
Logic Programming in Commercial Games:

Experiences and Lessons Learned

Robert Zubek, SomaSim LLC, robert@somasim.com

Ian Horswill, Northwestern University, ian@northwestern.edu

Slides, software, and interactive demo:

https://tinyurl.com/game-lp

https://tinyurl.com/game-lp

What we’re going to talk about

• What is logic programming?

• LP in three commercial games

◦ Asset consistency checking

◦ Social graph queries

◦ Procedural generation

• Experimental work

• Software, slides, discord, and interactive demo:
https://tinyurl.com/game-lp

https://tinyurl.com/game-lp

What is logic programming?

◦ Logic

◦ Declarative programming

◦ A more declarative language than C++/C#/etc.

◦ Tell the system what you want

◦ It decides how to do it

◦ Programming language based on predicates/relations
and rules, rather than functions

Traditional languages

Basic unit is the function/method/procedure

• z = f(x,y)

Unidirectional

• Distinguish input(s) from output

• Always ask “here are all the inputs, what’s the output?”

• Reversing is hard

Work is done by chaining calls

Predicates (aka relations)

Generalization of functions

• F(x,y,z) means z=f(x,y)

Don’t prejudice what things are inputs or outputs

• You can set x and y and solve for z

• Or set y and z and solve for x

• Set all of them and just test if it’s true

• Set none of them and ask for a data point

Rules

A[x,y] if B[x,z], C[y,z]

“For any x,y,z, A[x,y] is true if B[x,z] and C[y,z] are true”

Most predicates are specified by rules

Example

Pet[x].If(Cat[x])

Pet[x].If(Dog[x])

Pet[x].If(Tiger[x], Tame[x])

“x is a pet if it’s a cat, dog, or
tame tiger”

Query: Pet[chris]
“is Chris a pet?”

Chris a pet if …

• They’re a cat

• Or they’re a dog

• Or they’re a tiger …

◦ … and also tame

Example

Pet[x].If(Cat[x])

Pet[x].If(Dog[x])

Pet[x].If(Tiger[x], Tame[x])

“x is a pet if it’s a cat, dog, or
tame tiger”

So in C#, this is like:

bool Pet(Mammal x)

=> Cat(x) || Dog(x)

|| (Tiger(x) && Tame(x))

Example

Pet[x].If(Cat[x])

Pet[x].If(Dog[x])

Pet[x].If(Tiger[x], Tame[x])

“x is a pet if it’s a cat, dog, or
tame tiger”

Query: Pet[x]
“find me a pet, x”

Set x to …

• A cat, if you can find one

• Otherwise, a dog

• Otherwise, a tiger

◦ But check if it’s tame

◦ If not, try the next tiger

Example

Pet[x].If(Cat[x])

Pet[x].If(Dog[x])

Pet[x].If(Tiger[x], Tame[x])

“x is a pet if it’s a cat, dog, or
tame tiger”

So in C#, this is like:
Mammal? FindPet()

{
Mammal? result = FindCat();

if (result == null)
result = FindDog();

if (result == null)
foreach (var x in AllTigers)
if (IsTame(x))
{ result = x; break; }

return result;

}

Example

Pet[x].If(Cat[x])

Pet[x].If(Dog[x])

Pet[x].If(Tiger[x], Tame[x])

“x is a pet if it’s a cat, dog, or
tame tiger”

Query: Pet[x].SolveForAll(x)
“find me all pets”

• List all the cats

• Then all the dogs

• Then, for each tiger

◦ Check if it’s tame

◦ If so, it’s a pet

Example

Pet[x].If(Cat[x])

Pet[x].If(Dog[x])

Pet[x].If(Tiger[x], Tame[x])

“x is a pet if it’s a cat, dog, or
tame tiger”

So in C#, this is like:
IEnumerable<Mammal> FindPets()

=> FindCats().Cast<Mammal>()

.Concat(FindDogs()).Cast<Mammal>()

.Concat(FindTigers.Where(
t => t.IsTame)

.Cast<Mammal>);

Example

Pet[x].If(Cat[x])

Pet[x].If(Dog[x])

Pet[x].If(Tiger[x], Tame[x])

“x is a pet if it’s a cat, dog, or
tame tiger”

Query: Pet[x], Owner[x, rob]
“find me Rob’s pet, x”

• Go through the pets, one by
one (see Pet[x] previous)

