
Recombine

Now that I’ve laid all this out – just a reminder again with what these passes 

were before.



TiledReflectionApply: 1.08 msSSR Trace: 0.11 ms Subsurface: 0.21 ms

Recombine

Sep Blur
Tile Clears

Subsurface SetupTotal Savings: 0.92 ms

And back to our results. This is a total savings of ~1 ms from these passes, 

although obviously those benefits will vary based on the scene composition, 

0.92 ms total for this shot once you subtract the classification cost



Water Stenciling

I just spent an amount of time talking up the virtues of tile classification, but 

sometimes it’s just not the right tool for the job. I want to take a moment to 

show a small example where just using the stencil buffer is a better idea.



Consider this shot on PS4 at the edge of our Island. UE4’s water system is 

really nice out of the box, and is taking up a reasonable number of pixels in 

this frame. The water is taking 1.1 ms to render on PS4.



Refraction Water Mesh

The water system first copies the scene color out to a secondary buffer and 

applies fog – this is for refraction. Then the water mesh renders to the full 

gbuffer like a regular opaque draw. Having an updated depth buffer has 

benefits for TAA in particular.



Refraction Water Mesh Tile Classify: 0.13 ms

Dispatch Indirect 
SSR+Composite

Then a classify is done on the gbuffer, very similar to what I did with 

reflections and subsurface, and just like before, Dispactch Indirect is used to 

run SSR and Composite only the tiles that were classified as having water in 

them



Water writes Stencil 0x40

However, if you think about it – we’re actually doing a visibility test with the 

water mesh right before tile classify when it is rasterizing with ztest enabled 

– what we can do instead is simply mark a stencil bit when the water mesh is 

rendering and then enable the stencil test after. You can see here that we’ve 

set the stencil to write 0x40 to the water pixels that pass the depth test.



Water Mesh (marks stencil)

Draw SSR + Composite 
(stencil test enabled)

Total Savings: 0.1 ms

Here’s what happens in razor - the tile classify is now missing between 

rendering the water mesh and handling SSR+Compositing. This saves 0.1 

ms for very little effort, we don’t get the full 0.13 ms of the tile classify back 

because we do end up with a barrier before the next pass now.

Credit to Oleksii from Dragon’s Lake for doing this implementation



Player Occlusion
+ Outline

My enthusiasm to use all parts of the stencil buffer and efficient EarlyZ

utilization extends to our development of new effects for the game as well. I 

collaborated with my colleague Karinne Lorig to develop an outline and 

occlusion tint effect for our co-op modes. 



Here is a shot where you can see both parts of the effect on my teammate, 

which makes them easily identifiable in a brawl with another team, and a 

more subtle color of the occlusion effect is used on the active player to make 

sure their silhouette is always visible even if there is an object between the 

camera and the player.



Player Occlusion + Outline
•Originally implemented with Custom Depth + 
Post Process Material – very slow

•Instead write stencil pass+fail for the characters 
during base pass and velocity pass

•Only run coloration+outline on pixels that are 
valid

•Stencil must be preserved from base pass 
through postprocessing, requires a few small 
engine modifications

This effect was originally prototyped by artists using UE4’s Custom Depth 

feature and a post process material draw. This has a number of drawbacks: 

the extra depth buffer consumes memory and requires a full clear, and the 

characters must be rendered an additional time to it. Furthermore, the apply 

step runs as a full screen pass. We instead moved to setting stencil bits in 

the base pass and velocity pass, and then ran  a custom shader on only the 

pixels needed. We did have to make few small engine mods needed to 

preserve the stencil through the frame, and we have reclaimed some stencil 

bits from other features that we were not using in the engine.



Let’s walk through the stenciling passes - paying attention to the rendering of 

the pink shirt – I’m showing the albedo from the base pass here to make it 

easy to spot.



0x06

And in Razor you can see in this particular shot that the stencil bits are set 

and the shirt writes out 0x06 for fragments that pass the depth test



0x80

At the end of the base pass, you can see that the stencil is filled out with the 

remaining draws. The non-character stencil is set to 0x80, you can see a 

nice outline of the environment from the Receives Decals bit being set.



0x84

Then, we also need to mark the fragments that fail the depth test to get the 

rest of the character silhouette, we handle this during velocity rendering 

when the characters are already going to render a second time. Stencil can 

be written on zfail which is what we do here. EarlyZ is handling writing to 

those stencil locations, but pixel shader waves are launched for the 

fragments that pass the ztest to write out to the velocity buffer. The occluded 

parts of the character now have 0x84. Note that any characters with this 

effect enabled must have occlusion queries disabled on them or else they 

will stop rendering entirely when fully occluded.



Stencil Test Enabled

Finally, the post process effect is run before TAA on the fragments that the 

player rendered to. The shader samples neighboring pixels to render 

outlines at the edge of the character, and the center sample determines the  

player color and if the occlusion tint should be applied. The shader has to be 

run before TAA or else the stencil positions will not be valid for the un-jittered 

camera matrix. However, this is actually ideal, because TAA provides nice 

anti-aliasing on the effect. Because we only render on the inside of the 

character silhouette, we do not fight against the TAA algorithm as the outline 

effectively moves with the depth values of the character.



