
AT GDC2023

MEET
LIGHTSPEED STUDIOS
March 20-24, 2023 | San Francisco, CA

1

Photon Water System:
Open world water rendering and real-time simulation

Principal Software Engineer,

LIGHTSPEED STUDIOS

March 20-24, 2023 | San Francisco, CA

Senior Research Scientist,

LIGHTSPEED STUDIOS

Hello everyone, this is Kui Wu. Today, Zhenyu and I are going to present our
inhouse water system for unreal engine, Photon Water System, for open world
water rendering and real-time simulation. I will first present the simulation part
and then Zhenyu will introduce the components on rendering side.

2

https://kuiwuchn.github.io/

Kui Wu

• 2020 – now LightSpeed Studios Senior research scientist
• 2019 – 2020 MIT Postdoc
• 2014 – 2019 University of Utah PhD

About me

Before getting into the details, let me briefly introduce myself. My name is Kui. I
got my phd in compute graphics from the University of Utah in 2019. before
joining lightspeed studios as a senior researcher, I spent 1 year at MIT as a
posdoc.

3

Water is a critical feature in video games, especially open-world games.

Traditional game solutions mostly use pre-generated mesh and flow maps.
Runtime fluid simulation solutions are limited to a small simulation domain and

require a high-end GPU. However, we need a solution to support various

projects and has a capability of scale from mobile platform to next gen console.
Based on this request, we are inspired by several existing tools and plugins, such

as Unreal Engine water system and water rendering frameworks in other games.
We develop an inhouse water system in Unreal engine to support several games

under development in our studios.

4

Photon Water System

We develop an Unreal Engine plugin for a unified open world water solution, including
• Procedural tools for river, lake, and ocean

• Offline flow map baking
• Runtime fluid simulation
• Buoyancy and boat physics
• Underwater volumetric lighting

• Adaptive water mesh tessellation

Flow map CDLOD tessellation OceanVolumetric lightBuoyancy

We call it as photon Water System internally, which is an Unreal Engine plugin
for a unified open world water solution, including a full tool set from content
creation for river, lake and ocean. As shown several screenshot below about
some of our features, our system also supports offline Flowmap baking, runtime
fluid simulation. buoyancy and boat physics , underwater volumetric lighting,
adaptive water mesh tessellation..

5

Agenda

Fluid simulation
● Offline Flow map baking
● Runtime fluid simulation
● Grid-based foam simulation
Open world water rendering
● Rendering pipeline
● Surface wave
● Tessellation

Here is the agenda today. I will first introduce the components for fluid
simulation

6

Flow map

Flow map has been widely used in games to drive the normal map on static

water mesh to mimic water flow.

• 2D velocity field

• Usually, pre-baked using Houdini

Alex Vlachos. “Water Flow in Portal 2”.
Advances in Real-Time Rendering in 3D Graphics and Games,
Siggraph course 2010

Flow map has been widely used in games to drive the normal map on static
water mesh to mimic water flow. We refer to siggraph course in 2010 for more
details about how to use the flow map. Basically, the flowmap is pre-computed
using physical-based simulation tool in existing third party software, such as
Houdini. And the velocity field is stored as a 2d vector map and fetch at runtime.
However, the existing tool is still inconvenience for artists to use and cannot
support turbulent flow.

7

Offline flow map baking

We use lattice Boltzmann method for the solution of shallow water equations

(LBMSWE) to bake the flow map.

• Support turbulence flow

• Simple to implement

• Highly parallelizable

• Conservative

Therefore, we implement a lattice Boltzmann method for the solution of shallow

water equations (LBMSWE) in the unreal engine to bake a physics driven flow

map. We choose lbm because of its several advantages, such as Support

turbulence flow, Simple to implement, Highly parallelizable, Conservative

8

Lattice Boltzmann Method (LBM)

LBM introduces a mesoscopic description of fluid which is equivalent to macroscopic

Navier-Stokes (N-S) equations.

The particle distribution function 𝑓 𝑥, 𝑢, 𝑡
represents a particle at location x and moves
with velocity v at given time t

LBM introduces a mesoscopic description of fluid which is equivalent to
Macroscopic Navier-Stokes (N-S) equations. It considers a collection of particles
as a unit, and accurately model average behavior of these particles as macro-
scale behavior. 𝑓 𝑥, 𝑣, 𝑡 is the particle distribution function that there is a
particle at location x and moves with velocity v at given time t.

9

Lattice Boltzmann Method (LBM)

LBM introduces a mesoscopic description of fluid which is equivalent to macroscopic

Navier-Stokes (N-S) equations.

The evolution of function 𝑓 is defined by the Boltzmann transport equation

𝜕𝑓

𝜕𝑡
+ 𝑢 ∙ 𝛻𝑓 = 𝛺 𝑓 + 𝐹 ∙ ∇𝑢𝑓

The evolution of function f is defined by the Boltzmann transport equation,

10

Lattice Boltzmann Method (LBM)

LBM introduces a mesoscopic description of fluid which is equivalent to macroscopic

Navier-Stokes (N-S) equations.

The governing equation is Boltzmann transport equation

𝜕𝑓

𝜕𝑡
+ 𝑢 ∙ 𝛻𝑓 = 𝛺 𝑓 + 𝐹 ∙ ∇𝑢𝑓

𝑢 is particle velocity

𝛺 is the collision operator which
controls the speed of change in
particle distribution during collision

𝑢 is particle velocity, 𝛺 is the collision operator which controls the speed of
change in particle distribution during collision.

11

Lattice Boltzmann Method (LBM)

LBM introduces a mesoscopic description of fluid which is equivalent to macroscopic

Navier-Stokes (N-S) equations.

The governing equation is Boltzmann transport equation

𝜕𝑓

𝜕𝑡
+ 𝑢 ∙ 𝛻𝑓 = 𝛺 𝑓 + 𝐹 ∙ ∇𝑢𝑓

external force term

Note that the purple term can incorporate with other force such as the force
from shallow water assumption.

12

Lattice Boltzmann Method (LBM)

LBM uses 9-speed square lattice pattern that each cell contains 9 distribution

functions to indicate the particle motions.

𝑓0 𝑓1

𝑓2𝑓3

𝑓5

𝑓4

𝑓8𝑓7𝑓6

const float2 e[9] =
{

float2(0.0f, 0.0f),
float2(1.0f, 0.0f),
float2(1.0f, 1.0f),
float2(0.0f, 1.0f),
float2(-1.0f, 1.0f),
float2(-1.0f, 0.0f),
float2(-1.0f, -1.0f),
float2(0.0f, -1.0f),
float2(1.0f, -1.0f),

};

const float w[9] =
{

0.0f,
1.0f,
0.25f,
1.0f,
0.25f,
1.0f,
0.25f,
1.0f,
0.25f

};

Direction Weight

LBM uses 9-speed square lattice pattern that each cell contains 9 distribution
functions to indicate the particle motions. There are also two arrays to store
the direction and weight for each distribution function.

13

Lattice Boltzmann Method (LBM)

Discretization and time update of distributions:

𝑓𝛼
𝑥+1,𝑡+1 − 𝑓𝛼

𝑡 = −
1

𝜏
𝑓𝛼
𝑡 − 𝑓𝛼

𝑒𝑞
+ 𝐹 ∙ ∇𝑢𝑓

BGK Collision Operator

For Discretization and time update of distributions, we can rewrite the update
function as, with BGK collision operator.

14

Lattice Boltzmann Method (LBM)

Discretization and time update of distributions:

𝑓𝛼
𝑥+1,𝑡+1 − 𝑓𝛼

𝑡 = −
1

𝜏
𝑓𝛼
𝑡 − 𝑓𝛼

𝑒𝑞
+ 𝐹 ∙ ∇𝑢𝑓

BGK Collision Operator

Streaming
𝑓0 𝑓1

𝑓2𝑓3

𝑓5

𝑓4

𝑓8𝑓7𝑓6

𝑓0 𝑓1

𝑓2𝑓3

𝑓5

𝑓4

𝑓8𝑓7𝑓6

In particular, the lbm update scheme is based on the streaming, that
distribution function will stream to the neighboring cell as shown here.