• Check their owners

• Until you find Rob’s pet
(I’m guessing a tiger)

Example

Pet[x].If(Cat[x])

Pet[x].If(Dog[x])

Pet[x].If(Tiger[x], Tame[x])

“x is a pet if it’s a cat, dog, or
tame tiger”

Query: Owner[x, rob], Pet[x]
“find me Rob’s pet, x”

• Go through Rob’s stuff, item
by item

• Check if each is a pet
(see Pet[chris] example)

One rule

is worth many functions

Rules stand in for many different algorithms. The system chooses
between them at run-time based on context

TELL: Typed, Embedded, Logic language
(github.com/ianhorswill/TELL)

Pet[x].If(Cat[x]);

Pet[x].If(Dog[x]);

Pet[x].If(Tiger[x], Tame[x]);

“x is a pet if it’s a cat, dog, or
tame tiger”

• Simple logic program subset

• Embedded in C#

◦ TELL code is C# code

◦ Mix-and-match w/C#

• Live coding support

• MIT license

• NB: Not highly optimized

• Cheap and easy to
experiment with

TELL predicates are C# objects
var Pet = Predicate("Pet", x);
var Cat = Predicate("Cat", x);
var Dog = Predicate("Dog", x);
var Tiger = Predicate("Tiger", x);
var Tame = Predicate("Tame", x);

… rules for your fur babies …

Pet[x].If(Cat[x]);

Pet[x].If(Dog[x]);

Pet[x].If(Tiger[x], Tame[x]);

if (Pet[chris]) DoSomething();

var aPet = Pet[x].SolveFor(x);

var lotsOfPets = Pet[x].SolveForAll(x);

Methods for

• Adding rules

• Calling ([] is overloaded)

• Solving for variables

TELL variables are C# objects
Mammal chris = …;

var x = (Var<Mammal>)"x";
var Pet = Predicate("Pet", x);
var Cat = Predicate("Cat", x);
var Dog = Predicate("Dog", x);
var Tiger = Predicate("Tiger", x);
var Tame = Predicate("Tame", x);

… rules for your fur babies …

Pet[x].If(Cat[x]);

Pet[x].If(Dog[x]);

Pet[x].If(Tiger[x], Tame[x]);

if (Pet[chris]) DoSomething();

• Strongly typed (Var<int>
vs. Var<Mammal>)

• Just represent a variable
name, not its value

• Predicates are also
strongly typed, based on
variables passed in the
constructor

Predicates can access game state

var Owner = Predicate<Person,Mammal>(
"Owner",
person -> person.Stuff);

var Tame = Predicate<Mammal>("Tame",
ModeDispatch(

// Argument is input
m => m.IsTame,
// Argument is output
() => Mammal.AllMammals
.Where(m => m.IsTame)));

• Eventually, you want your rules
to access your game state

• You do this with primitive
predicates

• You just tell it “run this C#
code when this predicate is
called”

• Don’t have time to go into it in
detail, though

Reasons to use logic programming

• Rules can be repurposed for many different uses

• Easy to slap a query language on your game state
(easier than SQL)

• Some game logic is naturally described as rules
anyway

Flavors of logic programming

Top-down (Prolog)

• Start with a call to Pet, it tries each rule

• First rule calls Cat, second calls Dog, third calls Tiger and
Tame

Bottom-up (DATALOG)

• Add all the cats to Pet, then all the dogs

• Then the intersection of Tiger and Tame

SAT-based (ASP, SMT)

• Use general constraint satisfaction algorithms

SomaSim

LP systems

(Future game)

Unity Prolog

BotL, CatSAT

TELL & TED, CatSAT

Project Highrise

Skyscraper simulator

Two AI experiments:

• AI Planner for NPC behavior → see Game AI Pro 3 article

• Prolog for asset consistency checking → Unity Prolog!

https://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter34_1000_NPCs_at_60_FPS.pdf

Consistency Checking

Example: we have tons of assets with cross-references
xrefs use names and tags for flexibility

Problem: make sure all things are matched to each other

people
must

match

apts for rent

floorplans

officesjobs

peoplepeople

jobsjobs

apts for rentapts for rent

officesoffices

floorplansfloorplans

Consistency Checking

Matching residents with apartments for rent

• Space tags (what they are): [apartment, 1br, berlin]

• People tags (what they want): [1br, 2br, …]

people
must

match

apts for rentpeople apts for rentpeople apts for rent

Consistency Checking

Verify that all tags are set up correctly:

• all spaces have someone who could live there

• all people have a space they want to live in

You could do this with tons of
foreach loops…

MatchTags(S,P):
for each tag T in tagsof(S)

for each tag T’ in tagsof(P)
return true if T = T’

for each space S
for each people P

signal a problem if MatchTags(S,P) != true

Consistency Checking

Verify that all tags are set up correctly:

• all spaces have someone who could live there

• all people have a space they want to live in

You could do this with tons of
foreach loops, or…
express it as a rule and
let the computer validate it

Rule:

∀ S ∈ Spaces, ∃ P ∈ People

∃ T: T ∈ tagsof(S) ∧ T ∈ tagsof(P)

Signal a problem if false

Iterates through all residence definitions,

all peoples’ move-in preferences,

all their respective tags,

and makes sure they match up

We ended up with

400 lines of Prolog

Most of it written

in one afternoon

Takeaways

Tests were queries over tree-like data structures

• Loved writing tests as queries, rather than imperatively

• All tests could be localized in a central place

Unity Prolog

• ISO Prolog – very powerful, but can be tricky

• Need to understand how queries get executed (e.g. “cut”)

• Our use cases didn’t exercise all that power

City of Gangsters

Prohibition-era
organized crime sim

Full of secret deals
and vendettas

AI task: querying over social graph at runtime

City of Gangsters

We wanted social effects like vendettas

“You killed my father, prepare to die”

Run a query over social graph:

• Find X, Y, Z such that

• X is the player

• X killed Y

• Y is Z’s relative

And modify Z’s relationship to X

City of Gangsters

Also, nice effects:

“You helped my friend, I appreciate that”

Run a query over social graph:

• Find X, Y, Z such that

• X is the player

• X helped Y

• Y is Z’s friend

And modify Z’s relationship to X

City of Gangsters

Or more generally, social norms:

“You [acted] on [someone’s] [relation], I have [reaction]”

Run a query over social graph:

• Find X, Y, Z, A, R such that

• X is the player

• X performed action A with Y

• Y and Z have relationship R

And modify Z’s relationship to X

Positive examples: help,

complete quest, give money

Negative: extort, harm, kill

BotL, aka “Bot Language”

C# implementation, highly optimized for runtime performance

• Stack allocated, no runtime mallocs

• Custom VM: Vienna Abstract Machine 2P

• Prolog feature set cut down to help with performance

Actual BotL code is

not super readable :)

Let’s rephrase a bit…

Social inference in TELL
(MicroCoG demo at https://tinyurl.com/game-lp)

var ReactionToAction =
Predicate(action, target, reactor, reaction, buffTotal)

.If(ReactionType[action, reaction, relationshipClass],
RelationshipOf[target, rel],
RelationshipClass[rel, relationshipClass],
RelationshipType[rel, relationshipType],
RelationshipTo[rel, reactor],
Sum[buff,

ReactionBuff[reaction, relationshipClass,
relationshipType, buff],

buffTotal]);

Social inference

action: violence

target: Bob

Player Bob Alice Dave

knows child-of

Social inference

var ReactionToAction =
Predicate(action, target, reactor, reaction, buffTotal)

.If(ReactionType[action, reaction, relationshipClass],
RelationshipOf[target, rel],
RelationshipClass[rel, relationshipClass],
RelationshipType[rel, relationshipType],
RelationshipTo[rel, reactor],
Sum[buff,

ReactionBuff[reaction, relationshipClass,
relationshipType, buff],

buffTotal]);

If somebody does
action to NPC target

Social inference

var ReactionToAction =
Predicate(action, target, reactor, reaction, buffTotal)

.If(ReactionType[action, reaction, relationshipClass],
RelationshipOf[target, rel],
RelationshipClass[rel, relationshipClass],
RelationshipType[rel, relationshipType],
RelationshipTo[rel, reactor],
Sum[buff,

ReactionBuff[reaction, relationshipClass,
relationshipType, buff],

buffTotal]);

Then NPC reactor will
have reaction

Social inference

var ReactionToAction =
Predicate(action, target, reactor, reaction, buffTotal)

.If(ReactionType[action, reaction, relationshipClass],
RelationshipOf[target, rel],
RelationshipClass[rel, relationshipClass],
RelationshipType[rel, relationshipType],
RelationshipTo[rel, reactor],
Sum[buff,