0.035 ms

To illustrate how efficient this is, here is the razor trace for that frame. You 

can see the occlusion effect only take 0.035 ms, with very few pixel shader 

waves actually running. I have worked on a number of projects that only use 

1-2 bits of the stencil buffer, so I am very happy that we frequently use all 8 

bits of the buffer in a single frame to cull workloads with EarlyZ.



And here I have scrolled down to show that a large amount of this effect is 

just spent with EarlyZ rejecting the stencil bits. We have not configured 

HiStencil but theoretically this could be a use case that would benefit from it, 

but the time is so minimal that is not a priority and enabling HiStencil does 

have trade-offs with HiZ quality on GCN.



Translucent Lighting

In the spirit of removing unnecessary work from our frame, I wanted to 

change how lit translucency was handled for our game compared to what 

UE4 does by default.



Inject Directional Light 
Cascades: 0.41 ms

Stock UE4 accumulates lighting in a volume texture and then translucent 

particles and meshes can read from it to cheaply apply shading. Each light 

must be injected – you can see that happening once for each shadow 

cascade on our sunlight. There are two cascades on the translucent lighting 

volume, so there are a total of 6 injections happening here. More injections 

have to occur if there are additional dynamic lights rendering in the bounds 

of the lighting volume.



Inject Directional Light 
Cascades: 0.41 ms

Filter Lighting Volumes:
0.64 ms

After lights are injected as part of the main lighting loop, the volume gets 

filtered to soften the shadows and make aliasing at the low resolution of the 

volume less noticeable. This takes 0.6 ms for two 64^3 lighting volume 

cascades.

The design consequence here is that the system is designed to have a high 

cost on the number of lights present in a scene, but a very low cost per lit 

translucent pixel processed.

In total, the translucent volume is taking ~1 ms per frame to support particle 

lighting. The only option to disable this in the engine is to resort to only using 

per-pixel forward shading on any lit translucency, which is quite expensive 

on something like smoke particles.

This is a lot to be paying for something that frequently doesn’t contribute to 

the look of the final image if there aren’t actually any lit particles or 

translucency firing, and our game is a little goofy, we don’t have *that* much 

lit translucency. My goal was to eliminate all of these fixed costs from our 

frame.



Async Volume Clear

The volume must also be cleared each frame, this happens in async 

compute, although you can see it’s not behaving super well in this trace and 

it is overlapped with other DRAM heavy work in the surface clears. It can be 

effectively free with the right scheduling though.



Particle Lightmaps
•Originates from The Devil is in the Details: idTech
666 by Tiago Sousa and Jean Geffroy

•Accumulate particle lighting into an atlas 
rendertarget

•Particles read from lightmap atlas during actual 
shading

•Can support LODs at various resolutions in the 
atlas

In pursuit of this goal, I worked with my colleague Rusty Swain to implement 

a system similar to what was used in DOOM 2016, a particle lightmap 

system that particles accumulate their lighting into at less than the final 

resolution of the particles on screen, but still higher quality than what you 

would get from just shading the particle vertices.

We select an LOD resolution for an effect based on distance from camera, 

and Doom could even reduce the shading frequency in the time dimension 

or have the atlas update in async compute. We only do LODs and update 

the atlas every frame for simplicity, but if art direction started pushing more 

lit particles sprites we would definitely look into additional optimization.

http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf



Here you can see a particle effect going into our atlas - this takes the sprite’s 

position and normal map and calculates a lighting result at each texel. This is 

some smoke coming off of an impact crater of another rumbler that landed 

nearby me in the match. Updating this particular effect in the atlas took 20 

microseconds, and gets better results than the translucent lighting volume. 

Having lit particles render to that atlas every frame does simplify managing 

allocations within it because the particles can be full repacked at each LOD 

every frame.

EXTRA NOTE:

Artists can tune a base LOD bias for if they want it to bet more texels per 

quad, so by default sprites will not take up more than 32 x 32 pixels for 

lighting when the emitter is close to the camera. LOD0 takes 128x128 pixels, 

but is almost never used by our artists. Emitters will drop an LOD level for 

ever 25% reduction in estimated screen size of the effect so there is 

dynamic LOD selection occurring for us within the atlas.



Mesh Lighting

We only support sprite based particles in the lighting atlas. Meshes need to 

go down a forward shading path – it’s okay for them to receive per-pixel 

forward shading when needed, but we added support for vertex shading 

which is frequently used on mesh particles in our game. We also added 

support for NonDirectional or “Wrap” shading in both the per-pixel and per-

vertex paths.

UE4 has a clustered lighting data structure for forward shading – the vertex 

shading path reads the light data at the cluster it intersects and accumulates 

it into a spherical harmonic. This is an old trick at this point, but this allows 

us to keep per-pixel normal map variation on a vertex lit object, which fits 

really nicely with our art style.