15

LBMSWE algorithm

The basic LBMSWE algorithm has four steps:

1. Update the equilibrium distribution 𝑓𝛼
𝑒𝑞

2. Streaming and collision

3. Boundary handling

4. Compute macroscopic variables

To solve this equation, the basic LBMSWE algorithm only has four steps:
1. Update equilibrium distribution

2. Streaming and collision

3. Boundary handling

4. Compute macroscopic variables

16

We first update the equilibrium distribution 𝑓𝛼
𝑒𝑞 based on current h, u , v

Step 1: update 𝑓𝛼
𝑒𝑞

void updateFeq(float u, float v, float h)
{

float uu = u * u + v * v;

f_eq[uint3(xy, 0)] = h * (1.0f - 5.0f/6.0f*g*h*InvE2 - 2.0f/3.0f*InvE2*uu);

[unroll]
for (uint a = 1; a < 9; a++)
{

float eu = (e[a].x * u + e[a].y * v) * E;
f_eq[uint3(xy, a)] = w[a] * (g*h/6.0f + eu/3.0f + InvE2*eu*eu/2.0f – uu/6.0f)*h*InvE2;

}

}

𝑓𝛼
𝑒𝑞

=

ℎ −
5𝑔ℎ2

6𝑒2
−

2ℎ

3𝑒2
𝑢𝑖𝑢𝑖 𝛼 = 0,

𝑔ℎ2

6𝑒2
+

ℎ

3𝑒2
𝑒𝛼𝑖𝑢𝑖 +

ℎ

2𝑒4
𝑒𝛼𝑖𝑒𝛼𝑗𝑢𝑖𝑢𝑗 −

ℎ

6𝑒2
𝑢𝑖𝑢𝑖 𝛼 = 1,3,5,7,

𝑔ℎ2

24𝑒2
+

3ℎ

12𝑒2
𝑒𝛼𝑖𝑢𝑖 +

ℎ

8𝑒4
𝑒𝛼𝑖𝑒𝛼𝑗𝑢𝑖𝑢𝑗 −

ℎ

24𝑒2
𝑢𝑖𝑢𝑖 𝛼 = 2,4,6,8.

local equilibrium function plays an essential role in the lattice Boltzmann
method. We first update current targeted equilibrium distribution 𝑓𝛼

𝑒𝑞 based on
current h, u , v, where 𝑓𝛼

𝑒𝑞 is a model specified function. This is the definition for
lbmswe. Alpha indicates different possibility along different directions.

17

The collision and streaming step update distribution function to achieve an

equilibrium state with a relaxation factor 𝜏.

Step 2: streaming and collision

int x = xy.x;
int y = xy.y;
int xf = xy.x + 1;
int xb = xy.x - 1;
int yf = xy.y + 1;
int yb = xy.y - 1;

f_new[uint3(x, y, 0)] = (1.0 - inv_Tau) * f_old[uint3(x, y, 0)] + inv_Tau * f_eq[uint3(x, y, 0)];
f_new[uint3(xf, y, 1)] = (1.0 - inv_Tau) * f_old[uint3(x, y, 1)] + inv_Tau * f_eq[uint3(x, y, 1)] + (e[1].x * ext[2] + e[1].y * ext[3]) * s;
f_new[uint3(xf, yf, 2)] = (1.0 - inv_Tau) * f_old[uint3(x, y, 2)] + inv_Tau * f_eq[uint3(x, y, 2)] + (e[2].x * ext[4] + e[2].y * ext[5]) * s;
f_new[uint3(x, yf, 3)] = (1.0 - inv_Tau) * f_old[uint3(x, y, 3)] + inv_Tau * f_eq[uint3(x, y, 3)] + (e[3].x * ext[6] + e[3].y * ext[7]) * s;
f_new[uint3(xb, yf, 4)] = (1.0 - inv_Tau) * f_old[uint3(x, y, 4)] + inv_Tau * f_eq[uint3(x, y, 4)] + (e[4].x * ext[8] + e[4].y * ext[9]) * s;
f_new[uint3(xb, y, 5)] = (1.0 - inv_Tau) * f_old[uint3(x, y, 5)] + inv_Tau * f_eq[uint3(x, y, 5)] + (e[5].x * ext[10] + e[5].y * ext[11]) * s;
f_new[uint3(xb, yb, 6)] = (1.0 - inv_Tau) * f_old[uint3(x, y, 6)] + inv_Tau * f_eq[uint3(x, y, 6)] + (e[6].x * ext[12] + e[6].y * ext[13]) * s;
f_new[uint3(x, yb, 7)] = (1.0 - inv_Tau) * f_old[uint3(x, y, 7)] + inv_Tau * f_eq[uint3(x, y, 7)] + (e[7].x * ext[14] + e[7].y * ext[15]) * s;
f_new[uint3(xf, yb, 8)] = (1.0 - inv_Tau) * f_old[uint3(x, y, 8)] + inv_Tau * f_eq[uint3(x, y, 8)] + (e[8].x * ext[16] + e[8].y * ext[17]) * s;

𝑓𝛼
𝑥+1,𝑡+1 = 𝑓𝛼

𝑡 −
1

𝜏
𝑓𝛼
𝑡 − 𝑓𝛼

𝑒𝑞
−
∆𝑡𝑒𝛼𝑖
6𝑒2

𝜏𝑏𝑖
𝜌
+ 𝑔ℎ

𝜕𝑧𝑏
𝜕𝑥𝑖

The highlight part is trivial to compute as shown in the pseudocode below, and
same as the traditional LBM. We can use the current distribution function f,
equilibrium distribution function feq and a relaxation factor 𝜏 to update the new
distribution function

18

The collision and streaming step update distribution function to achieve an

equilibrium state with a relaxation factor 𝜏.

Step 2: streaming and collision

−𝑔ℎ
𝜕𝑧𝑏

𝜕𝑥𝑖
is hydrostatic pressure that can be computed

using finite difference method

𝜏𝑏𝑖

𝜌
is the friction force, where the bed shear stress 𝜏𝑏𝑖 = 𝜌𝐶𝑏𝑢𝑖 𝑢𝑗𝑢𝑗

in 𝑖 direction is given by the depth-averaged velocities

Zhou, Jian Guo. Lattice Boltzmann methods for shallow water flows. Vol. 4. Berlin: Springer, 2004.

𝑓𝛼
𝑥+1,𝑡+1 = 𝑓𝛼

𝑡 −
1

𝜏
𝑓𝛼
𝑡 − 𝑓𝛼

𝑒𝑞
−
∆𝑡𝑒𝛼𝑖
6𝑒2

𝜏𝑏𝑖
𝜌
+ 𝑔ℎ

𝜕𝑧𝑏
𝜕𝑥𝑖

The last term is for the shallow water equation, including the friction force,
where the bed shear stress in 𝑖 direction is given by the depth-averaged
velocities and is hydrostatic pressure. Due to limited time, please refer the book
for more detailed definitions.

19

Step 3: boundary handling

𝑓0 𝑓1

𝑓2𝑓3

𝑓5

𝑓4

𝑓8𝑓7𝑓6

No-slip boundary

𝑓2 = 𝑓6
𝑓3 = 𝑓7
𝑓4 = 𝑓8

𝑓0 𝑓1

𝑓2𝑓3

𝑓5

𝑓4

𝑓8𝑓7𝑓6

Free-Slip boundary

𝑓2 = 𝑓8
𝑓3 = 𝑓7
𝑓4 = 𝑓6

𝑓0 𝑓1

𝑓2𝑓3

𝑓5

𝑓4

𝑓8𝑓7𝑓6

Inflow boundary

𝑓1 = 𝑓5 + 2ℎ𝑢/3𝑒
𝑓2 = 𝑓2 + (𝑓7 − 𝑓3)/2 + ℎ𝑢/6𝑒
𝑓8 = 𝑓4 + (𝑓3 − 𝑓7)/2 + ℎ𝑢/6𝑒

Outflow boundary

𝑓0 𝑓1

𝑓2𝑓3

𝑓5

𝑓4

𝑓8𝑓7𝑓6

𝑓5 = 𝑓1 − 2ℎ𝑢/3𝑒
𝑓4 = 𝑓8 + (𝑓7 − 𝑓3)/2 − ℎ𝑢/6𝑒
𝑓6 = 𝑓2 + (𝑓3 − 𝑓7)/2 − ℎ𝑢/6𝑒

Then, we can handle the boundary by simply flipping the distribution function at
certain direction, we can handle no-slip boundary, free-slip boundary, inflow
boundary and outflow boundary.

