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Hello everyone, I’'m Jon Moore, | work as a Graphics Engineer at Iron
Galaxy Studios, and I'd like to welcome you to my talk “Grappling With
Performance: Rendering Optimization Strategies in Rumbleverse”



Rumbleverse

-40-Player Battle Royale
-Melee Combat
‘1 km x1km Island Arena

-Performance target: 1080p
60 FPS on PS4

-Shipped on Unreal 4.27.1

If you’re not familiar with the game, Rumblerse is a 40 player battle royale
game featuring primarily melee combat on a 1km squared island arena.

Our gold standard performance target for the game is 1080p + 60 FPS on a
base PS4 — with the game shipping across both generations of Sony and
Microsoft consoles.

And an important detail to note — we are an Unreal licensee, and the game
shipped using Unreal version 4.27.1, but using an engine that is not
developed internally at IGS doesn’t discourage me from finding plenty of
optimization opportunities for the game, which is the motivation for this talk
today



Optimization
Philosophy

-Choice of Engine doesn't affect
optimization potential - your content
creates opportunities and exposes
limitations of the engine

‘The fastest wavefront is the one you
never launch

-Everything worth doing in life is at
least an 0.1 ms speedup

Before getting into specifics, | think | should preface with my personal philosophy
on optimization, especially as it relates to work done on the GPU. These are ideas
that formed before | started working on Rumbleverse, but my experiences here
have only further solidified these beliefs.

First and foremost, | think there is optimization potential anytime an engine is not
built from scratch for a particular game. It is always useful to reflect on how your
specific content might allow the engine to be modified/configured to run it most
efficiently. This is very true with a widely licensed engine like Unreal, but I've seen
this with shared engine tech used internally between teams, or even just when
building off the engine used for a previous game on a new project that is not a
direct sequel.

Secondly, | have over time come to appreciate that culling out redundant/unneeded
work on the GPU is something that can be gone back to again and again when
looking for gains. In the simplest sense, it's making sure that every wavefront
running on the GPU is actually contributing to the final image.

Finally, whenever | am working on a 60 hz video game, | generally use 0.1 ms as
my measuring stick for if an optimization is worth doing. Less than that, and | will sit
on a change as not being worth the risk of modifying the engine. 0.1 ms is often my
sweetspot of feeling like a change is worthwhile and enough 0.1 ms changes added
together will eventually make a big impact.



Part 1:
Proactive Optimizations

From day 1 of my time on Rumbleverse — rendering was my primary focus,
and | wanted to make an impact on the game to ensure we could push our
look to the best it could be. This was in service of allowing artists to build
richer environments, have more detailed materials, and avoid dynamic
resolution drops as much as possible. This first section is focused on
optimizations made proactively in pursuit of this goal as we set-up our initial
configuration of rendering features across our target platforms.
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Let’s start by looking at the 2.4 ms stretch of frame time in Razor on PS4
that | found myself looking at early on in development, where reflections and
subsurface scattering are handled in stock UE4. All parts of this time were
decided to be pretty important to the look of our game, and | wanted to try to
reduce its cost as that is 14% of a 16.6 ms frame time.
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Here is the scene in question that the trace is from. I'll revisit this in a bit, but
it's pretty standard for us: we have some foliage, a character, some sKky,
some shiny metallic objects, and some reflective windows.
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Let’s go back to that stretch of time in Razor with the wavefronts colored by
batch.
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This long section in the middle is the Env Lighting Apply pixel shader,
clocking in at 1.21 ms. This is where indirect diffuse, specular, and
skylighting is combined together after the direct lighting is handled by the
deferred lighting loop.
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Before that, Screen Space Reflection tracing takes 4 tenths of a ms
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And this time after Env Lighting Apply is 0.79 ms on subsurface scattering
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If you’re not familiar, SSS in this version of Unreal clears some UAVs, does
SubsurfaceSetup which does tile classification and downsamples the
subsurface to half res, and then dispatches compute shader batches for tiles
based on the subsurface algorithm selected by tile classification.

And then finally there is a recombine with the Scene Color after the blur.
Classifying by algorithm was added to Unreal after our character look was
developed, so our tiles all fall into the path using Screen Space Separable
Subsurface — based on the technique developed by Jorge Jimenez

Separable Subsurface Scattering and Eye Rendering by Jorge Jimenez:
http://advances.realtimerendering.com/s2012/activision/Jimenez-
Separable_Subsurface_Scattering_and_Eye Rendering(Siggraph2012).pptx



Tile Classification

-Original Idea: improve occupancy in reflection
apply by using tile classification

‘Inspired by Ramy El Garawany’s presentation:
Deferred Lighting in Uncharted 4

-Algorithm:

1. analyze GBuffer

2. build lists of tiles based on material properties
3. render each using different shader
permutations + Dispatchlndirect

Mentioning tile classification on SSS is an interesting launching point to how
| approached improving these systems. Naughty Dog first presented a
version of the tile classification technique for reducing per-tile cost of their
lighting in the talk Deferred Lighting in Uncharted 4 from Siggraph 2016.

| thought that the heavy time spent on reflection apply could be optimized in
a similar way here. | would write a tile classification shader that looked at the
Gbuffer properties of an 8x8 group of pixels and build lists based on the
materials present. Then each list can be rendered using Dispatchindirect
with the different shader permutations bound to each dispatch.

Deferred Lighting in Uncharted 4 by Ramy El Garawany:
http://advances.realtimerendering.com/s2016/s16_ramy_final.pptx
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So for example in this frame we can pretty clearly see groupings of pixels
that are all default lit or twosided foliage.
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And here you can see a visualization of the tile classification in practice. The
green tiles are default lit, the blue is all foliage, and the red contains a
shading paths that are “complex” and run the full shader
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However, the most important thing this work took me to was the unlit tiles
here, tiles that are culled entirely had the biggest impact on the running time.
This got me thinking about how the tile classification could be used for
culling workload from SSR + SSS as well, and that cost of running the
classification would be shared across multiple steps of our rendering.