ReactionBuff[reaction, relationshipClass,
relationshipType, buff],

buffTotal]);

And it will change
their trust by buffTotal

Social inference

var ReactionToAction =
Predicate(action, target, reactor, reaction, buffTotal)

.If(ReactionType[action, reaction, relationshipClass],
RelationshipOf[target, rel],
RelationshipClass[rel, relationshipClass],
RelationshipType[rel, relationshipType],
RelationshipTo[rel, reactor],
Sum[buff,

ReactionBuff[reaction, relationshipClass,
relationshipType, buff],

buffTotal]);

IF

Social inference

var ReactionToAction =
Predicate(action, target, reactor, reaction, buffTotal)

.If(ReactionType[action, reaction, relationshipClass],
RelationshipOf[target, rel],
RelationshipClass[rel, relationshipClass],
RelationshipType[rel, relationshipType],
RelationshipTo[rel, reactor],
Sum[buff,

ReactionBuff[reaction, relationshipClass,
relationshipType, buff],

buffTotal]);

Reaction is the kind
of reaction people
have to that action

Social inference

var ReactionToAction =
Predicate(action, target, reactor, reaction, buffTotal)

.If(ReactionType[action, reaction, relationshipClass],
RelationshipOf[target, rel],
RelationshipClass[rel, relationshipClass],
RelationshipType[rel, relationshipType],
RelationshipTo[rel, reactor],
Sum[buff,

ReactionBuff[reaction, relationshipClass,
relationshipType, buff],

buffTotal]);

Rel is someone in
in target’s network
of the right class

Social inference

var ReactionToAction =
Predicate(action, target, reactor, reaction, buffTotal)

.If(ReactionType[action, reaction, relationshipClass],
RelationshipOf[target, rel],
RelationshipClass[rel, relationshipClass],
RelationshipType[rel, relationshipType],
RelationshipTo[rel, reactor],
Sum[buff,

ReactionBuff[reaction, relationshipClass,
relationshipType, buff],

buffTotal]);

Rel is of this type
(mother, acquaintance, …)

Social inference

var ReactionToAction =
Predicate(action, target, reactor, reaction, buffTotal)

.If(ReactionType[action, reaction, relationshipClass],
RelationshipOf[target, rel],
RelationshipClass[rel, relationshipClass],
RelationshipType[rel, relationshipType],
RelationshipTo[rel, reactor],
Sum[buff,

ReactionBuff[reaction, relationshipClass,
relationshipType, buff],

buffTotal]);

Rel is a relationship of the
target to the reactor

Social inference

var ReactionToAction =
Predicate(action, target, reactor, reaction, buffTotal)

.If(ReactionType[action, reaction, relationshipClass],
RelationshipOf[target, rel],
RelationshipClass[rel, relationshipClass],
RelationshipType[rel, relationshipType],
RelationshipTo[rel, reactor],
Sum[buff,

ReactionBuff[reaction, relationshipClass,
relationshipType, buff],

buffTotal]);

And buffTotal is the sum
of all the applicable buffs

Social inference

var ReactionToAction =
Predicate(action, target, reactor, reaction, buffTotal)

.If(ReactionType[action, reaction, relationshipClass],
RelationshipOf[target, rel],
RelationshipClass[rel, relationshipClass],
RelationshipType[rel, relationshipType],
RelationshipTo[rel, reactor],
Sum[buff,

ReactionBuff[reaction, relationshipClass,
relationshipType, buff],

buffTotal]);

Social inference in TELL

action: violence

target: Bob

reactor: Alice

reaction: violence-reaction

relationshipClass: Family

relationshipType: Child

buff: -2

Player Bob Alice

knows child-of

relationship buff: -2

Takeaways

Declarative queries are great

BotL is really, really fast

We wished for better debugging and embedding into C#

Idea: but what if we had LP that’s more like Linq than SQL?

• Embedded in C# rather than external

• Use strong typing and easy .NET interop

• Benefit from Visual Studio debugger, IntelliSense, etc.