20

Step 4: Compute macroscopic variables

float h = 0;
[unroll]
for (uint a = 0; a < 9; a++)
{

h += f_new[uint3(xy, a)];
}
[unroll]
for (uint a = 0; a < 9; a++)
{

vx += e[a].x * f_new[uint3(xy.xy, a)];
vy += e[a].y * f_new[uint3(xy.xy, a)];

}
vx /= h
vy /= h

We reconstruct macroscopic variables based on the information stored at

lattice

ℎ 𝑥, 𝑡 =෍

𝛼

𝑓𝛼 𝑥, 𝑡

𝑢𝑖 𝑥, 𝑡 =
1

ℎ 𝑥, 𝑡
෍

𝛼

𝑒𝛼𝑖𝑓𝛼 𝑥, 𝑡

finally, we can compute Macroscopic quantities , such as the velocity and depth
by accumulating the local values from 9 directions.

22

Stability conditions

We check the following condition every frame and clamp the velocity if violating

● The kinematic viscosity should be positive 𝜈 = 𝑒2Δ𝑡

6
2𝜏 − 1 > 0, so 𝜏 > 0.5

● The velocity should be smaller than the lattice speed 𝑢𝑗𝑢𝑗 < 𝑒2

● The celerity should be smaller than the lattice speed 𝑢𝑗𝑢𝑗 < 𝑔ℎ

● The Froude number should be smaller than one 𝐹𝑟 =
𝑢𝑗𝑢𝑗

𝑔ℎ
< 1

Since the lattice Boltzmann equation is a discrete form of a numerical method.

It may suffer from a numerical instability like any other numerical methods. We

check four the stability conditions as described below.

The kinematic viscosity should be positive, The velocity should be smaller than

the lattice speed, The celerity should be smaller than the lattice speed, The

Froude number should be smaller than one. We enforce those condition at the

end of each step and clamp the velocity when it violates stability conditions.

23

Vortex around bending

Fluid direction impacted
by terrain

Slow flow when water is
depth

Vortices behind obstacle

Baked flow map Using LBMSWE

The LBMSWE is very easy to implemented in UE using compute shader. Here is
a top-down view of a long river. As we can see, LBMSWE can create Vortex
around bending and behind obstacle. Also, the Fluid direction impacted by
underneath terrain as well as the water depth.

24

Local modifier

Adjust flow direction locally

We also provide artist a set of tools to modify the result. Such as the example
shown, artist can adjust the flow direction locally until they are happy with

25

Here is a close view. The red arrows show the flow map computed using

LBMSWE.

26

Summary

Lattice Boltzmann Model for Shallow Water Equation (LBMSWE)

● Pros:

● Support turbulence flow turbulent flow

● Simple to implement

● Highly parallelizable

● Conservative

● Cons:

● Large memory usage

● Not good for real-time waterfront propagation

To summarize, Lattice Boltzmann Model for Shallow Water Equation (LBMSWE) is
good to generate flow map offline with several advantages. However, since
each cell needs to store 3 distribution values for nine directions, which has a
large memory cost. Also, since lbmswe is still a single phase method, it is not
good for real-time waterfront propagation

27

Agenda

Fluid simulation
● Offline Flow map baking
● Runtime fluid simulation
● Grid-based foam simulation
Open world water rendering
● Rendering pipeline
● Surface wave
● Tessellation

28

Runtime fluid simulation

We use Shallow Water Equation (SWE), a height-field based 2.5D fluid simulation

●
𝐷ℎ

𝐷𝑡
+ ℎ∇ ⋅ 𝒖 = 0

●
𝐷𝒖

𝐷𝑡
= −𝑔∇(ℎ + 𝐻) Conservation of momentum

Conservation of mass

ℎ

𝐻

𝒖

Free surface

Terrain

Chentanez, Nuttapong, and Matthias Müller.
Real-time Simulation of Large Bodies of Water with Small Scale Details.
Symposium on Computer Animation. 2010.

For runtime, we do a height field fluid simulation based on the shallow water
assumption. The conservation of mass and momentum leads to the following
well-known SWE governing equation, where ℎ is the water depth, 𝐻 is the terrain
height. The horizontal velocity u contains the velocity components along the x
and y directions. We borrow the idea of the previous academic paper, cited
here.

29

Shallow Water Equations (SWE)

𝑢𝑖−1/2,𝑗

𝑢𝑖+1/2,𝑗

𝑢𝑖+3/2,𝑗

𝑣𝑖,𝑗−1/2 𝑣𝑖,𝑗+1/2 𝑣𝑖,𝑗+3/2

Staggered grid

• Water depth ℎ

• Terrain height 𝐻

• Velocity 𝒖 = (𝑢, 𝑣)

We use a staggered grid to store the data. The height are stored at cell centers,
and velocities are stored at edge centers.

30

Shallow Water Equations (SWE)

Height integration

Velocity advection

Apply water pressure

Splitting into 3 steps:

● Step 1:
𝜕ℎ

𝜕𝑡
= −ℎ∇ ⋅ 𝒖

● Step 2:
𝜕𝒖

𝜕𝑡
= −𝒖 ⋅ ∇𝒖

● Step 3:
𝜕𝒖

𝜕𝑡
= −𝑔∇ ℎ + 𝐻

Our fluid time integration algorithm is based on the splitting scheme
consisting of three main steps, height integration, velocity advection, and
apply water pressure.

31

Step 1: Height integration

ℎ𝑖,𝑗 += −
∆𝑡

∆𝑥
(തℎ𝑢

𝑖+1/2,𝑗
− തℎ𝑢

𝑖−1/2,𝑗
+ തℎ𝑤

𝑖,𝑗+1/2
− തℎ𝑤

𝑖,𝑗−1/2
)

തℎ𝑢
𝑖+1/2,𝑗

= ൝
ℎ𝑖+1,𝑗𝑢𝑖+1/2,𝑗 𝑖f 𝑢𝑖+1/2,𝑗 ≤ 0

ℎ𝑖,𝑗𝑢𝑖+1/2,𝑗 𝑖f 𝑢𝑖+1/2,𝑗 > 0

Discretization

Up-winding advector 𝑢𝑖+1/2,𝑗

ℎ𝑖+1,𝑗ℎ𝑖,𝑗

We update the height from velocity using the following mass-conserved
equation. In particular, we use a conserved up-winding advection scheme to
figure out which direction we should get the information based on the face
velocity.

32

Step 2: Velocity advection

Use Semi-Lagrangian Method to trace a virtual particle backward over
time
1. 𝑉𝑖,𝑗

𝑡 = (𝑢, 𝑣)

𝑢, 𝑣 𝑖,𝑗
𝑡

𝑥𝑖,𝑗

To discretize velocity advection, we first use an unconditionally stable Semi-
Lagrangian advector to update the velocities. The key idea is very simple. First,
we fetch the velocity at the current location

33

Step 2: Velocity advection

Use Semi-Lagrangian Method to trace a virtual particle backward over
time
1. 𝑉𝑖,𝑗

𝑡 = (𝑢, 𝑣)

2. 𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑥𝑖,𝑗 − 𝛥𝑡𝑉𝑖,𝑗

𝑡

𝑥𝑖,𝑗

𝑥𝑖,𝑗
𝑛𝑒𝑤

, and use a virtual particle back trace to a new location based on the current
velocity,

34

Step 2: Velocity advection

Use Semi-Lagrangian Method to trace a virtual particle backward over
time

Bilinear interpolation1. 𝑉𝑖,𝑗
𝑡 = (𝑢, 𝑣)

2. 𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑥𝑖,𝑗 − 𝛥𝑡𝑉𝑖,𝑗

𝑡

3. 𝑢𝑖,𝑗
𝑡+1 = 𝑢𝑡 (𝑥𝑖,𝑗

𝑛𝑒𝑤)

𝑥𝑖,𝑗

𝑥𝑖,𝑗
𝑛𝑒𝑤

void Semi-LagrangianAdvection(float2 pos)
{

float u = read_u(pos)
float v = SRVInVelXY.SampleLevel(SRVSampler, pos, 0).x;
float2 pos_new = pos + dt * float2(u, v);
float u_new = SRVInVelXY.SampleLevel(SRVSampler, pos_new, 0).y;

}

Last, we can fetch the velocity from the new location suing bilinear interpolation
and write it to the original location.