Remember, the fastest wavefront is the one you never launch!



Tile Classification 2.0

-Better Idea: skip empty waves in multiple passes
based on a single classify step

-Cull unlit (skybox tiles) from everything

-Skip SSR trace on tiles above roughness
threshold

-Skip SSS on tiles with no skin materials in them,
run required clears with simplified shader
permutation

So here’s the updated plan: cull unlit tiles from all of the passes, add a
classification for if all the pixels are too rough to trigger SSR traces, and skip
SSS on tiles with no skin materials on them, and run a simplified clear on
tiles that need to be cleared but don’t need the full SSS set-up.



Tile Classify Shader

let’'s walk through a little bit of what is happening in the Tile Classify shader
code. Classification happens on 8x8 tiles, but each group covers a 16x16
area because subsurface scattering is happening at half res. After sampling
the gbuffer properties with UE4’s GetScreenSpaceDataUint function, | use
wave ops to merge the bitmasks for each 8x8 tile together.

You can see that in the code this happening with the UE4 shader API
commands WaveAllBitOr and WaveAlIBitAnd. After these wave ops, each
thread in the wavefront is going to hold the same mask value in
MergedResult.

One benefit to using wave ops is that the logic following the wave commands
is all going to be scalar ALU, as the compiler knows MergedResult is going
to be uniform across the wave



Tile Classify Shader

Increment
Indirect Arg

Write Tile
Location

Then the shader permutation for the tile is selected based on the bits held in
the MergedResult across the whole wave, and the result is written out by the
first thread. An interlocked add occurs on the counts which gets a unique
index for the tile that maps to the Tile Locations Buffer, which holds the pixel
location for a given tile on the screen and will be used to reconstruct the
pixel locations for each tile in the apply shaders.

Note that | selected 8x8 tiles because those are the size of 1 wavefront (64
threads) on GCN. Uncharted 4 used 16x16 tiles — which cuts the memory
needed for the tile lists to 25%. Tile location lists require memory equal to
max tile count * permutation count. 8x8 tiles will allow tighter bounds on
expensive material paths. I've opted for 8x8 partly because our permutation
count is more limited. For example, it's in my backlog to try adding a path for
tiles that contain foliage and default lit, as that is our most common boundary
case falling into the complex path, but that would require more memory.

We have 10 shader permutations currently — which results in a 1.296 mb tile
locations buffer for 8x8 tiles at 1080p. | should be able to reclaim 48 kb if |
didn’t over-allocate for the half-res tile lists, but most of the memory is
coming from the 8 permutations used for SSR+Reflection Apply



It's worth noting — one really great thing about this shader is that those calls
to sample the gbuffer properties all map back to just a single texture read.
Epic has conveniently already packed all that information into just one
Gbuffer target for us, which holds both Roughness and Material ID, which
I’'m showing for my shot here.
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Now back in razor let’s look at the cost of running this classification shader —
it takes a modest 0.18 ms on a base PS4 at 1080p, and can execute as
soon as the decals are done modifying the gbuffer
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And we can actually do better, this classification job very nicely overlaps with
shadow depth rendering using async compute, here you can see it
overlapping with some vertex shading work before some pixel shader waves
for masked materials run. This is frame dependent, but | generally see
running it async save ~0.1 ms of frame time which makes the cost

approximately 0.08 ms on a PS4.



Env Apply Shader

Before we look at the performance of the apply steps — let’s look at just the
compute shader apply for Environment Lighting apply. This was just a full
screen pixel shading pass in the original implementation, and this compute
shader path runs using repeated calls to Dispatchindirect with different
shader permutations.

The shader begins by using the Groupld to look up into the tile locations
buffer and then unpacking to an individual pixel location based on
GroupThreadld. You can see here that after the Gbuffer is read, an overwrite
of the ShadingModellD will allow the optimizer to perform dead code
elimination based on the preprocessor macros defined based on the shader
permutation.
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Now we need to look at what this 0.08 ms is buying is in the application of
SSR, Reflection Environment, and SSS. Here is the original sequence of
shading that | showed before.
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And here is our new frame.
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Here we have the Tiled Reflection apply shader at 1.08 ms, an 0.13 ms
improvement. About half of this benefit is from culling sky pixels in this
frame, so not really worthwhile in frames without sky pixels. One micro-
optimization | would point out here is that | have slower waves with lower
occupancy ordered first after the initial barrier and then have the fastest
waves at the end. This helps reduce cracks between the batches — believe
this is from lower occupancy waves waiting on more registers to become
available. The lower occupancy waves also tend to be longer running, so
putting the fastest batch last helps to ensure work drains quickly before the
next barrier.
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While TiledReflection apply is getting a small benefit, Screen Space
Reflections is conversely seeing a really good benefit. 0.3 ms better and that
is actually a conservative improvement because the waves are getting better
overlap with DFAO history update. There is no need for a barrier as these
are writing to separate buffers that both feed into the reflection apply. These
results with SSR were what first gave me confidence that this was going to
be a worthwhile optimization
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And then Subsurface after the reflection apply, which also sees a huge
improvement, 0.58 ms better.
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Here you can see the set-up and tile clears get really nice overlap with the
tile clears having much shorter waves than the full setup shader. The blur
steps are similar from the stock tile classify and the recombine is very fast as
only tiles with skin in them are run.
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Now that I've laid all this out — just a reminder again with what these passes
were before.
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And back to our results. This is a total savings of ~1 ms from these passes,
although obviously those benefits will vary based on the scene composition,
0.92 ms total for this shot once you subtract the classification cost



Water Stenciling

| just spent an amount of time talking up the virtues of tile classification, but
sometimes it’s just not the right tool for the job. | want to take a moment to
show a small example where just using the stencil buffer is a better idea.