Consistency checking

Similar problems as in Project Highrise

Using two new systems: TELL and TED

• TELL: Typed Embedded Logic Language

• TED: Typed Embedded Datalog

Consistency checking

Example: there are definitions for companies and contracts,
matched by tags. Make sure everybody matches up.

invalidCompany(C, Id) ⇐
isCompany(C) ∧
offersContract(C, Id) ∧
¬ isContract(Id)

orphanedContract(Id) ⇐
isContract(Id) ∧
∄C: offersContract(C, Id)

invalidCompany(C, Id) ⇐
isCompany(C) ∧
offersContract(C, Id) ∧
¬ isContract(Id)

orphanedContract(Id) ⇐
isContract(Id) ∧
∄C: offersContract(C, Id)

Each predicate can test a specific

value, or generate all matching

values

Here is_contract[] tests a specific

value of variable Contract

Here is_contract[] produces all

possible values for Contract

TELL vs TED

Different execution strategies!

TELL

• Like Prolog, execute queries top-down, depth-first search

TED

• Like Datalog, execute queries bottom-up, creating a table
for each predicate or expression, and merging them

Takeaways

Very early in development, but:

• Embedding inside C# is very, very, very nice

• No longer purely stack-allocated, but that’s okay

• Both systems in active development:
- Optimizations coming
- TED should be easy to parallelize

LP systems we used
System Embedded

language
Search Type Memory

allocation

Unity Prolog No Top-down ISO Prolog Dynamic

BotL No Top-down Prolog-like Stack-based

TELL Yes Top-down Prolog-like Dynamic

TED Yes Bottom-up Datalog-like
Parallelizable

Dynamic

One more thing… NPC procgen!

Two use cases

1. NPC personality traits

(City of Gangsters, future game)

2. NPC composite portraits

(future game)

Two use cases

1. NPC personality traits Pick 3 traits that together
satisfy design constraints:

𝑙𝑜𝑛𝑒𝑟 → ¬ 𝑠𝑜𝑐𝑖𝑎𝑏𝑙𝑒 ∧ 𝑞𝑢𝑖𝑒𝑡
𝑞𝑢𝑖𝑒𝑡 → ¬ 𝑡𝑎𝑙𝑘𝑎𝑡𝑖𝑣𝑒
𝑡𝑎𝑙𝑘𝑎𝑡𝑖𝑣𝑒 → ¬ 𝑞𝑢𝑖𝑒𝑡 ∧ 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦
𝑎𝑔𝑖𝑙𝑒 → ¬ 𝑐𝑙𝑢𝑚𝑠y ∧ ¬ 𝑙𝑎𝑧𝑦

…𝑒𝑡𝑐.

Two use cases

1. NPC personality traits

2. NPC composite portraits Pick 1 body, head, hair, etc.
that satisfy art constraints:

𝑚𝑎𝑙𝑒↔ ℎ𝑒𝑎𝑑1 ∨ ⋯ ∨ ℎ𝑒𝑎𝑑𝑀
𝑚𝑎𝑙𝑒↔ 𝑏𝑜𝑑𝑦1 ∨ ⋯ ∨ 𝑏𝑜𝑑𝑦𝑁
𝑏𝑜𝑑𝑦5 ↔ ℎ𝑒𝑎𝑑4 ∨ ℎ𝑒𝑎𝑑6
ℎ𝑒𝑎𝑑3 ∨ ℎ𝑒𝑎𝑑4 → ℎ𝑎𝑖𝑟8 ∨ ℎ𝑎𝑖𝑟9 ∨ ℎ𝑎𝑖𝑟10
ℎ𝑎𝑖𝑟8 → ¬ ℎ𝑒𝑎𝑑10

…𝑒𝑡𝑐.

Approach

It’s a satisfiability problem!

• Find a model (set of true
values) that satisfies all
those constraints

• SAT solvers exist…

Approach CatSAT

SAT solver with randomization

• Better randomization of
solutions than traditional
SAT solvers

• Randomization is key for PCG!

Implemented in C#

It’s a satisfiability problem!

• Find a model (set of true
values) that satisfies all
those constraints

• SAT solvers exist…

Experimental systems
PCG for non-programmers, creative writers, and tabletop GMs

Imaginarium
Constraint-based PCG from English-language descriptions

Persian, tabby, Siamese, manx, Chartreux,
and Maine coon are kinds of cat.

Cats are long-haired or short-haired.

Cats can be big or small.

Chartreux are grey.

Siamese are grey.

Persians are long-haired.

Siamese are short-haired.

Maine coons are large.

Cats are black, white, grey, or ginger.

…

imagine 10 cats

Imaginarium
Constraint-based PCG from English-language descriptions

Thaumaturge, necromancer, neopagan,
technopagan, and shaman are kinds of magic
user.