35

𝐻𝑖+1,𝑗
𝐻𝑖,𝑗

ℎ𝑖+1,𝑗
ℎ𝑖,𝑗

𝑢𝑖+1/2,𝑗

Step 3: Apply water pressure

Take the gradient of the water's height into account

𝑢𝑖+1/2,𝑗 = 𝑢𝑖+1/2,𝑗 − 𝑔
∆𝑡

∆𝑥
ℎ𝑖+1,𝑗 +𝐻𝑖+1,𝑗 − ℎ𝑖,𝑗 −𝐻𝑖,𝑗

Water pressure

Then, we explicitly update velocities by taking the gradient of the water height
into account as follows. Note that the gradient computation should include the
terrain height as well, since we are measuring the gap between neighboring’s
water levels.

36

Boundary conditions

𝐹𝑎𝑐𝑒𝑖+1,𝑗 is a wall, if

If there is a wall, there is no height integration.

𝐻𝑖+1,𝑗

𝐻𝑖,𝑗

ℎ𝑖,𝑗𝐻𝑖,𝑗

𝐻𝑖+1,𝑗

ℎ𝑖+1,𝑗

ℎ𝑖,𝑗 ≤ 𝜀 and 𝐻𝑖,𝑗 > 𝐻𝑖+1,𝑗 + ℎ𝑖+1,𝑗 ℎ𝑖+1,𝑗 ≤ 𝜀 and 𝐻𝑖+1,𝑗 > 𝐻𝑖,𝑗 + ℎ𝑖+1,𝑗

or

We also need to check each face and see whether it is a wall based on the
terrain height and water depth. In particular, if either of the following is true, we
set the face i+1, j as the wall and set the velocity value as 0 at the end of every
time step.

37

256 x 256 grid, 0.09 ms per step

Demo

All timings on NVIDIA GeForce RTX 3080 GPU

Here is an example of our shallow water simulation in unreal engine. The domain
is 256x256 grid. In this demo, it only takes 0.09 ms per step. [13.5mins]

38

SWE + particles system

Problem: SWE does not support discontinuous terrain, such as waterfall
Solution: additional particle system, in which each particle carries water
mass and velocity

1. Create

2. Advance

3. Delete

SWE is fast and can be parallelized easily, however, due to the shallow
assumption and the limited representation of height field, it doesn’t support
terrain discontinuities, such as waterfall and breaking waves naturally. We
follow the same idea and use the particle system. The surface discontinuities
are detected automatically and the liquid volume in such locations are
converted from SWE system into particles that carry mass and momentum of
the height field across the discontinuity. Obviously, it contains three steps,
create, advance, and delete

39

Create particles

We go over all edges to determine whether and how many water particles
needs to be created.

𝐻𝑖+1,𝑗

ℎ𝑖,𝑗

𝐻𝑖,𝑗

𝑢𝑖+1/2,𝑗

1. Determine whether should create waterfall edge based on the

difference between neighboring terrain heights and water levels

2. Determine the particle number

Flux Φ = 𝑢𝑖+1/2,𝑗 ∗ ∆𝑡 ∗ ∆𝑥 ∗ ℎ𝑖,𝑗

Spawn particle number = total flux / particle volume

3. Determine the particle locations

Randomly place within the cell

4. Use atomic to write into the particle buffer

We first go over all edges to determine whether and how many water particles
needs to be created. The spawn particles number can be computed based on
the flux over the face. Then, we randomly shift the particle locations and use
atomic to write into the particle buffer.

40

Advance particles

All water particles fall under the sole influence of gravity.

void advanceParticle(float3& vel, float3& pos)
{

const float C = drag * length(vel);
vel = (vel + float3(0, 0, -gravity * dt)) / (1 + C * dt);
pos = pos + vel * dt;

}

The advances is trivially moving all water particles under free fall by gravity.

41

Delete particles

We go over each particle. If it hits the water surface or terrain, its water mass
and velocity need to be written back to SWE.

𝑢𝑖+1/2,𝑗 =
𝑢𝑖+1/2,𝑗ℎ𝑖,𝑗∆𝑥

2 + σ𝑢𝑝𝑉𝑝

ℎ𝑖,𝑗∆𝑥
2 +σ𝑉𝑝

Total momentum

Total mass

when particle hits ground or water, deleted particles should contribute back to
the SWE grid based. We first accumulate total momentum and velocity from
particles to each cell. Then, the new velocity can be computed as the sum of
momentum divided by total volume.

42

Delete particles

We go over each particle. If it hits the water surface or terrain, its water mass
and velocity need to be written back to SWE.

𝑢𝑖+1/2,𝑗 =
𝑢𝑖+1/2,𝑗ℎ𝑖,𝑗∆𝑥

2 + σ𝑢𝑝𝑉𝑝

ℎ𝑖,𝑗∆𝑥
2 +σ𝑉𝑝

Total momentum

Total mass

Pass 1: accumulate σ𝑢𝑝𝑉𝑝 and σ𝑉𝑝 using atomic, respectively.
Pass 2: update 𝑢𝑖+1/2,𝑗, 𝑤𝑖+1/2,𝑗, and ℎ𝑖,𝑗

Which require us to have two textures for grid momentum and mass

43

Delete particles

Unfortunately, since velocity and height are stored at different location, we
have to accumulate σ𝑢𝑝𝑉𝑝, σ𝑤𝑝𝑉𝑝, and σ𝑉𝑝 for 𝑢, 𝑤, and ℎ using atomic,
respectively.

𝑢𝑖+1/2,𝑗 =
𝑢𝑖+1/2,𝑗ℎ𝑖,𝑗∆𝑥

2 +σ𝑢𝑝𝑉𝑝

ℎ𝑖,𝑗∆𝑥2 +σ𝑉𝑝
ℎ𝑖,𝑗 = ℎ𝑖,𝑗 +෍𝑉𝑝𝑤𝑖+1/2,𝑗 =

𝑤𝑖+1/2,𝑗ℎ𝑖,𝑗∆𝑥
2 +σ𝑤𝑝𝑉𝑝

ℎ𝑖,𝑗∆𝑥2 +σ𝑉𝑝

Pass 1: accumulate σ𝑢𝑝𝑉𝑝, σ𝑤𝑝𝑉𝑝, and σ𝑉𝑝 for 𝑢, 𝑤, and ℎ using atomic, respectively.
Pass 2: update 𝑢𝑖+1/2,𝑗, 𝑤𝑖+1/2,𝑗, and ℎ𝑖,𝑗

Unfortunately, since velocity and height are stored at different location, we have
to accumulate σ𝑢𝑝𝑉𝑝, σ𝑤𝑝𝑉𝑝, and σ𝑉𝑝 for 𝑢, 𝑤, and ℎ using atomic,
respectively.

44

Delete particles

Unfortunately, since velocity and height are stored at different location, we
have to accumulate σ𝑢𝑝𝑉𝑝, σ𝑤𝑝𝑉𝑝, and σ𝑉𝑝 for 𝑢, 𝑤, and ℎ using atomic,
respectively.

Pass 1: accumulate σ𝑢𝑝𝑉𝑝, σ𝑤𝑝𝑉𝑝, and σ𝑉𝑝 for 𝑢, 𝑤, and ℎ using atomic, respectively.
Pass 2: update 𝑢𝑖+1/2,𝑗, 𝑤𝑖+1/2,𝑗, and ℎ𝑖,𝑗

Need five textures

𝑢𝑖+1/2,𝑗 =
𝑢𝑖+1/2,𝑗ℎ𝑖,𝑗∆𝑥

2 +σ𝑢𝑝𝑉𝑝

ℎ𝑖,𝑗∆𝑥2 +σ𝑉𝑝
ℎ𝑖,𝑗 = ℎ𝑖,𝑗 +෍𝑉𝑝𝑤𝑖+1/2,𝑗 =

𝑤𝑖+1/2,𝑗ℎ𝑖,𝑗∆𝑥
2 +σ𝑤𝑝𝑉𝑝

ℎ𝑖,𝑗∆𝑥2 +σ𝑉𝑝

Unfortunately, since velocity and height are stored at different location, we have
to accumulate σ𝑢𝑝𝑉𝑝, σ𝑤𝑝𝑉𝑝, and σ𝑉𝑝 for 𝑢, 𝑤, and ℎ using atomic,
respectively.

45

Delete particles

We couple 𝑢, 𝑤, and ℎ together when writing.
Pass 1: accumulate σ𝑢𝑝𝑉𝑝, σ𝑤𝑝𝑉𝑝, and σ𝑉𝑝 for ℎ, respectively.