3'1" Dash L2
Dodge|L2[+[R2

Block R2

L 4Vicious Attack (A
,‘ jAttack/Use Itemy
ﬁgset Camera (g,
 —— Ping

o/s00 [T

y
A
 — 0

Consider this shot on PS4 at the edge of our Island. UE4’s water system is
really nice out of the box, and is taking up a reasonable number of pixels in
this frame. The water is taking 1.1 ms to render on PS4.
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The water system first copies the scene color out to a secondary buffer and
applies fog — this is for refraction. Then the water mesh renders to the full
gbuffer like a regular opaque draw. Having an updated depth buffer has
benefits for TAA in particular.

‘wizvefront 8

Wavefront 3

fi
I

IR

4;—




Units: ps
i Graphics

Tiled ReflectionApply

Subsurfa Su S SingleLayerWaterParallel 55R RayMarch{ TAA MainUpsampling Fast 1920x1080 -

Refraction Water Mesh Tile Classify: 0.13 ms

GPU Trace A
Shader Engine 0

4 Compute Umt D

4 SIMDD ] | Tre T et s i (18IY|
Wavefront O
|
[ N A ‘
B[ RSB
1 e
I | [ 1l
I | | il
Wavefront 8 [TT1T [[T)
Wavefront 3
b SO T TR O S T AT A AT [V | (TR
b SMD2 H\ H{\ | \ _lIII IIIIIIIIH‘ A - I Hl |I|||.|H.|J]W.I|HHI
b SMD3 AR LA L T O AR f [ | (U D
¥ Issue Any Instructions  [0.2.17] R pr— i— - i .
b lssue VAL 10.7) A RAMMRAAME .. . r—T—— qnmw _
b Issue VMEM readivrite  [0.1] e = :
b [ssue SALU 0.1 - . = -
b lssus SMEM o] » /

el &3 77" Dispatch Indirect

Then a classify is done on the gbuffer, very similar to what | did with
reflections and subsurface, and just like before, Dispactch Indirect is used to
run SSR and Composite only the tiles that were classified as having water in
them
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However, if you think about it — we’re actually doing a visibility test with the
water mesh right before tile classify when it is rasterizing with ztest enabled
— what we can do instead is simply mark a stencil bit when the water mesh is
rendering and then enable the stencil test after. You can see here that we've
set the stencil to write 0x40 to the water pixels that pass the depth test.
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Here’s what happens in razor - the tile classify is now missing between
rendering the water mesh and handling SSR+Compositing. This saves 0.1
ms for very little effort, we don’t get the full 0.13 ms of the tile classify back
because we do end up with a barrier before the next pass now.

Credit to Oleksii from Dragon’s Lake for doing this implementation



Player Occlusion
+ Qutline

My enthusiasm to use all parts of the stencil buffer and efficient EarlyZ
utilization extends to our development of new effects for the game as well. |
collaborated with my colleague Karinne Lorig to develop an outline and
occlusion tint effect for our co-op modes.



Here is a shot where you can see both parts of the effect on my teammate,
which makes them easily identifiable in a brawl with another team, and a
more subtle color of the occlusion effect is used on the active player to make
sure their silhouette is always visible even if there is an object between the
camera and the player.



Player Occlusion + Outline

-Originally implemented with Custom Depth +
Post Process Material — very slow

-Instead write stencil pass+fail for the characters
during base pass and velocity pass

-Only run coloration+outline on pixels that are
valid

-Stencil must be preserved from base pass
through postprocessing, requires a few small
engine modifications

This effect was originally prototyped by artists using UE4’s Custom Depth
feature and a post process material draw. This has a number of drawbacks:
the extra depth buffer consumes memory and requires a full clear, and the
characters must be rendered an additional time to it. Furthermore, the apply
step runs as a full screen pass. We instead moved to setting stencil bits in
the base pass and velocity pass, and then ran a custom shader on only the
pixels needed. We did have to make few small engine mods needed to
preserve the stencil through the frame, and we have reclaimed some stencil
bits from other features that we were not using in the engine.



Let’'s walk through the stenciling passes - paying attention to the rendering of
the pink shirt — I'm showing the albedo from the base pass here to make it
easy to spot.
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And in Razor you can see in this particular shot that the stencil bits are set
and the shirt writes out 0x06 for fragments that pass the depth test
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At the end of the base pass, you can see that the stencil is filled out with the
remaining draws. The non-character stencil is set to 0x80, you can see a
nice outline of the environment from the Receives Decals bit being set.
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Then, we also need to mark the fragments that fail the depth test to get the
rest of the character silhouette, we handle this during velocity rendering
when the characters are already going to render a second time. Stencil can
be written on zfail which is what we do here. EarlyZ is handling writing to
those stencil locations, but pixel shader waves are launched for the
fragments that pass the ztest to write out to the velocity buffer. The occluded
parts of the character now have 0x84. Note that any characters with this
effect enabled must have occlusion queries disabled on them or else they
will stop rendering entirely when fully occluded.
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Finally, the post process effect is run before TAA on the fragments that the
player rendered to. The shader samples neighboring pixels to render
outlines at the edge of the character, and the center sample determines the
player color and if the occlusion tint should be applied. The shader has to be
run before TAA or else the stencil positions will not be valid for the un-jittered
camera matrix. However, this is actually ideal, because TAA provides nice
anti-aliasing on the effect. Because we only render on the inside of the
character silhouette, we do not fight against the TAA algorithm as the outline
effectively moves with the depth values of the character.
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To illustrate how efficient this is, here is the razor trace for that frame. You
can see the occlusion effect only take 0.035 ms, with very few pixel shader
waves actually running. | have worked on a number of projects that only use
1-2 bits of the stencil buffer, so | am very happy that we frequently use all 8
bits of the buffer in a single frame to cull workloads with EarlyZ.
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And here | have scrolled down to show that a large amount of this effect is
just spent with EarlyZ rejecting the stencil bits. We have not configured
HiStencil but theoretically this could be a use case that would benefit from it,
but the time is so minimal that is not a priority and enabling HiStencil does
have trade-offs with HiZ quality on GCN.