In most frames we see 0.5 ms improvement in frame time, and in many 

frames we see a full 1 ms better performance than using the translucent 

lighting volume path.



Part 2:
Reactive Optimizations

Now, while all that work was proactively done, we also did a lot to respond to 

performance problems we did not fully expect until content reached the limits 

of what we could do.



Background: Lighting

I need to set the stage a little first with some decisions we made early on 

that would impact our performance later, specifically with how we built our 

environment



Early on we decided to lean in heavily on Unreal’s distance field features. 

Our medium to far shadows are all traced against mesh distance fields that 

are calculated offline for static meshes, which allocate into an shared atlas 

texture accessed by compute shaders on the GPU.  In the images I’ve 

included here, you can see the world without the distance field shadows in 

the top left, and a visualization of the per-object distance fields in the bottom 

left, together which make the final shot in the right with far shadows.

EXTRA NOTE:

The terrain supports using a heightfield representation, but we are able to 

get away with disabling heightfield shadows on last-gen consoles because 

our artists and designers almost always choose to place decorator skirt 

meshes near changes in elevation like cliffs. The artists like it aesthetically 

and the designers like it because the game’s traversal system works really 

well with wall climbing. 



We also use distance field ambient occlusion, which traces against a lower 

quality clip map that composites the individual distance fields into a global 

distance field representation. This clipmap can be extremely low quality but 

DFAO still successfully adds a lot of definition to our shadowed areas. The 

only other ambient occlusion comes from a channel in the Gbuffer that 

artists can write out to from material graphs. This AO is pretty important to 

our look because we don’t have any global illumination baked into lightmaps 

– just an ambient skylight that has a diffuse component (spherical harmonic 

at runtime) and a detailed specular environment map.



AO Decal

One minor detail I’ll point out while we’re on the subject. The ambient 

shadowing under the characters is just a simple decal that modifies only the 

ambient occlusion gbuffer. Super simple, but didn’t work out of the box in 

Unreal and our designers really appreciate the characters always having 

some sort of shadow anchoring them to the ground.



Topic 1: GPU Optimization

A consequence of the distance field data is that it is all stored in volume 

textures – meaning that it really likes being associated with static meshes 

that have minimal empty space, for example we don’t want the volumes to 

include the empty space on the interiors of buildings. 

We really leaned into Unreal’s dynamic instancing system and built our 

assets out of many smaller mesh components from very early on in 

development, this minimizes texels wasted on empty space . These smaller 

meshes are grouped together into entities we call “basic structures” - you 

can see that this piece of a structure is its own mesh which is then instanced 

multiple times on the building, and the building has many static mesh 

instances making it up in the component panel on the left.



Update Distance 
Field Atlas

Update Global 
Distance Field 

Clipmap

Handle Distance 
Field Block 
Allocations

Regular Frame 
Rendering

GPU

Render Thread

Game Thread
+ Streaming

Load Mesh + Level 
Data

Distance Field Upload

The distance field data has a number of systems it has to pass through while 

loading in before it is ready for rendering. This is after the main game thread 

runs it through the regular streaming process on the mesh and gameplay 

data.

The first is that the render thread manages the allocations within the 

distance field atlas with a block allocator that  tracks where a particular 

mesh’s data will be in the atlas and tries to minimize fragmentation within 

that resource. 

Finally, there are multiple operations that must happen over on the GPU - it 

copies from the individual distance field memory into their assigned places in 

the atlas, and finally any regions of the global clipmap that need to be dirtied 

are reprocessed, including scrolling of the clipmap as the player moves 

through the world.

In the interest of time I’m going to cover my optimization effort on the render 

thread cost – but I’ve included details on GPU improvements in the appendix 

for these slides for those interested.



Root Node (0)
512x512x640

Child A (1)
512x512x64

Child B (2)
512x512x576

Child A (3)
512x64x64

Child B (4)
512x448x64

Child A (5)
64x64x64

Child B (6)
448x64x64

6543210

Now, recall that I mentioned that the quality and atlas memory usage 

encouraged the artists to use many small meshes. This pushed the render 

thread atlas manager to the limit. The block allocator constructs a binary tree 

of allocations with each node splitting the space in one of the 3 dimensions, 

which I’ve illustrated here for a single 64x64x64 allocation. The actual nodes 

are stored in a linear array, which I’ve marked the indices of. You can see 

that Node 5 is the only leaf node in this example.

Due to the increasingly large number of distance fields the artists were fitting 

into the atlas, removals and additions to the atlas became very expensive on 

the render thread. This time would probably be inconsequential in a more 

limited tree, but it became a problem for us as the distance field count in any 

given scene grew.



Average Incl 
Time: 0.40 ms

Removal Cost

Removals were the first problem I tackled – here you can see that after a 

garbage collect the render thread is processing a ton of expensive removals 

in the atlas for multiple frames as incremental gc is processed. The cost to 

do a removal is variable but in one section I profiled the average cost was 

0.40 ms. Even with throttling that seems expensive.