Pass 2: update 𝑢𝑖+1/2,𝑗, 𝑤𝑖+1/2,𝑗, and ℎ𝑖,𝑗

To simplify this operation, we couple the velocity and height together, by
assuming the water particle will contribute to those three variables,
simultaneously. Then, we can only accumulate momentum for the velocity at
each direction and height, respectively. By that, we only need three textures
and reuse the total mass when update the velocity at the second pass.

46

Delete particles

We couple 𝑢, 𝑤, and ℎ together when writing.
Pass 1: accumulate σ𝑢𝑝𝑉𝑝, σ𝑤𝑝𝑉𝑝, and σ𝑉𝑝 for ℎ, respectively.

Pass 2: update 𝑢𝑖+1/2,𝑗, 𝑤𝑖+1/2,𝑗, and ℎ𝑖,𝑗

5 textures 3 textures

By that, we only need three textures without much visual loss.

47

200 x 200 grid, 20k particles, 0.11 ms per step Demo

Here is the Full Algorithm for SWE with Particles. it is a small waterfall example
that uses 200 x 200 grid and 20k+ particles and takes 0.11 ms per step.
[17.5mins]

48

SWE Algorithm

1. Compute boundary conditions

2. Create particles

3. Integrate height

4. Advect velocity and apply pressure

5. Advance and delete particles

6. Update height and velocity

7. Copy and compact particles

8. Goto 1.
temporary bufferpersistent buffer

water depth h

terrain height H boundary conditionwater depth h

velocity u & v velocity u & v

boundary condition water depth h

boundary condition water depth h

water depth h velocity u & v particles

water depth h

water depth h particles particles sum

velocity u & v water depth h velocity u & v

particles particles

sumwater depth h water depth h

Input Output

Here is the full swe algorithm. The passes labeled by the water droplet are for
particles only. We also list the input and output for each pass.To save the
memory usage, we use one persistent buffer and one temporary buffer to
replace the double buffer. So, each frame the temporary buffer can be
obtained from the texture pool.

49

Optimization

● Use one persistent and one temporary to replace double buffers to save memory

● Use f16 and uint16 instead of f32

⦁ N+1 x N+1 texture buffers x 4, including

⦁ PF_R16G16_FLOAT x 1 -- velocity u & v

⦁ PF_G16_FLOAT x 1 -- water depth h

⦁ PF_G16_UINT x 1 -- boundary condition

⦁ PF_G16_FLOAT x 1 -- terrain height H

⦁ 3 x 65536 texture buffers x 2, including

⦁ PF_R16G16B16_FLOAT x 1 -- particle position

⦁ PF_R16G16B16_FLOAT x 1 -- particle velocity

⦁ PF_G16_FLOAT x 1 -- particle lifetime

Besides, we also did lots of optimization, such as replace all f32 with 16bits float
and integer. There are total four n+1 by n+1 texture needed, for velocity, water
depth boundary condition and terrain height. For particles, we assume there
are 65536 particle at max. and use three buffers for position, velocity and
lifetime.

50

Optimization

● Use one persistent and one temporary to replace double buffers to save memory

● Use f16 and uint16 instead of f32

● Merge passes to reduce data read & write

1. 𝑉𝑖,𝑗
𝑡 = (𝑢, 𝑣)

2. 𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑥𝑖,𝑗 − 𝛥𝑡𝑉𝑖,𝑗

𝑡

3. 𝑢𝑖,𝑗
𝑡+1 = 𝑢𝑡 (𝑥𝑖,𝑗

𝑛𝑒𝑤)

𝑢𝑖+1/2,𝑗 −= 𝑔
∆𝑡

∆𝑥
ℎ𝑖+1,𝑗 + 𝐻𝑖+1,𝑗 − ℎ𝑖,𝑗 −𝐻𝑖,𝑗

Applying water pressure passVelocity advection pass

Merge as one pass

We also attempted to merge compute shader passes as many as possible to
reduce the data read and write, such as the velocity advection pass and
applying water pressure pass. Since they don’t have any write or read
conflicting, we can simply combine them together

51

Optimization

● Use one persistent and one temporary to replace double buffers to save memory

● Use f16 and uint16 instead of f32

● Merge passes to reduce data read & write

● Use shared memory

Height integration

ℎ𝑖,𝑗 += −ℎ
∆𝑡

∆𝑥
(തℎ𝑢

𝑖+1/2,𝑗
− തℎ𝑢

𝑖−1/2,𝑗
+ തℎ𝑤

𝑖,𝑗+1/2
− തℎ𝑤

𝑖,𝑗−1/2
)

Using working group to fetch neighboring
data together, before the computing

Another well-known optimization strategy is to use shared memory pre-fetch a
chunk of data using working groups. Such as the height integration here, update
height needs to data from all neighboring velocity and water height, which can
be fetched together.

52

Optimization

● Use one persistent and one temporary to replace double buffers to save memory

● Use f16 and uint16 instead of f32

● Merge passes to reduce data read & write

● Use shared memory

● Infrequency particles compact

● Compact active particles every five iterations

When particles hit the ground or water, we will mark the particles inactive.
Ideally, we should compact the particle list every frame to save the memory.
However, compacting particle is a very expensive operation. So, we compact
active particles every five iterations

53

Optimization

● Use one persistent and one temporary to replace double buffers to save memory

● Use f16 and uint16 instead of f32

● Merge passes to reduce data read & write

● Use shared memory

● Infrequency particles compact

● Indirect dispatch

● Track the active particle number

● Launch shader with same number of threads
though FRDGBufferRef IndirectArgsBuffer parameter

To avoid waster threads on inactive particles, we keep tracking the Track the
active particle number particles, and launch shader with same number of
threads as active particles have using unreal indirect dispatch feature.

54

Optimization

● Use one persistent and one temporary to replace double buffers to save memory

● Use f16 and uint16 instead of f32

● Merge passes to reduce data read & write

● Use shared memory

● Infrequency particles compact

● Indirect dispatch

● Early exit

● Skip the cell without water

● Skip inactive particles

Also, we found early exit can benefit the performance a lot, such as Skip the cell
without water and Skip inactive particles. When updating the particles,
we mark the lifetime as -1 for inactive particles.

55

Optimization

● Use one persistent and one temporary to replace double buffers to save memory

● Use f16 and uint16 instead of f32

● Merge passes to reduce data read & write

● Use shared memory

● Infrequency particles compact

● Indirect dispatch

● Early exit

● Use intrinsic operation, such as MAD

● Reduce peak register usage

We also use intrinsic operation, such as MAD and profile the shader code to
locate when is peak register usage and reduce the usage to increase number of
warps launched

56

Optimization

● Use one persistent and one temporary to replace double buffers to save memory

● Use f16 and uint16 instead of f32

● Merge passes to reduce data read & write

● Use shared memory

● Infrequency particles compact

● Indirect dispatch

● Early exit

● Use intrinsic operation, such as MAD

● Reduce peak register usage

● Profile and profile again, such as Renderdoc, stat GPU in UE, profiler in UE, Nsight

The final thing I’d like to mention is to keep profiling the shader code, such as
Renderdoc, stat GPU in UE, profiler in UE, Nsight. That is the only way to
improve the performance.

57

Performance

0

0.05

0.1

0.15

0.2

256^2 512^2 1024^2

time

ms Total 0.132 ms

Update boundary conditions 0.017

Create particles 0.016

Integrate height 0.017

Advect and apply pressure 0.012

Advance and delete particles 0.010

Apply grid sum 0.008

Copy particles 0.006

Copy and generate foam 0.015

Diffuse foam 0.017

Advect foam 0.011

512 x 512 grid, 12k particles

Grid only without particles and foam Full pipeline breakdown

All timings on NVIDIA GeForce RTX 3080 GPU

On the left, we test the scalability of our implementation with different domain
size. As shown in the bar chart, even for the domain with 1024^2, our
implementation still takes less than 0.3 ms per step.

58

Performance

0

0.05

0.1

0.15

0.2

256^2 512^2 1024^2

time

ms Total 0.132 ms

Update boundary conditions 0.017

Create particles 0.016

Integrate height 0.017

Advect and apply pressure 0.012

Advance and delete particles 0.010

Apply grid sum 0.008

Copy particles 0.006

Copy and generate foam 0.015

Diffuse foam 0.017

Advect foam 0.011

512 x 512 grid, 12k particles

Grid only without particles and foam Full pipeline breakdown

All timings on NVIDIA GeForce RTX 3080 GPU

On the right, there is the full pipeline breakdown table.