Translucent Lighting

In the spirit of removing unnecessary work from our frame, | wanted to
change how lit translucency was handled for our game compared to what
UE4 does by default.
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Stock UE4 accumulates lighting in a volume texture and then translucent
particles and meshes can read from it to cheaply apply shading. Each light
must be injected — you can see that happening once for each shadow
cascade on our sunlight. There are two cascades on the translucent lighting
volume, so there are a total of 6 injections happening here. More injections
have to occur if there are additional dynamic lights rendering in the bounds
of the lighting volume.
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After lights are injected as part of the main lighting loop, the volume gets
filtered to soften the shadows and make aliasing at the low resolution of the
volume less noticeable. This takes 0.6 ms for two 64”3 lighting volume
cascades.

The design consequence here is that the system is designed to have a high
cost on the number of lights present in a scene, but a very low cost per it
translucent pixel processed.

In total, the translucent volume is taking ~1 ms per frame to support particle
lighting. The only option to disable this in the engine is to resort to only using
per-pixel forward shading on any lit translucency, which is quite expensive
on something like smoke particles.

This is a lot to be paying for something that frequently doesn’t contribute to
the look of the final image if there aren’t actually any lit particles or
translucency firing, and our game is a little goofy, we don’t have *that* much
lit translucency. My goal was to eliminate all of these fixed costs from our
frame.
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The volume must also be cleared each frame, this happens in async
compute, although you can see it's not behaving super well in this trace and
it is overlapped with other DRAM heavy work in the surface clears. It can be
effectively free with the right scheduling though.



Particle Lightmaps

-Originates from The Devil is in the Details: idTech
666 by Tiago Sousa and Jean Geffroy

-Accumulate particle lighting into an atlas
rendertarget

-Particles read from lightmap atlas during actual
shading

-Can support LODs at various resolutions in the
atlas

In pursuit of this goal, | worked with my colleague Rusty Swain to implement
a system similar to what was used in DOOM 2016, a particle lightmap
system that particles accumulate their lighting into at less than the final
resolution of the particles on screen, but still higher quality than what you
would get from just shading the particle vertices.

We select an LOD resolution for an effect based on distance from camera,
and Doom could even reduce the shading frequency in the time dimension
or have the atlas update in async compute. We only do LODs and update
the atlas every frame for simplicity, but if art direction started pushing more
lit particles sprites we would definitely look into additional optimization.

http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf
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Here you can see a particle effect going into our atlas - this takes the sprite’s
position and normal map and calculates a lighting result at each texel. This is
some smoke coming off of an impact crater of another rumbler that landed
nearby me in the match. Updating this particular effect in the atlas took 20
microseconds, and gets better results than the translucent lighting volume.
Having lit particles render to that atlas every frame does simplify managing
allocations within it because the particles can be full repacked at each LOD
every frame.

EXTRA NOTE:

Artists can tune a base LOD bias for if they want it to bet more texels per
quad, so by default sprites will not take up more than 32 x 32 pixels for
lighting when the emitter is close to the camera. LODO takes 128x128 pixels,
but is almost never used by our artists. Emitters will drop an LOD level for
ever 25% reduction in estimated screen size of the effect so there is
dynamic LOD selection occurring for us within the atlas.



Mesh Lighting
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We only support sprite based particles in the lighting atlas. Meshes need to
go down a forward shading path — it's okay for them to receive per-pixel
forward shading when needed, but we added support for vertex shading
which is frequently used on mesh particles in our game. We also added
support for NonDirectional or “Wrap” shading in both the per-pixel and per-
vertex paths.

UE4 has a clustered lighting data structure for forward shading — the vertex
shading path reads the light data at the cluster it intersects and accumulates
it into a spherical harmonic. This is an old trick at this point, but this allows
us to keep per-pixel normal map variation on a vertex lit object, which fits
really nicely with our art style.

In most frames we see 0.5 ms improvement in frame time, and in many
frames we see a full 1 ms better performance than using the translucent
lighting volume path.



Part 2:
Reactive Optimizations

Now, while all that work was proactively done, we also did a lot to respond to
performance problems we did not fully expect until content reached the limits
of what we could do.



Background: Lighting

| need to set the stage a little first with some decisions we made early on
that would impact our performance later, specifically with how we built our
environment
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Early on we decided to lean in heavily on Unreal’s distance field features.
Our medium to far shadows are all traced against mesh distance fields that
are calculated offline for static meshes, which allocate into an shared atlas
texture accessed by compute shaders on the GPU. In the images I've
included here, you can see the world without the distance field shadows in
the top left, and a visualization of the per-object distance fields in the bottom
left, together which make the final shot in the right with far shadows.

EXTRA NOTE:

The terrain supports using a heightfield representation, but we are able to
get away with disabling heightfield shadows on last-gen consoles because
our artists and designers almost always choose to place decorator skirt
meshes near changes in elevation like cliffs. The artists like it aesthetically
and the designers like it because the game’s traversal system works really
well with wall climbing.



5 mmmmm———— 100/
s B 1000120

x

5 ' 100,00
1 1000

We also use distance field ambient occlusion, which traces against a lower
quality clip map that composites the individual distance fields into a global
distance field representation. This clipmap can be extremely low quality but
DFAO still successfully adds a lot of definition to our shadowed areas. The
only other ambient occlusion comes from a channel in the Gbuffer that
artists can write out to from material graphs. This AO is pretty important to
our look because we don’t have any global illumination baked into lightmaps
— just an ambient skylight that has a diffuse component (spherical harmonic
at runtime) and a detailed specular environment map.

0:00 &1
Free Roam




AO Decal

One minor detail I'll point out while we’re on the subject. The ambient
shadowing under the characters is just a simple decal that modifies only the
ambient occlusion gbuffer. Super simple, but didn’t work out of the box in
Unreal and our designers really appreciate the characters always having
some sort of shadow anchoring them to the ground.