Let’s investigate the code and look for improvements. This is going to be an 

exercise of algorithm optimization – think Big O notation



Recurse Tree

First up – there are a number of linear searches with todo’s in the code by 

the original authors

– it seems like a no-brainer to get those addressed.

This one is a linear search through the node array to try to find the allocation 

associated with the distance field we are removing, which we can change to 

a recursive traversal through the tree from the root node. Since we know the 

position and size of the node this is pretty close to going from linear to 

logarithmic in search time, depending on how balanced the tree is.



After the block being unloaded is identified, the RemoveElement function 

needs to find which parent nodes need to be unloaded with it. It traverse up 

from the node repeatedly calling this FindParentNode function, which upon 

closer inspection also has a handy todo comment in it that it is once again 

doing an unnecessary linear seach.

This is even simpler to resolve, we’ll pay the extra 4 bytes per node to store 

the parent node index when blocks are inserted, to be able to turn these 

calls to FindParentNode into just an assignment



Average Incl 
Time: 0.33 ms

Removal Cost

Alright let’s check in on how we’re doing. Better, but still not great. We’re still 

averaging a third of a ms per removal which does not scale to dozens of 

removals happening in a single frame. You can see we frequently are 

spending more than 16 ms a frame processing large numbers of removals, 

which takes me to looking at more code, guided by function sample profiling.



Following the search up the parent nodes to decide the sub-tree to remove, 

there’s this RemoveChildren function that is called to actually remove those 

nodes.

Function sampling profiling told me that this was a hot function – so let’s take 

a look at what’s happening inside of it and see if we can identify some 

improvements.



The first thing to note that this is once again a recursive function traversing 

down each child from the node we’ve selected for removal. So it makes 

sense that this function showed up in profiling.



Fix-up all node 
indices

Order-preserving
removal

Now let’s look at the actual work is happening – each child is removed from 

the node array. This is handled by calling RemoveAt on the array holding all 

the nodes – which is using Unreal’s TArray container class. This is an order-

preserving removal, which internally means a large memmove of all the 

nodes following the removal index are copied down into the hole.

Then in the following loop, each node has the indices of their children 

iterated and adjusted to account for the shift in the array. Now, you may be 

familiar that there is a faster way to remove an item from an array if you 

*don’t* care to preserve the order, which is to simply copy the final element 

into the hole that was just created. I’d like to do that here to avoid iterating 

every node inside a sub-tree traversal by simply fixing up the child indices of 

the parent node – which is a constant time access due to the prior change I 

showed where we store that on each node now. However, this is tricky to do 

in practice because we are trying to modify the tree as we are traversing it.



Allocate node stack for 
top level call

To get around this problem, I allocate and pass around a stack of parent 

nodes as we recurse back down the tree.

This allows us to perform fixup on the stack and avoid getting lost during our 

traversal as we remove nodes. This can be seen here in the updated logic 

inside of the RemoveChildren function.



Allocate node stack for 
top level call

Copy into hole

Fix-up child 
and parent 
pointers

Here is the operation where we take the node at the end of the array and 

copy it into the location where we are doing a removal. Then we fix-up the 

child and parent node references to account for the node we just moved.



Allocate node stack for 
top level call

Copy into hole

Fix-up child 
and parent 
pointers

Fix-up node stack

Following this I want to call attention to this code – here we need to look at 

our stack of nodes we’re maintaining and make sure that if one of the nodes 

in our traversal path was the one we just moved, we need to fix-up the 

location in our stack so we don’t get lost as we continue our traversal



Average Incl 
Time: 0.02 ms

Removal Cost

Now back in a profiling trace, this is what I was looking for –we’re seeing a 

20x improvement on the average removal time from where we started. I can 

almost call this a day at this point, you can see now that the time spent doing 

removals no longer dwarfs the time spent on regular frame rendering



Average Incl 
Time: 0.01 ms

Higher Level Code

There’s one more thing improvement that I want to mention that is a bit of a 

pet peeve of mine. Don’t do a search and remove separately! The top level 

management that uses the block allocator I was optimizing has several lists 

that can use RemoveSwap instead of Remove because order doesn’t 

matter, and then the call to Contains (which will do a linear search) can be 

eliminated by just using the fact that RemoveSwap will return the number of 

elements removed.

This halves our removal time again – although this was a just a small portion 

of the cost before our other improvements were made. This is a 40x 

improvement overall. Again, I’m sure that this time is inconsequential for 

many games, the game we were building coupled open world level 

streaming with high numbers of small distance field allocations, it became 

very worthwhile for us to spend time optimizing this code.



Insertion Cost

Besides removals from the block allocator, insertions also had lots of room 

for improvement – these were walking the tree looking for a suitable hole to 

allocate the DF into, but each insertion would start over at the root node. 

This seemed redundant – in the trace associated with this code you can see 

AddElement is called 10 times, and the tree is potentially walked twice by 

each call – this is taking 2.5 ms in a single frame



Insertion Cost

Batched Insertion

I got much better performance passing around a reference to the full list of 

desired allocations and checking each node against that list. This means 

more work being done when a node is visited, but less times traversing parts 

of the tree redundantly.