59

Comparison

SWE LBMSWE

● Pros:

● Easy to parallelize

● Very fast

● Handle dynamic terrain editing

● Suitable for real-time applications

● Cons:

● Lack of details

● Does not support turbulent flow

● Pros:

● Support turbulence flow turbulent
flow

● Simple to implement

● Highly parallelizable

● Conservative

● Cons:

● Large memory usage

● Not good for real-time waterfront
propagation

To summary, SWE and LBMSWE both have their own advantages and
disadvantages. We plan to combine the real-time SWE and offline LBMSWE
baking together in the future.

60

Agenda

Fluid simulation
● Offline Flow map baking
● Runtime fluid simulation
● Grid-based foam simulation
Open world water rendering
● Rendering pipeline
● Surface wave
● Tessellation

61

Foam plays an important role to make water look realistic.

One last thing is that Foam plays an important role to make water look realistic.
But how to generate the foam dynamically based on current framework?

62

Grid-based foam simulation

● Foam generation

● Trap air – velocity difference within the face
𝜙𝑡𝑎 = 𝑢𝑖−1/2,𝑗+1 − 𝑢𝑖−1/2,𝑗 , 𝑣𝑖+1,𝑗−1/2 − 𝑣𝑖,𝑗−1/2

float GenFoamTrapAir(int2 xy)
{

float Vx00 = ReadInVelX(xy + uint2(0, 0));
float Vx10 = ReadInVelX(xy + uint2(1, 0));
float Vy00 = ReadInVelY(xy + uint2(0, 0));
float Vy01 = ReadInVelY(xy + uint2(0, 1));
float2 VelDiff = float2(Vx10 – Vx00, Vy01 – Vy00);
return FoamClampingFunc(length(VxDiff), FoamParas2.x, FoamParas2.y) * FoamParas2.z;

}

float FoamClampingFunc(const float I, const float tau_min, const float tau_max)
{

return (min(tau_max, I) - min(tau_min, I)) / (tau_max - tau_min);
}

𝑢𝑖−1/2,𝑗

𝑣𝑖,𝑗−1/2

𝑣𝑖+1,𝑗−1/2

𝑢𝑖−1/2,𝑗+1
∆𝑉𝑖,𝑗

Ihmsen, Markus, et al. "Unified spray, foam and air bubbles for particle-based fluids." The Visual Computer 28 (2012).

We develop a Grid-based foam simulation. For foam generation, we use two
heuristics. The first is in this regions have high turbulence that Air is trapped by
impacts. We simply use the magnitude of relative velocities within the cell to
determine how much foam can be generated. In here, we follow the previous
work to use a clamping function to adjust the result

63

Grid-based foam simulation

● Foam generation

● Trap air – velocity difference within the face
𝜙𝑡𝑎 = 𝑢𝑖−1/2,𝑗+1 − 𝑢𝑖−1/2,𝑗 , 𝑣𝑖+1,𝑗−1/2 − 𝑣𝑖,𝑗−1/2

● Steep enough to break – gradient of water level

𝜙𝑠𝑡𝑒𝑒𝑝 =
𝜕𝐻 + ℎ

𝜕𝑥
,
𝜕𝐻 + ℎ

𝜕𝑦

float GenFoamSteepToBreak(int2 xy)
{

float Eta11 = h[xy + uint2(0, 0)] + H[xy + uint2(0, 0)];
float Eta01 = h[xy + uint2(-1, 0)] + H[xy + uint2(-1, 0)];
float Eta10 = h[xy + uint2(0, -1)] + H[xy + uint2(0, -1)];
float Eta21 = h[xy + uint2(1, 0)] + H[xy + uint2(1, 0)];
float Eta12 = h[xy + uint2(0, 1)] + H[xy + uint2(0, 1)];
float2 GradEta = overdx * float2(abs(Eta21-Eta11)>abs(Eta11-Eta01)?Eta21-Eta11:Eta11-Eta01,

abs(Eta12-Eta11)>abs(Eta11-Eta10)?Eta12-Eta11:Eta11-Eta10);
return FoamClampingFunc(length(GradEta), FoamParas2.x, FoamParas2.y) * FoamParas2.z;

}

The second is In this regions have high curvature that the water is unable and
steep enough to break. We use the magnitude of gradient of water level how
much foam density can be generated

64

Grid-based foam simulation

● Foam propagation

● Diffusion
𝜙𝑖,𝑗
t+1 = 𝜙𝑖,𝑗

t + 𝛼 𝜙𝑖−1,𝑗
𝑡 + 𝜙𝑖+1,𝑗

𝑡 + 𝜙𝑖,𝑗−1
𝑡 +𝜙𝑖,𝑗+1

𝑡 − 4𝜙𝑖,𝑗
𝑡

● Advection
Semi-Lagrangian advection based on SWE velocity field

● Rendering
Use velocity field as flowmap to drive foam texture and 𝜙 determines the
foam texture transparency

𝛼 controls the foam dissipation rate

Foam simulation is similar to eularian grid fluid simulation. It contains a diffusion
step that can be control by alpha for the foam dissipation rate. Luckly, we don’t
have to solve the imcompressible velocity field. Instead, we can reuse the
velocity field generated by SWE to advection the foam. For rendering, we use
velocity field as flowmap to drive foam texture and foam density to determine
the foam texture transparency

65

66

67

Agenda

Fluid simulation
● Offline Flow map baking
● Runtime fluid simulation
● Grid-based foam simulation
Open world water rendering
● Rendering pipeline
● Surface wave
● Tessellation

Here is the agenda today. I will first introduce the components for fluid
simulation

68

Zhenyu Mao

• 3 years at LightSpeed Studios serving as Principal Software Engineer

• 20+ years at Ubisoft serving as 3D Programmer and Tech Lead

About me

69

Data Creation

Production process

Generated data

• Spline tools to generate rivers, lakes.

• Custom mesh and external procedural tools.

• Ocean level, beaufort scale, exclusion zones.

• Simulation parameters for water source, viscosity,
friction, relaxation factor, inlet/outlet speed foam, etc..

• One button click to generate
Height map, Flow map, Material id map, Distance field

• Repeat if needed

Before dive into the rendering, just a quick introduction about the production
pipeline, without data we can not run any simulation or rendering.
• Artists can use spline tools to create rivers and lakes,
• or generate water procedurally using external tools like Houdini.
• Alternatively, they can assign the water material to any mesh.
• At the end. all the water meshes will be baked into height maps.
• For ocean, we just need to set the ocean level, and some exclusion zone to

avoid some area get flooded.

Once the desired water sources have been added, the fluid simulation can be
initiated with the click of a button.
The simulation results are saved as water height, flow maps, material id maps,
and distance field will also be generated for rendering.
This process can be repeated until get a good result

70

Pre-pass

Water Rendering decoupled into 2 parts

Lighting Pass

• Depth pre-pass

• Screen space displacement, normal, foam

• Single Layer Water Material

Instead of squeeze in all the generated resources into one shader, we
decoupled the rendering pass to 2 passes.
The first pass will the water displacement , normal and foam in 3 screen space
buffer in 3 passes.

71

Pre-pass

Water Rendering Frame Breakdown

Depth pre-pass with water quadtree

Screen-space FBM wave

Displacement particles(ripples, wakes)

Normal from displacement, Foam

• Wider FOV

• Material properties from world position
• FBM wave from material property and flow

map

Buffer size is customizable

Here is a break down of how we render a frame for water
Pre-pass
• A depth-only pre-pass is first rendered with the water quadtree and height

map.
• it uses a simplified VS to render a flat water surface.
• The pre-pass is rendered with a wider FOV to avoid the gap on the screen

border after displacement is applied.
• After the depth pre-pass, we can un-project the depth to get world position

for the following passes.

FBM wave
• We use FBM wave to simulate the detailed waves,
• FBM stands for Fractional Brownian Motion, which is a random motion

wave computed by multiple iterations,
• the wave can be tweaked by amplitude, frequency, and speed to

represent calm lake or rapid water.
• We store the FBM wave parameter in the water material data buffer.
• We can use the world position to get the material id from the material id

map, then use it to index from the material data buffer to get the material

72

properties.
• Flow map is used to control the global movement of the fbm waves.

Displacement particle
• We added a new material type in the Unreal Niagara particle system.
• It will render particles to a specified displacement buffer instead of a

color buffer.
• This buffer will be combined with FBM displacement as the final

displacement.

Normal is generated from the final displacement buffer.

Foam
Foam is also de-coupled and rendered to a separate buffer.