StaticMesh324

A consequence of the distance field data is that it is all stored in volume
textures — meaning that it really likes being associated with static meshes
that have minimal empty space, for example we don’t want the volumes to
include the empty space on the interiors of buildings.

We really leaned into Unreal’s dynamic instancing system and built our
assets out of many smaller mesh components from very early on in
development, this minimizes texels wasted on empty space . These smaller
meshes are grouped together into entities we call “basic structures” - you
can see that this piece of a structure is its own mesh which is then instanced
multiple times on the building, and the building has many static mesh
instances making it up in the component panel on the left.



Distance Field Upload
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The distance field data has a number of systems it has to pass through while
loading in before it is ready for rendering. This is after the main game thread
runs it through the regular streaming process on the mesh and gameplay
data.

The first is that the render thread manages the allocations within the
distance field atlas with a block allocator that tracks where a particular
mesh'’s data will be in the atlas and tries to minimize fragmentation within
that resource.

Finally, there are multiple operations that must happen over on the GPU - it
copies from the individual distance field memory into their assigned places in
the atlas, and finally any regions of the global clipmap that need to be dirtied
are reprocessed, including scrolling of the clipmap as the player moves
through the world.

In the interest of time I’'m going to cover my optimization effort on the render
thread cost — but I've included details on GPU improvements in the appendix
for these slides for those interested.
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Now, recall that | mentioned that the quality and atlas memory usage
encouraged the artists to use many small meshes. This pushed the render
thread atlas manager to the limit. The block allocator constructs a binary tree
of allocations with each node splitting the space in one of the 3 dimensions,
which I've illustrated here for a single 64x64x64 allocation. The actual nodes
are stored in a linear array, which I've marked the indices of. You can see
that Node 5 is the only leaf node in this example.

Due to the increasingly large number of distance fields the artists were fitting
into the atlas, removals and additions to the atlas became very expensive on
the render thread. This time would probably be inconsequential in a more
limited tree, but it became a problem for us as the distance field count in any
given scene grew.
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Removals were the first problem | tackled — here you can see that after a
garbage collect the render thread is processing a ton of expensive removals
in the atlas for multiple frames as incremental gc is processed. The cost to
do a removal is variable but in one section | profiled the average cost was
0.40 ms. Even with throttling that seems expensive.

Let’s investigate the code and look for improvements. This is going to be an
exercise of algorithm optimization — think Big O notation
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First up — there are a number of linear searches with todo’s in the code by
the original authors
— it seems like a no-brainer to get those addressed.

This one is a linear search through the node array to try to find the allocation
associated with the distance field we are removing, which we can change to
a recursive traversal through the tree from the root node. Since we know the
position and size of the node this is pretty close to going from linear to
logarithmic in search time, depending on how balanced the tree is.



After the block being unloaded is identified, the RemoveElement function
needs to find which parent nodes need to be unloaded with it. It traverse up
from the node repeatedly calling this FindParentNode function, which upon
closer inspection also has a handy todo comment in it that it is once again
doing an unnecessary linear seach.

This is even simpler to resolve, we’ll pay the extra 4 bytes per node to store
the parent node index when blocks are inserted, to be able to turn these
calls to FindParentNode into just an assignment
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Alright let’'s check in on how we’re doing. Better, but still not great. We're still
averaging a third of a ms per removal which does not scale to dozens of
removals happening in a single frame. You can see we frequently are
spending more than 16 ms a frame processing large numbers of removals,
which takes me to looking at more code, guided by function sample profiling.



Following the search up the parent nodes to decide the sub-tree to remove,
there’s this RemoveChildren function that is called to actually remove those
nodes.

Function sampling profiling told me that this was a hot function — so let’s take
a look at what’s happening inside of it and see if we can identify some
improvements.



The first thing to note that this is once again a recursive function traversing
down each child from the node we’ve selected for removal. So it makes
sense that this function showed up in profiling.



Order-preserving
removal

Fix-up all node
indices

Now let’s look at the actual work is happening — each child is removed from
the node array. This is handled by calling RemoveAt on the array holding all
the nodes — which is using Unreal’s TArray container class. This is an order-
preserving removal, which internally means a large memmove of all the
nodes following the removal index are copied down into the hole.

Then in the following loop, each node has the indices of their children
iterated and adjusted to account for the shift in the array. Now, you may be
familiar that there is a faster way to remove an item from an array if you
*don’t* care to preserve the order, which is to simply copy the final element
into the hole that was just created. I'd like to do that here to avoid iterating
every node inside a sub-tree traversal by simply fixing up the child indices of
the parent node — which is a constant time access due to the prior change |
showed where we store that on each node now. However, this is tricky to do
in practice because we are trying to modify the tree as we are traversing it.



Allocate node stack for
top level call

To get around this problem, | allocate and pass around a stack of parent
nodes as we recurse back down the tree.

This allows us to perform fixup on the stack and avoid getting lost during our
traversal as we remove nodes. This can be seen here in the updated logic
inside of the RemoveChildren function.



Copy into hole

Allocate node stack for
top level call

Fix-up child
and parent
pointers

Here is the operation where we take the node at the end of the array and
copy it into the location where we are doing a removal. Then we fix-up the
child and parent node references to account for the node we just moved.



Copy into hole

Allocate node stack for
top level call

Fix-up child
and parent
pointers

Fix-up node stack

Following this | want to call attention to this code — here we need to look at
our stack of nodes we’re maintaining and make sure that if one of the nodes
in our traversal path was the one we just moved, we need to fix-up the
location in our stack so we don’t get lost as we continue our traversal
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Now back in a profiling trace, this is what | was looking for —we’re seeing a
20x improvement on the average removal time from where we started. | can
almost call this a day at this point, you can see now that the time spent doing
removals no longer dwarfs the time spent on regular frame rendering



Higher Level Code
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There’s one more thing improvement that | want to mention that is a bit of a
pet peeve of mine. Don’t do a search and remove separately! The top level
management that uses the block allocator | was optimizing has several lists
that can use RemoveSwap instead of Remove because order doesn’t
matter, and then the call to Contains (which will do a linear search) can be
eliminated by just using the fact that RemoveSwap will return the number of
elements removed.