Here you can see that for a frame with 10 insertions, it is 2 ms faster than 

before.



Reactive Optimization:
Too Many Primitives

I’ve talked extensively now about the pain points caused by our large 

numbers of distance fields, but let’s look at another render thread challenge 

we encountered – also related to our decisions with how we built the 

environment



As a reminder – our assets are constructed out of many smaller mesh 

components kit bashed together.

The scope of the project had expanded after our vertical slice milestone and 

our art team pushed for even more polish and detail than was in our original 

plan. We started hitting the limits of dynamic instancing and became largely 

bottlenecked on what is known as “Init Views” in Unreal Engine – this is 

where frustum and occlusion culling takes place.



Here is an example of a challenging shot in front of some buildings that are 

made up of many primitives that are processed individually before 

instancing. You can see here that InitViews is taking up a hefty 7.7 ms, 

which is approaching half of our total frame time.



Now – Unreal 4 has an older system for managing costs of large numbers of 

primitives, which is to merge compatible components into a single “instanced 

static mesh component.” These manually instance their meshes, ignoring the 

dynamic instancing system, and go through the renderer as a single 

primitive.



ISM Component Drawbacks
•LOD selection overly conservative due to inflated 
bounds, hurting GPU performance

•Large bounds also degrade frustum and 
occlusion culling quality

•Hard to work with in editor – burden placed on 
artists

However, stock Instanced Static Mesh components have a number of 

drawbacks compared to using individual mesh components that dynamically 

instance. The first two are that GPU performance degrades – the larger 

bounds on the merged primitive results in an overly conservative LOD 

selection and culling result. It also places a lot of burden on the artists to ask 

them to do this manually, which is orthogonal to the performance 

characteristics but still a concern.



GPU-driven rendering
•GPU driven rendering of meshes with 
MultiDrawIndirect can allow us to handle culling 
+ LOD selection on the GPU

•Seb Aaltonen first presented many of these ideas 
in the talk GPU-Driven Rendering Pipelines

•But we don’t have the resources to rewrite UE4!

The Cadillac solution is to instead go down the path of full GPU-driven 

rendering. Issue just a small number of commands on the CPU and handle 

LOD selection and culling on the GPU instead of dealing with expanded 

bounds on the primitives on the CPU. Seb Aaltonen pioneered a lot of these 

ideas in his part of the talk GPU-Driven Rendering Pipelines from Siggraph

2015. But our little didn’t have the resources to do that ambitious of a re-

write of the UE4 renderer.

http://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_c

ombined_final_footer_220dpi.pptx



GPU-driven ISM Component
•Go halfway – modify ISM component to render 
with a special ISM GPU Scene

•Convert compatible components on Basic 
Structure actors into ISM components at cook 
time

•Render each ISM with DrawIndirect

•Keep ISM’s grouped into the Basic Structures (do 
not merge buildings) so coarse CPU LOD 
selection and culling is still effective

My colleague Nate Mefford figured out a really great compromise that fit our 

project, to go halfway and modify ISM component to render with a special 

ISM GPU Scene. We convert compatible components on Basic Structure 

actors into ISM components at cook time, which keeps the burden off of the 

artists. We keep ISM’s grouped into their owning Basic Structures, so 

components that could have dynamically instanced between two neighboring 

buildings within view do not do so. This is because buildings offer a nice unit 

of coarse CPU-side LOD selection and culling which helps keep our GPU 

overhead low.



CPU LOD Selection

Find Min+Max LOD 
range of instances

When I say that coarse CPU LOD selection is important, I mean that we 

can’t just send a draw per LOD to the command processor as that will result 

in too many empty batches. This code is running per-instance LOD selection 

on the CPU. This is a CPU vs GPU balancing act and is one clear area 

where the full GPU driven rendering pipeline would allow bigger gains. Right 

now we have to decide between being overly conservative and sending extra 

batches, or spending more CPU time on LOD selection eating into our 

savings on the render thread.



Non-Uniformly 
Scaled ISM

I should also mention there were lots of fiddly bits with getting negative and 

non-uniform scale to work correctly in the conversion to Instanced Static 

Meshes. I’m a believer in supporting both in a renderer, but this work really 

challenged my faith in that and we hit a lot of under-exercised code paths 

getting everything to render correctly when converted from individual static 

meshes to ISM’s. You can see a shot from a playtest where a storefront has 

stretched out into the sky above a neighborhood due to the static meshes 

going into the ISM conversion having non-uniform scale.

I’ve included Nate’s Unreal-specific workarounds in the appendix of these 

slides for those interested.



Now before I get into some more implementation details, here are the results 

for that challenging shot, starting with what we had before – InitViews taking 

7.7 ms



And here it is with ISM components on the Basic Structures. This reduces 

render thread time by 2.37 ms. It varies from scene to scene but it is 

generally in the 2-3 ms range in savings on a base PS4. And this particular 

shot sees GPU time virtually flat, although I see it sometimes take 0.1-0.25 

ms longer GPU time, which I think is very acceptable given the CPU 

benefits.