The pre-pass buffer size does not need to be a one-to-one match with the
GBuffer size.
• This is the biggest reason we chose to de-couple the wave computation

from the lighting pass,
• We can selectively use a smaller buffer size for the low-end platform.

72

Single Layer Water

Water Rendering Frame Breakdown

• Vertex factory with CDLOD mesh
tessellation, samples height map and
displacement map(screen space).

• Samples screen space normal, foam
in PS

• Lumen volumetric lighting and
reflection

• Lightspeed Surfel GI lighting and
reflection

Single
Layer
Water

Vertex
Factory

Material
Data
Buffer

Material Id
Map

Water
Quad
Tree

Water
Height
Map

A custom vertex factory is created for the CDLOD mesh tessellation, we
applied height map and the displacement on it.
The material shader will sample from the screen space normal and foam, with
FOV corrected of course.
As we use the single layer water, we can easily get benefit from the Lumen
lighting and reflection.
We also support the lightspeed studio internal tech Surfel GI which provided a
similar real-time GI as Lumen but at a lower cost.

73

Filip Struger, Continuous Distance-Dependent Level of Detail for Rendering Heightmaps (2011)
Continuous Distance-Dependent Level of Detail Svante Lindgren 2020-06-13 https://svnte.se/cdlod-terrain
Terrain Rendering in 'Far Cry 5’ https://www.gdcvault.com/play/1025480/Terrain-Rendering-in-Far-Cry

LOD selection

Grid morph into a less
detailed version

Water Mesh Tessellation

Continuous Distance-Dependent Level of Detail, CDLOD

• Pre-tessellated mesh patches
with different LOD

• Quadtree system to cull and
select LOD

• Morph between LODs

• No mesh stitching

CDLOD is one of the popular methods used for rendering height maps.
It pre-generated multiple LODs of the mesh patch and organized the meshes
in a quadtree.
At runtime, it selects the LOD based on the distance to the camera, so the
high-density mesh is used close to the camera and lower LOD is used in
distance.
Morph
• No stitching between LODs.
• Just uses a 0 to 1 morph value to morph between LOD levels.
• The cost of the vertex shader is just like regular mesh rendering plus height

map sampling.
CDLOD limit
Compare to the stitching method used in farcy 5 terrain, CDLOD is simpler but
has its limit.
With CDLOD, the connected LODs can only have one level difference, while
the stitching method allows more than 2 levels of difference, so the LOD level
can drop faster.
With CDLOD, it may get unnecessary high mesh density at a very far
distance which we will address later.

74

https://svnte.se/cdlod-terrain
https://www.gdcvault.com/play/1025480/Terrain-Rendering-in-Far-Cry

Vertex clip with height map in VS

float4 Height4 = HeightMapVT.GatherRed(Sampler, UV);
// count pixels with value 0
float4 ZeroPixelMask = step(Height4, 0);
float ZeroPixelCount = dot(ZeroPixelMask, 1);
if (ZeroPixelCount < 4)
{

ManualBilinearSampleHeight
}
else
{

// Use Nan to clip non-water triangles
OutputPos /= 0;

}

CDLOD Mesh Clip

Avoid filter with 0 on the edge
• Manual filter with gather4

• Use Nan to mark non-water vertex

Unlike terrain height map rendering, a water height map only covers a part of
the land and needs to be clipped at the shoreline.
We use a bilinear filter to sample the water height map to get smooth results
on the slope,
but it will be wrong on the edge when filtered with an invalid height value, in
our case is 0.
We use a gather4 to do a manual filter which excludes the 0 value pixels.
if the height value is 0, we use the divide-by-zero trick to create a nan on the
vertex position, the whole triangle will be clipped.
It is an undocumented feature but works surprisingly well and it works
everywhere, even on the mobile platform.
The water mesh needs to be expanded so it will not leave a gap near the shore
in low LOD.

75

GPU quadtree traversal
//assuming no more than 256 nodes per level
groupshared uint g_nodeBuffer[2][16*16];
void BuildVisibleNodesList(uint3 ThreadIdx)
{

InitFirstLevel();
GroupMemoryBarrierWithGroupSync();
VisitOneLevel(dispatchThreadId);
GroupMemoryBarrierWithGroupSync();

for (uint i = 0; i < (MaxQTLevel - 1); i++)
{

PrepareNextLevel(ThreadIdx);
GroupMemoryBarrierWithGroupSync();
VisitOneLevel(ThreadIdx);
GroupMemoryBarrierWithGroupSync();

}

if (ThreadIdx.x == 0 && ThreadIdx.y == 0)
{

StoreNodes();
}

}

CDLOD Quadtree Traversal

• Non-recursive, Loop

• Use groupshared memory to store
intermediate output nodes

• Limit the output quadtree node per level
due to groupshared memory limit

• Fallback to CPU traversal when running
out of groupshare memory

Quadtree traversal is done in GPU
We traverse the quadtree in one compute shader dispatch.

It uses a loop method to traverse one level per iteration,
• In each iteration, it compute the visible nodes and store into the group

shared memory buffer for the next iteration,
• After all the quadtree level is visited, the group shared memory will be

copied to the output node buffer,
• the indirect draw argument will be updated as well.

Per level Node Limit
• This compute-shader has a group size of 16x16 with only one group.
• Each thread can access all the group shared memory.
• But there is a hardware limit of group memory size per thread, which

becomes the limit of the max node count that can be written into the
buffer, per level.

• In our test with 12k x 12k world, the visible node buffer never runs out.
• We added a fallback solution that once the node buffer is overflowed, the

system will use CPU traversal in the next frame.

76

● Water height map, flow map, and material Id map are
stored as 128x128 tile textures. (Actually 130x130 for
bilinear sampling)

● Flat water tiles store as a height value.

● Runtime streaming in/out by selected LOD, de-coupled
from Quadtree LOD selection.

● The virtual Address table is stored in the bottom of the
pool

● Fast and simple runtime tile allocator
Support up to 64x64 runtime tiles, which is an 8192x8192
texture pool.

Virtual Address Table

Water Virtual Texture

TArray<uint64> RowBitsArray;//64 elements
uint64 RowStateBits;
int32 AddrY = FindLSB(RowStateBits);
int32 AddrX = FindLSB(RowBitsArray[AddrY]);

Virtual Address Table

To support a large open world, we can not store the height map or flow map
textures in one large texture,

Tile Texture
• We cut all the textures into 128x128 tile textures.
• Actually, stored them as 130x130 textures with added one-pixel border, so

the bilinear filter on the border of the tile texture not will go across the tile
border.

• The resolution of the texture is one pixel per square meter at the highest
LOD.

• Lower LOD texture is also exported in 128x128 textures but covers the
bigger area, like LOD1 texture will cover 4 squared meters per pixel.

• Tiles without water will be skipped
• Flat water tile, if all the pixel in the tile has the same height, only a height

value will be stored.

Runtime
• The tile textures will be selected based on the distance to the camera,
• then they are composed into the virtual texture pool.

77

• The texture pool size can be scaled from 1k to 8k depending on the
project requirement.

Virtual Address Table
Since the actual tile texture is 130x130 which is not the power of 2, there is
empty space in the pool texture on the right and the bottom part. We use this
space to store the virtual address table which maps world space position to VT
Pool texture UV.

Tile allocator
• We implement a very fast and simple tile allocator.
• It assumes there are up to 64x64 tiles.
• We use a 64x 64bits bit array to store if a tile is used or not
• And another uint64 is used to store the row bits.
• The bit array is initialized as all 1, which means free.
• The allocation always happens on the least significant non-zero bit,
• We can use 2 intrinsics like _BitScanForward64 to get the address quickly,

then mark the bit as 0(occupied) and return the address
• Each allocation will only allocate one tile,
• By this way, we can guarantee all the allocations can find the first

available tile.
• To Free the tile, just mark the bit to 1.

77

Runtime simulation pipeline

Height Map Capture

SWE Simulation Output
• Runtime Quadtree

• Duplicated from baked quadtree, update nodes
inside the simulation domain.

• Pixels scan the height map to add new nodes.
• Runtime Virtual Texture

• Write to the virtual texture pool directly, with blur.
• Same VT Pool with a secondary page table.
• Read back for gameplay and physics.