This halves our removal time again — although this was a just a small portion
of the cost before our other improvements were made. This is a 40x
improvement overall. Again, I'm sure that this time is inconsequential for
many games, the game we were building coupled open world level
streaming with high numbers of small distance field allocations, it became
very worthwhile for us to spend time optimizing this code.



Insertion Cost
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Besides removals from the block allocator, insertions also had lots of room
for improvement — these were walking the tree looking for a suitable hole to
allocate the DF into, but each insertion would start over at the root node.
This seemed redundant — in the trace associated with this code you can see
AddElement is called 10 times, and the tree is potentially walked twice by
each call — this is taking 2.5 ms in a single frame



Insertion Cost
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| got much better performance passing around a reference to the full list of
desired allocations and checking each node against that list. This means
more work being done when a node is visited, but less times traversing parts
of the tree redundantly.

Here you can see that for a frame with 10 insertions, it is 2 ms faster than
before.



Reactive Optimization:
Too Many Primitives

I've talked extensively now about the pain points caused by our large
numbers of distance fields, but let’s look at another render thread challenge
we encountered — also related to our decisions with how we built the

environment
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As a reminder — our assets are constructed out of many smaller mesh
components kit bashed together.

The scope of the project had expanded after our vertical slice milestone and
our art team pushed for even more polish and detail than was in our original
plan. We started hitting the limits of dynamic instancing and became largely
bottlenecked on what is known as “Init Views” in Unreal Engine — this is
where frustum and occlusion culling takes place.



Free Roam
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Here is an example of a challenging shot in front of some buildings that are

made up of many primitives that are processed individually before
instancing. You can see here that InitViews is taking up a hefty 7.7 ms,
which is approaching half of our total frame time.
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Now — Unreal 4 has an older system for managing costs of large numbers of
primitives, which is to merge compatible components into a single “instanced
static mesh component.” These manually instance their meshes, ignoring the

dynamic instancing system, and go through the renderer as a single
primitive.
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ISM Component Drawbacks

-LOD selection overly conservative due to inflated
bounds, hurting GPU performance

-Large bounds also degrade frustum and
occlusion culling quality

-Hard to work with in editor — burden placed on
artists

However, stock Instanced Static Mesh components have a number of
drawbacks compared to using individual mesh components that dynamically
instance. The first two are that GPU performance degrades — the larger
bounds on the merged primitive results in an overly conservative LOD
selection and culling result. It also places a lot of burden on the artists to ask
them to do this manually, which is orthogonal to the performance
characteristics but still a concern.



GPU-driven rendering

-GPU driven rendering of meshes with
MultiDrawlindirect can allow us to handle culling
+ LOD selection on the GPU

-Seb Aaltonen first presented many of these ideas
in the talk GPU-Driven Rendering Pipelines

-But we don't have the resources to rewrite UE4!

The Cadillac solution is to instead go down the path of full GPU-driven
rendering. Issue just a small number of commands on the CPU and handle
LOD selection and culling on the GPU instead of dealing with expanded
bounds on the primitives on the CPU. Seb Aaltonen pioneered a lot of these
ideas in his part of the talk GPU-Driven Rendering Pipelines from Siggraph
2015. But our little didn’t have the resources to do that ambitious of a re-
write of the UE4 renderer.

http://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_c
ombined_final_footer 220dpi.pptx



GPU-driven ISM Component

-Go halfway - modify ISM component to render
with a special ISM GPU Scene

-Convert compatible components on Basic
Structure actors into ISM components at cook
time

-Render each ISM with DrawlIndirect

-Keep ISM'’s grouped into the Basic Structures (do
not merge buildings) so coarse CPU LOD
selection and culling is still effective

My colleague Nate Mefford figured out a really great compromise that fit our
project, to go halfway and modify ISM component to render with a special
ISM GPU Scene. We convert compatible components on Basic Structure
actors into ISM components at cook time, which keeps the burden off of the
artists. We keep ISM’s grouped into their owning Basic Structures, so
components that could have dynamically instanced between two neighboring
buildings within view do not do so. This is because buildings offer a nice unit
of coarse CPU-side LOD selection and culling which helps keep our GPU
overhead low.



CPU LOD Selection

When | say that coarse CPU LOD selection is important, | mean that we
can’t just send a draw per LOD to the command processor as that will result
in too many empty batches. This code is running per-instance LOD selection
on the CPU. This is a CPU vs GPU balancing act and is one clear area
where the full GPU driven rendering pipeline would allow bigger gains. Right
now we have to decide between being overly conservative and sending extra
batches, or spending more CPU time on LOD selection eating into our
savings on the render thread.
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| should also mention there were lots of fiddly bits with getting negative and
non-uniform scale to work correctly in the conversion to Instanced Static
Meshes. I'm a believer in supporting both in a renderer, but this work really
challenged my faith in that and we hit a lot of under-exercised code paths
getting everything to render correctly when converted from individual static
meshes to ISM’s. You can see a shot from a playtest where a storefront has
stretched out into the sky above a neighborhood due to the static meshes
going into the ISM conversion having non-uniform scale.

I've included Nate’s Unreal-specific workarounds in the appendix of these
slides for those interested.
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Now before | get into some more implementation details, here are the results
for that challenging shot, starting with what we had before — InitViews taking
7.7 ms
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And here it is with ISM components on the Basic Structures. This reduces
render thread time by 2.37 ms. It varies from scene to scene but it is
generally in the 2-3 ms range in savings on a base PS4. And this particular
shot sees GPU time virtually flat, although | see it sometimes take 0.1-0.25
ms longer GPU time, which | think is very acceptable given the CPU

benefits.