Instance ID Indirection

Sequential IDs for 
Legacy Path

Indirection Values 
Updated Each Frame

The ISM component proxy code has a key modification in that we bind an 

instance indirection buffer. Regular old ISM’s in UE4 will just access 0 to N 

instance ID’s sequentially. To continue supporting this, our indirection buffer 

sets up a number of ID’s at the front, this code path is still important to us for 

our grass rendering in particular. But any ISM’s using the GPU scene will 

instead read IDs from beyond that point into the portion of the buffer that is 

dynamically updated by our scene update compute shader that runs each 

frame.



Update Args Shader

Reserve ID Buffer 
Space for ISM

Read ISM 
Component Data

Read Per-
instance Data

Write Instance ID

Per-Instance LOD 
Selection

Let’s take a look at that shader. Each ISM component gets a single group 

(the size of 1 wavefront) that allocates space into the ID buffer. This is done 

atomically as multiple groups are in flight at once. The some LDS is cleared 

to track the IndirectArgs and a barrier is inserted.

After this point we loop over the instances and perform LOD selection. The 

appropriate indirect arg counter in LDS is atomically incremented, and the 

instance ID is written to the indirection buffer. You might notice that this has 

similarities to the tile locations buffer from the tile classification code.



Update Args Shader

Main View 
Frustum Cull

Shadow Cascade 
Frustum Cull

Write Indirect 
Args to DRAM

While the first arg holds all the instances for a given ISM, we also perform 

per-view culling for our main + shadow cascade views to further reduce 

wasted verts when possible. Finally we have one more barrier and write the 

indirect args from LDS into main memory.



ISM Scene Update:
0.07 ms

The ISM scene update shader is generally pretty fast to run, in this frame it 

only took 0.07 ms to run. We also have to handle scattered updates of the 

mesh description data when a new ISM component is added, but that is not 

a per-frame operation, and is also very fast, just 0.01 ms in traces I took 

recently.

While I’m very with the results for this system, we have ideas for further 

improvements – dynamic merging of loose StaticMeshActors could help 

improve prop rendering, and the system as it is currently only does occlusion 

culling on the bounds of the full structure, so some form of per-instance 

occlusion culling could be beneficial.



Here you can see one such trace where two small updates to the mesh 

descriptions are patched before the scene update shader



Reactive Optimization:
Decals

Finally, one last problem I wanted to touch on was unanticipated challenges 

with decals late in our development cycle. My colleague Karinne and I made 

a number of improvements in service of getting systems to behave as we 

expected them to.



The artists and I had a bit of contention in that they (rightly) felt the 

environment was too stiff in our original greenlight and vertical slice builds. 

They wanted more variety and character, which leaning heavily on 

instancing was not great at supporting. 

I pushed for them to try to use decals more and more, and they finally did. 

You can see that the graffiti on the left side of this slide is overlapping 

multiple instanced wall meshes that are underneath it. And the cracks on the 

street in the lower right are breaking up the repetition in a road mesh that is 

generated from a spline.



So then once this happened, the first crisis was with environment decals 

sucking up space in the texture pool. Unreal has a texture streaming system 

to handle streaming the hi-res mips separately from the regular 

mesh+material streaming. It turns out that decal components always request 

the highest mip possible for textures. Which resulted in tons of detailed 

graffiti trash, and road markings gobbling up texture pool space. In a pinch, 

we could ask the artists to slash and burn the resolution these are allowed to 

use – but part of the benefits of the texture streamer is that the same 

resource can be used at different scales in the world and adjust it’s 

resolution in the pool based on the particular shot.

So what I did was I put Karinne on the case of figuring out why this was 

happening - my intuition was that this was going to just be a case of needing 

to write some logic to estimate the size of the decal on screen and send the 

requested mip count to the texture streaming system. She tracked it down to 

a much more fundamental decision in the engine tied to inheritance in C++. 



UPrimitiveComponentUDecalComponent

USceneComponent

UMeshComponent

USkinnedMeshComponent UStaticMeshComponent

UInstancedStaticMeshComponent

I’m illustrating a partial chain of inheritance from scene component here.  A 

scene component in unreal is just something that has a transform matrix that 

is placed in a level, while a primitive is a scene component that goes through 

the renderer.

The problem is that at some point in the history of the engine a decision was 

made that Decals should not be Primitives and handled sepeartely. And 

likely separately from that, the Texture streaming system was engineered to 

operate on Primitives. 

While my gut reaction was frustration that Decals were not inheriting from 

UPrimitiveComponent and that that was an oversight on the engine team’s 

part – there *are* good reasons to not make Decals into Primitives. I already 

covered the efforts we went through to keep our primitive count lower with 

Instanced Static Mesh components. For example – decals never need to 

cast shadows so we don’t need to waste time considering them for shadow 

casting like static meshes and skeletal meshes.