A magic user is dark or light

Necromancers are dark
Thaumaturges are light

imagine 10 magic user cats

Imaginarium
Generating and visualizing relationships

Generative text for TTRPGs
(Joint work with Olivia Hill and Filamena Young)

You are hired by a curious party to take
out a werewolf. The client just really
hates werewolves.

When you finally find the werewolf, the
area is swarming with cops. And they
turn out to be extremely attractive.
What will you do?

Afterward, the client has another job for
you, a really hard one, and they want
you to start right now.

Summary

Logic programming is great for specific purposes

- Focuses on query, hides execution strategy

Prolog/Datalog-likes: used as “SQL for knowledge graphs”

Satisfiability solver: used for PCG with constraints

Ergonomic implementations are key!

Links

All these systems are open source! (MIT license)

Go here: https://tinyurl.com/game-lp

• Newer systems: TED, TELL, CatSAT

• Older systems: BotL, Unity Prolog

• Sample app

Also, join us on Discord! Talk about LP in games, get code
feedback, and more. Link at: https://tinyurl.com/game-lp

https://tinyurl.com/game-lp
https://tinyurl.com/game-lp

Thank you!

Robert Zubek, SomaSim LLC, robert@somasim.com

Ian Horswill, Northwestern University, ian@northwestern.edu

Slides, software, and interactive demo:

https://tinyurl.com/game-lp

https://tinyurl.com/game-lp

	Slide 1: Logic Programming in Commercial Games: Experiences and Lessons Learned
	Slide 2: What we’re going to talk about
	Slide 3: What is logic programming?
	Slide 4: Traditional languages
	Slide 5: Predicates (aka relations)
	Slide 6: Rules
	Slide 7: Example
	Slide 8: Example
	Slide 9: Example
	Slide 10: Example
	Slide 11: Example
	Slide 12: Example
	Slide 13: Example
	Slide 14: Example
	Slide 15: One rule is worth many functions
	Slide 16: TELL: Typed, Embedded, Logic language (github.com/ianhorswill/TELL)
	Slide 17: TELL predicates are C# objects
	Slide 18: TELL variables are C# objects
	Slide 19: Predicates can access game state
	Slide 20: Reasons to use logic programming
	Slide 21: Flavors of logic programming
	Slide 22: SomaSim
	Slide 23: LP systems
	Slide 24: Project Highrise
	Slide 25: Consistency Checking
	Slide 26: Consistency Checking
	Slide 27: Consistency Checking
	Slide 28: Consistency Checking
	Slide 29: Prolog code
	Slide 30: Prolog code
	Slide 31: Takeaways
	Slide 32: City of Gangsters
	Slide 33: City of Gangsters
	Slide 34: City of Gangsters
	Slide 35: City of Gangsters
	Slide 36: BotL, aka “Bot Language”
	Slide 37: BotL code
	Slide 38: Social inference in TELL (MicroCoG demo at https://tinyurl.com/game-lp)
	Slide 39: Social inference
	Slide 40: Social inference
	Slide 41: Social inference
	Slide 42: Social inference
	Slide 43: Social inference
	Slide 44: Social inference
	Slide 45: Social inference
	Slide 46: Social inference
	Slide 47: Social inference
	Slide 48: Social inference
	Slide 49: Social inference
	Slide 50: Social inference in TELL
	Slide 51: Takeaways
	Slide 52: (Future game prototype)
	Slide 53: Consistency checking
	Slide 54: Consistency checking
	Slide 55: TED code
	Slide 56: TED code
	Slide 57: TELL vs TED
	Slide 58: Takeaways
	Slide 59: LP systems we used
	Slide 60: One more thing… NPC procgen!
	Slide 61: Two use cases
	Slide 62: Two use cases
	Slide 63: Two use cases
	Slide 64: Approach
	Slide 65: Approach
	Slide 66: Experimental systems PCG for non-programmers, creative writers, and tabletop GMs
	Slide 67: Imaginarium Constraint-based PCG from English-language descriptions
	Slide 68: Imaginarium Constraint-based PCG from English-language descriptions
	Slide 69: Imaginarium Generating and visualizing relationships
	Slide 70: Generative text for TTRPGs (Joint work with Olivia Hill and Filamena Young)
	Slide 71: Summary
	Slide 72: Links
	Slide 73: Thank you!