Instance ID Indirection

The ISM component proxy code has a key modification in that we bind an
instance indirection buffer. Regular old ISM’s in UE4 will just access 0 to N
instance ID’s sequentially. To continue supporting this, our indirection buffer
sets up a number of ID’s at the front, this code path is still important to us for
our grass rendering in particular. But any ISM’s using the GPU scene will
instead read IDs from beyond that point into the portion of the buffer that is

dynamically updated by our scene update compute shader that runs each
frame.



Update Args Shader

Let’s take a look at that shader. Each ISM component gets a single group
(the size of 1 wavefront) that allocates space into the ID buffer. This is done
atomically as multiple groups are in flight at once. The some LDS is cleared
to track the IndirectArgs and a barrier is inserted.

After this point we loop over the instances and perform LOD selection. The
appropriate indirect arg counter in LDS is atomically incremented, and the
instance ID is written to the indirection buffer. You might notice that this has
similarities to the tile locations buffer from the tile classification code.



Update Args Shader

While the first arg holds all the instances for a given ISM, we also perform
per-view culling for our main + shadow cascade views to further reduce
wasted verts when possible. Finally we have one more barrier and write the
indirect args from LDS into main memory.
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The ISM scene update shader is generally pretty fast to run, in this frame it
only took 0.07 ms to run. We also have to handle scattered updates of the
mesh description data when a new ISM component is added, but that is not
a per-frame operation, and is also very fast, just 0.01 ms in traces | took
recently.

While I'm very with the results for this system, we have ideas for further
improvements — dynamic merging of loose StaticMeshActors could help
improve prop rendering, and the system as it is currently only does occlusion
culling on the bounds of the full structure, so some form of per-instance
occlusion culling could be beneficial.
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Here you can see one such trace where two small updates to the mesh
descriptions are patched before the scene update shader



Reactive Optimization:
Decals

Finally, one last problem | wanted to touch on was unanticipated challenges
with decals late in our development cycle. My colleague Karinne and | made
a number of improvements in service of getting systems to behave as we
expected them to.
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The artists and | had a bit of contention in that they (rightly) felt the
environment was too stiff in our original greenlight and vertical slice builds.
They wanted more variety and character, which leaning heavily on
instancing was not great at supporting.

| pushed for them to try to use decals more and more, and they finally did.
You can see that the graffiti on the left side of this slide is overlapping
multiple instanced wall meshes that are underneath it. And the cracks on the
street in the lower right are breaking up the repetition in a road mesh that is
generated from a spline.
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So then once this happened, the first crisis was with environment decals
sucking up space in the texture pool. Unreal has a texture streaming system
to handle streaming the hi-res mips separately from the regular
mesh+material streaming. It turns out that decal components always request
the highest mip possible for textures. Which resulted in tons of detailed
graffiti trash, and road markings gobbling up texture pool space. In a pinch,
we could ask the artists to slash and burn the resolution these are allowed to
use — but part of the benefits of the texture streamer is that the same
resource can be used at different scales in the world and adjust it's
resolution in the pool based on the particular shot.

So what | did was | put Karinne on the case of figuring out why this was
happening - my intuition was that this was going to just be a case of needing
to write some logic to estimate the size of the decal on screen and send the
requested mip count to the texture streaming system. She tracked it down to
a much more fundamental decision in the engine tied to inheritance in C++.
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I’'m illustrating a partial chain of inheritance from scene component here. A
scene component in unreal is just something that has a transform matrix that
is placed in a level, while a primitive is a scene component that goes through
the renderer.

The problem is that at some point in the history of the engine a decision was
made that Decals should not be Primitives and handled sepeartely. And
likely separately from that, the Texture streaming system was engineered to
operate on Primitives.

While my gut reaction was frustration that Decals were not inheriting from
UPrimitiveComponent and that that was an oversight on the engine team’s
part — there *are* good reasons to not make Decals into Primitives. | already
covered the efforts we went through to keep our primitive count lower with
Instanced Static Mesh components. For example — decals never need to
cast shadows so we don’t need to waste time considering them for shadow
casting like static meshes and skeletal meshes.
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The fix we went with is to have the streaming manager maintain a list of
UDecalComponents separately from the primitives, and promoted a small
amount of data up to scene component from primitive component. This
allowed all of those 2kx2k graffiti pieces to drop down as low as 64x64 when
they are offscreen or far away.

| wanted to call out this particular code change because | do not think this is
what | would do if | was the maintainer of the engine. For example, we could
avoid making Decal Components inherit from Primitive Component by
creating an interface class that each implements. The reason *not* to do this
is because doing so would increase our merge burden — as Epic will be fully
unaware of our change unless we discuss a pull request.

| have always found myself on game teams looking for the simplest to
maintain code without sacrificing performance, and often waiting for a
request up to an engine team is not feasible in a lot of contexts when

working on a deadline.
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Now, If I had been thinking through all the consequences, | would have
realized that everything | just said about Decals not being Primitives in the
renderer meant that they also means that they likely don’t get nearly as
much attention regarding frustum culling performance on the render thread —
and a little while later | started noticing that decal rendering time on the
render thread was suddenly quite high as artists added more and more
decals to our game. 2.2 ms in the location | showed with many decals in the

surrounding area.

Each call to AddDeferredDecalPass is handling a different decal rendering
stage is processing all of the decals in the scene separately and redoing
frustum culling and distance fading — and it's happening serially on the main
thread as well. Clearly, our artists were leaning more heavily into deferred
decals than other games using the engine, which to be fair, is exactly what |
had asked them to do.

)
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So the solution here is pretty simple — | build the three decal lists with a
single frustum cull and distance fade on the task graph with a parallel For
loop (very similar to primitive frustum culling in InitViews) and then | handle
copying each decal that passes culling into the relevant list afterwards.

The resulting list is passed down into the different decal passes and the
original per-pass processing is skipped.
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In the area | showed this reduced processing down to 0.67 ms —a 1.53 ms
improvement in render thread time.