The fix we went with is to have the streaming manager maintain a list of 

UDecalComponents separately from the primitives, and promoted a small 

amount of data up to scene component from primitive component. This 

allowed all of those 2kx2k graffiti pieces to drop down as low as 64x64 when 

they are offscreen or far away.

I wanted to call out this particular code change because I do not think this is 

what I would do if I was the maintainer of the engine. For example, we could 

avoid making Decal Components inherit from Primitive Component by 

creating an interface class that each implements. The reason *not* to do this 

is because doing so would increase our merge burden – as Epic will be fully 

unaware of our change unless we discuss a pull request.

I have always found myself on game teams looking for the simplest to 

maintain code without sacrificing performance, and often waiting for a 

request up to an engine team is not feasible in a lot of contexts when 

working on a deadline.



Single-threaded Frustum Cull

Now, If I had been thinking through all the consequences, I would have 

realized that everything I just said about Decals not being Primitives in the 

renderer meant that they also means that they likely don’t get nearly as 

much attention regarding frustum culling performance on the render thread –

and a little while later I started noticing that decal rendering time on the 

render thread was suddenly quite high as artists added more and more 

decals to our game. 2.2 ms in the location I showed with many decals in the 

surrounding area.

Each call to AddDeferredDecalPass is handling a different decal rendering 

stage is processing all of the decals in the scene separately and redoing 

frustum culling and distance fading – and it’s happening serially on the main 

thread as well. Clearly, our artists were leaning more heavily into deferred 

decals than other games using the engine, which to be fair, is exactly what I 

had asked them to do.



Parallel frustum 
cull

So the solution here is pretty simple – I build the three decal lists with a 

single frustum cull and distance fade on the task graph with a parallel For 

loop (very similar to primitive frustum culling in InitViews) and then I handle 

copying each decal that passes culling into the relevant list afterwards.

The resulting list is passed down into the different decal passes and the 

original per-pass processing is skipped.



Culling tasks

Merge Results
Add Decal Pass

In the area I showed this reduced processing down to 0.67 ms – a 1.53 ms

improvement in render thread time.



Final Thoughts
•Every game has optimization potential tied to the 
game you are making that any shared purpose 
engine may not anticipate

•Any technology you lean into will lead to finding 
its limits when you push it hard enough

•Search for solutions that fit the scope of your 
team

Alright so just a few thoughts to end on. I just want to reiterate that I believe 

you should always be thinking about how the engineers that you are 

downstream from are not necessarily going to anticipate the content you are 

making.

And related to that, any time you push into new territory and scope as a 

team – you are likely going to hit the limits of systems. A lot of what I showed 

improvements for today worked really well for a long time in development, 

but eventually became untenable when the content reached a critical mass.

And related to that – always search for the solutions that fit the scope of your 

team. Part of why I spend so much time figuring out engineering solution is 

because we don’t have an army of artists to try to rework content causing 

performance problems. And I very much appreciate when they are able to 

help us solve problems on the content side – we’re all working together to try 

to make a great game in the end.



References
• Deferred Lighting in Uncharted 4, Ramy El Garawany, Siggraph 2016

• GPU-Driven Rendering Pipelines, Ulrich Haar, Sebastian Aaltonen, 
Siggraph 2015

• Separable Subsurface Scattering and Photorealistic Eyes Rendering, Jorge 
Jimenez, Siggraph 2016

• The Devil is in the Details: idTech666, Tiago Sousa, Jean Geffroy, Siggraph
2016

• Dynamic Occlusion With Signed Distance Fields, Daniel Wright, Siggraph
2015



Many Thanks
•Andreas Frederickson – the advisor for this talk

•Everyone that contributed to Rumbleverse
rendering: especially Karinne Lorig, Nate Mefford, 
Rusty Swain, David Laskey, and our partners at 
Dragon’s Lake

•The entire Rumbleverse development team –
especially our wonderful artists and the team 
leadership

•My little family: Kelsey, Spaceman, and Nova



Q&A
E-mail: Jon@IronGalaxyStudios.com

Twitter: @JonManatee



Appendix 1:
Distance Field

GPU Optimizations



Update Distance 
Field Atlas

Update Global 
Distance Field 

Clipmap

Handle Distance 
Field Block 
Allocations

Regular Frame 
Rendering

GPU

Render Thread

Game Thread
+ Streaming

Load Mesh + Level 
Data

Distance Field Upload

Let’s go over and consider the work happening on the GPU. As a reminder 

we need to copy the distance field texels into the atlas texture at the 

locations decided by the allocator, and then we need to update dirty regions 

of the global distance field clipmaps



Distance Field Atlas Barriers

~50% of time wasted on extra barriers

The first up is uploads into the distance field atlas CS. The consoles are 

using a compute shader path to update these – and it is inserting a barrier 

between each copy. Again, this is especially bad because the artists are 

motivated to keep the distance field memory on each object as small as 

possible so they can pack more into the atlas. This means that the ratio 

between barrier waits and actual work on the CUs gets worse as the artists 

do a better and better job.