Final Thoughts

-Every game has optimization potential tied to the
game you are making that any shared purpose
engine may not anticipate

-Any technology you lean into will lead to finding
its limits when you push it hard enough

-Search for solutions that fit the scope of your
team

Alright so just a few thoughts to end on. | just want to reiterate that | believe
you should always be thinking about how the engineers that you are
downstream from are not necessarily going to anticipate the content you are
making.

And related to that, any time you push into new territory and scope as a
team — you are likely going to hit the limits of systems. A lot of what | showed
improvements for today worked really well for a long time in development,
but eventually became untenable when the content reached a critical mass.

And related to that — always search for the solutions that fit the scope of your
team. Part of why | spend so much time figuring out engineering solution is
because we don’t have an army of artists to try to rework content causing
performance problems. And | very much appreciate when they are able to
help us solve problems on the content side — we’re all working together to try
to make a great game in the end.
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Appendix 1:
Distance Field
GPU Optimizations
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Let’s go over and consider the work happening on the GPU. As a reminder
we need to copy the distance field texels into the atlas texture at the
locations decided by the allocator, and then we need to update dirty regions
of the global distance field clipmaps
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~50% of time wasted on extra barriers

The first up is uploads into the distance field atlas CS. The consoles are
using a compute shader path to update these — and it is inserting a barrier
between each copy. Again, this is especially bad because the artists are
motivated to keep the distance field memory on each object as small as
possible so they can pack more into the atlas. This means that the ratio
between barrier waits and actual work on the CUs gets worse as the artists
do a better and better job.

These barriers would be correct to ensure deterministic results if the regions
being updated within the volume overlapped, but given that there is no need
to do that as this is a texture atlas where everything gets its own spot in the
buffer, it is safe for these wavefronts to be executing at the same time. None
of these are going to be writing to the same places in memory.

There are four updates happening in this frame in this capture I'm showing
here, but there could be dozens in some frames.
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Artem from our co-dev partner Dragon’s Lake got these barriers eliminated
by implementing an interface in the RHI layer that hints that there will be
multiple safe updates to the same resource and only places a barrier at the
beginning + end, and then we put in place a per-frame limit of 12873 texels
worth of updates per-frame to keep things from getting unmanageable from
just the total amount of bandwidth needed. This keeps our time spent
updating the atlas to under 0.1 ms on any given frame.

In this updated capture you can see that three distance fields are being
updated and two of the barriers have been eliminated, keeping the GPU fed
during these updates.
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Analogous to the per-object distance field atlas, the global distance field clip
maps are on staggered updates so that the closest clipmap updates more
frequently than the largest. Heightfields for the terrain are composited after
the regular DF’s are updated. Getting gains here was less straightforward —
the gridcull step is figuring out a reduced number of distance fields that
intersect sub-regions of the area being updated. That memory for holding the
culling results is re-used in each GridCull, eliminating the barriers would
require allocating more memory.

That said, throttling the updates seemed like a really effective idea here,
especially since this structure is only used by DFAO and not direct
shadowing. We limit the number of partial update regions to 5 each frame.
Regions get merged if they can form a volume of contiguous space (for
example if one region fully contains another), and the largest regions are
processed each frame from the pending list. | added a panic threshold to just
update then entire clipmap space if there was ever 1000 pending regions
piling up expecting to be processed.
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Surprisingly, we were hitting full clipmap updates, which can be quite slow — but not
from my 1000 pending failsafe triggering.

It was happening from single large objects with distance fields that would invalidate
the entire clip map at once. Throttling but update region count would never save us
here and | was prepared to start implementing logic to slice up these regions into
smaller sub sections over multiple frames, but | decided to look at what these
objects were first.

It was coming from the fact that the artists liked to enable a distance field on LOD1
of many buildings levels so that the first LOD still casts a crude shadow, making the
transition from the full LODO shadows less noticeable but still dropping down to 0
distance field memory at LOD2. These DFs that were the size of an entire buildings
could easily trigger a full update of one of the clipmaps when running through the
city. I'm showing that here — each of these clip maps takes >2 ms to update and we
have 3 of them. We really want to avoid that case.

However- we really don'’t care about those LOD1 distance fields, and a really
simple hack was put in place to eliminate that from happening. Which is that we
simply don’t process distance fields for the LOD1 meshes on the global clipmap.
We know that the LODO meshes for that level are going to do a good job dirtying
and updating the areas where buildings are placed anyways both on add and
removal. The artists are generating the LOD1 distance field for the direct shadow
tracing which is only traced against the distance field atlas and not the global clip
map.
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And for good measure we moved this work to async compute — we don't
overlap postprocessing with the next frame with async compute like some
games do. So our early frame work and depth prepass could use some
async compute and this is a perfect candidate. A normal frame is going to
have to scroll the clip maps as the player moves and that takes ~0.5 ms on
Xbox One, which stretches to 0.8 ms when run async and stays nicely
overlapped with the vertex shading work in our prepass. When additional
work is needed this can spill past the prepass, but overlapping with the base
pass is generally not overly problematic for us and we still see an overall
reduction in spikes.

The results of the distance field updates are not needed until after our
velocity rendering completes, but we do have additional async work kicking
off to overlap with shadow maps. Throttling of the global clipmap updates
generally prevents that from ever running that deep into the frame.



Appendix 2:
UE4 Cook Conversion
Static Mesh -> Instanced
Static Mesh




Cook-time Conversion

Here Is the code in the basic structure class that converts the individual
mesh components to ISM components. First we iterate all of the components
and build a unique mapping to source meshes. We must filter out some
incompatible meshes at this time as well. Then we iterate each unique mesh.



Cook-time Conversion

Then we iterate over the instances for each mesh and build ISMs. Note that
like many things in computer graphics, handling negative scale and non-
uniform scale was a particular sore spot for getting everything to render
correctly.

Then the instances are added to the new ISM component and the old
component is destroyed, and finally the new component is registered after all
the new instances are added. We do this in the class’s Serialize function but
some of my more recent work has made me believe it would be more correct
to do this in PreSave.