These barriers would be correct to ensure deterministic results if the regions 

being updated within the volume overlapped, but given that there is no need 

to do that as this is a texture atlas where everything gets its own spot in the 

buffer, it is safe for these wavefronts to be executing at the same time. None 

of these are going to be writing to the same places in memory.

There are four updates happening in this frame in this capture I’m showing 

here, but there could be dozens in some frames.



Distance Field Atlas Barriers

Overlapping Work

Artem from our co-dev partner Dragon’s Lake got these barriers eliminated 

by implementing an interface in the RHI layer that hints that there will be 

multiple safe updates to the same resource and only places a barrier at the 

beginning + end, and then we put in place a per-frame limit of 128^3 texels

worth of updates per-frame to keep things from getting unmanageable from 

just the total amount of bandwidth needed. This keeps our time spent 

updating the atlas to under 0.1 ms on any given frame.

In this updated capture you can see that three distance fields are being 

updated and two of the barriers have been eliminated, keeping the GPU fed 

during these updates.



Global DF Update

Cull Objects to 
Dirty Region Update texels

with culled list

Analogous to the per-object distance field atlas, the global distance field clip 

maps are on staggered updates so that the closest clipmap updates more 

frequently than the largest. Heightfields for the terrain are composited after 

the regular DF’s are updated. Getting gains here was less straightforward –

the gridcull step is figuring out a reduced number of distance fields that 

intersect sub-regions of the area being updated. That memory for holding the 

culling results is re-used in each GridCull, eliminating the barriers would 

require allocating more memory.

That said, throttling the updates seemed like a really effective idea here, 

especially since this structure is only used by DFAO and not direct 

shadowing. We limit the number of partial update regions to 5 each frame. 

Regions get merged if they can form a volume of contiguous space (for 

example if one region fully contains another), and the largest regions are 

processed each frame from the pending list. I added a panic threshold to just 

update then entire clipmap space if there was ever 1000 pending regions 

piling up expecting to be processed.



Global DF Update - Full

2.01 ms 2.73 ms

Surprisingly, we were hitting full clipmap updates, which can be quite slow – but not 
from my 1000 pending failsafe triggering.

It was happening from single large objects with distance fields that would invalidate 
the entire clip map at once. Throttling but update region count would never save us 
here and I was prepared to start implementing logic to slice up these regions into 
smaller sub sections over multiple frames, but I decided to look at what these 
objects were first.

It was coming from the fact that the artists liked to enable a distance field on LOD1 
of many buildings levels so that the first LOD still casts a crude shadow, making the 
transition from the full LOD0 shadows less noticeable but still dropping down to 0 
distance field memory at LOD2. These DFs that were the size of an entire buildings 
could easily trigger a full update of one of the clipmaps when running through the 
city. I’m showing that here – each of these clip maps takes >2 ms to update and we 
have 3 of them. We really want to avoid that case.

However- we really don’t care about those LOD1 distance fields, and a really 
simple hack was put in place to eliminate that from happening. Which is that we 
simply don’t process distance fields for the LOD1 meshes on the global clipmap. 
We know that the LOD0 meshes for that level are going to do a good job dirtying 
and updating the areas where buildings are placed anyways both on add and 
removal. The artists are generating the LOD1 distance field for the direct shadow 
tracing which is only traced against the distance field atlas and not the global clip 
map.



Global DF Update - Async

0.82 ms

And for good measure we moved this work to async compute – we don’t 

overlap postprocessing with the next frame with async compute like some 

games do. So our early frame work and depth prepass could use some 

async compute and this is a perfect candidate. A normal frame is going to 

have to scroll the clip maps as the player moves and that takes ~0.5 ms on 

Xbox One, which stretches to 0.8 ms when run async and stays nicely 

overlapped with the vertex shading work in our prepass. When additional 

work is needed this can spill past the prepass, but overlapping with the base 

pass is generally not overly problematic for us and we still see an overall 

reduction in spikes. 

The results of the distance field updates are not needed until after our 

velocity rendering completes, but we do have additional async work kicking 

off to overlap with shadow maps. Throttling of the global clipmap updates 

generally prevents that from ever running that deep into the frame.



Appendix 2:
UE4 Cook Conversion

Static Mesh -> Instanced 
Static Mesh



Cook-time Conversion

Map Component to 
Static Mesh

Skip Incompatible 
Meshes

Skip Incompatible 
Components

Here Is the code in the basic structure class that converts the individual 

mesh components to ISM components. First we iterate all of the components 

and build a unique mapping to source meshes. We must filter out some 

incompatible meshes at this time as well. Then we iterate each unique mesh.



Cook-time Conversion

Handle Negative 
Scale

Handle Non-
Uniform Scale

Add Instances to 
ISM Component

Then we iterate over the instances for each mesh and build ISMs. Note that 

like many things in computer graphics, handling negative scale and non-

uniform scale was a particular sore spot for getting everything to render 

correctly. 

Then the instances are added to the new ISM component and the old 

component is destroyed, and finally the new component is registered after all 

the new instances are added. We do this in the class’s Serialize function but 

some of my more recent work has made me believe it would be more correct 

to do this in PreSave.