• Top-down view rendering to capture water height and
underwater ground height

• Objects intersecting water
• Clip pixels above water + Render the back face

• Static scene capture + Movable object capture

To make the runtime simulation work, we need to first capture the height map
for the simulation, then output the simulation results to the rendering engine.
We wrote a custom height map capture shader instead of using the unreal
scene capture which is very expensive.
• A top-down view rendering pass is used to render the water and terrain.
• Then render all the static meshes that intersecting water to cut holes on

water, a regular top-down view rendering will not work for the case that
water goes under bridge or cave, it will be occluded completely.

• We do a software depth clip to discard all the pixels above the water and
render the scene mesh’s back face to get the precise cut.

• A second pass is rendered for the below water part of the object.
Static scene will only be rendered once, movable objects will be rendered every
frame.

The runtime quadtree is duplicated from the baked quadtree but with all the
nodes inside simulation domain removed.
We do a pixel counting on the height map to get the valid quadtree nodes, and
update the quadtree dynamically, in GPU.

78

The height map and flow map are exported into the virtual texture pool
directly.
We pre-allocate VT tiles for the whole simulation domain to make things easier
as VT allocator runs on CPU.
and use a secondary page table,
so, we can change back to the baked water at any time and blend the runtime
and the baked water at the border.

The quadtree update , VT table update, VT texture write out are all done in one
compute shader pass with group shared memory optimization.

The Height Map and flow map are copied to staging texture for readback in
the next frame, in tile mode, empty tiles will be skipped.

78

SWE Pre-Render Single Layer Water

Time(ms) 0.5 0.5 1.8

Performance

PS5

• 4 sub steps in SWE, 512x512 simulation domain
• FBM wave displacement took 0.3ms in pre-render,
• Lumen reflection took 1ms+ in the single layer water

79

Surface Wave Simulation

SWE can run on PC/console, we are still looking for a lightweight simulation that
works for low-end and mobile platforms.
The idea is to take out all the time-consuming parts from the SWE, and only
solve the pressure function to create an interactive wave.

80

Kass, Michael, and Gavin Miller. "Rapid, stable fluid dynamics for computer graphics." Proceedings of the 17th annual conference on Computer graphics and interactive techniques. 1990.

Surface Wave Simulation

Only propagate the water height on static water surfaces for efficiency

ℎt = 𝐷𝑎𝑚𝑝𝑖𝑛𝑔 ∗ ℎ𝑡−1 + 𝛽 ℎ𝑡−1 − ℎ𝑡−2 + 𝛼(ℎ𝑁
𝑡−1 − 4ℎ𝑡−1)

𝜷 is viscosity contant
𝜶 is SWE constant
ℎ𝑁
𝑡−1 is height sum of the nearest 4 points
𝑡 is the iteration number

• We only perform one cycle per frame to minimize computational cost and employ an additional damping factor for
quick fading and to prevent explosion.

The wave simulation will only create a height map to displace the existing water
surface visually, it will not change water height or flow map
The original implement will do multiple iterations in one frame to get a stable
result.
But to get better performance, we only run one iteration per frame which cause
some unstable issues and break the simulation.
That’s why a damping value is used to avoid big height changes.

81

Surface Wave Simulation

Boundary Conditions

Infinite Simulation Domain

// Object boundary condition
float WaterHeight = WaterPrevHeight.Load(uint3(Index, 0)).x;
return IsBoundary(WaterHeight) ? BoundaryWaterHeight : WaterHeight;

#if LOCAL_SIMULATION
uint2 SimulationIndex = ThreadId.xy;

#else
// Get the simulation texel pos from a tiling pattern
uint2 SimulationIndex = (ThreadId.xy + PlayerOffset) % SimDomainSize;

#endif

The boundary is easy to handle in surface wave simulation. The surface wave

simulation use neumann boundary conditions to make waves bounce back. A

neumann boundary condition specifies the values of the derivative applied at

the boundary of the domain, which mean there should be no water exchange

though the boundaries. When computing ℎ𝑁𝑡−1, if the pixel is outside the

boundary, make its value to 𝒉𝒕−𝟏 to negate the water exchange

We support two types of simulation domain
• One is a fixed simulation domain.
• Another is the tiling simulation domain that always attached to the player.

We just need to map the player’s position to the UV in the simulation texture
in a tiling pattern

82

Surface Wave Simulation

Buffer Usage

Performance

• Three R16F textures for holding t-1, t-2 and current frame water height.

• Two R8 texture for dynamic object and boundary information.

• 1024x1024 texture for 80x80 meters simulation domain, tweakable.

• Rendered into screen space displacement buffer

PS5
(1024x1024)

Snapdragon
865

(512x512)

Time(ms) <0.1 1

83

More Tessellation Methods

• Screen space tessellation

• Adaptive subdivision

84

Height Map Water Limitation

One layer

• Can’t render water over water

Solution

• Screen space tessellation for
small pieces of water

Branislav Grujic & Cristian Cutocheras. “Water Rendering in Far Cry 5”, GDC 2018

85

Water Rendering in Far Cry 5, Branislav Grujic & Cristian Cutocheras, GDC 2018

Screen Space Tessellation

1. The coarse water mesh is
rendered to the pre-pass, instead
of using the water quadtree.

2. In the last pass, render full-screen
grids, each grid is as big as 4 pixels

3. For each Vertex, un-project the
Pre-pass depth to get the World
Pos and apply displacement.

4. Pixel shader remains the same

Water
Mesh

Screen
space
grids

The pipeline looks similar to the water quadtree rendering in the pre-pass
Click to show new pipeline:
• Instead of using quadtree, we render the coarse water mesh into the pre-

pass.
• in the lighting pass, full-screen grids are rendered instead of CDLOD

quadtree mesh.
• the rest part remains the same.

The screen space grids contain many pixel-size quads. Each quad is as big as 4
pixels.
In the vertex shader, each vertex will sample the depth from pre-pass to get
the world position and sample the screen space displacement buffer to get the
final position.
The pixel shader remains the same.

One thing to be noted. As both coarse mesh and quadtree mesh are rendered
into the same pre-pass depth, we need an extra bit to mark each pixel if they
are used for screen space or not, the final screen space grids will only pick up
the pixel with a right mask.

86

float GridX = VertexId / 2 + ((VertexId & 0x2) >> 1);
float GridY = InstanceId + (VertexId & 0x1);
float3 WorldPos;
float IsValidPos = GetWorldPos(GridX, GridY, WaterPrePassDepth, WorldPos);
WorldPos /= IsValidPos;

Mesh Topology
0-2-4-6
| /| /| /|
1-3-5-7

Screen Space Tessellation

Instance draw without vertex buffer

Tiles rendering, using DrawIndirect

• One row per instance

• Compute grid X coordinate from Primitive ID

• Compute grid Y coordinate from Instance ID

We render the grids with instance draw without a vertex buffer
• Each draw contains a row of the grids
• The instance count will be the grids height.

This is the mesh view from rendering doc capture, each grid looks like a pixel.
• In VS, we use the same divide-by-zero trick to remove non-water pixels
• A tile categorization pass will be dispatched to filter out tiles containing no

water.

We could also use SV_PrimitveID here, but it is not supported on all platforms,
especially mobile.

87

Tessendorf, J. "Simulating Ocean Water. SIGGRAPH 2001 Course notes." (2001).

Ocean mesh tessellation

An infinite quad, extends to the horizon, with BIG waves

Need a better tessellation method

• CDLOD?
• Ocean is too big for the quadtree, too

many nodes.

• Screen space tessellation?
• Big displacement causes stretched

artifacts

We use FFT waves for ocean. This tech is covered by many previous papers and
game talks, we will focus on the tessellation method this time.
Ocean is basically a very big mesh that extends to the horizon with big waves.

CDLOD is not suitable for rendering a super large water body, the quadtree
nodes count will be huge, and the mesh density is still high in the distance.

Screen space tessellation looks perfect when looking from the top, but when
we apply the displacement from big ocean waves in screen space, and the
camera is close to the ocean surface, it scrambled the vertices and connected
them in the wrong order. Some pixels in the middle distance are connected
with pixels in the far distance and form stretched triangles.

88

Khoury, Jad, Jonathan Dupuy, and Christophe Riccio. "Adaptive GPU Tessellation with Compute Shaders." GPU Zen: Advanced Rendering Techniques 2 (2019): 3-17.

Adaptive Subdivision on GPU

• The rule splits a triangle into two sub-triangles 0
and 1

• Barycentric space transformation matrices (M0
and M1)

• Any sub-triangle can be represented via
concatenations of binary words, which we call a
key

• Use Matrices M0 and M1 to compute its vertex
position from the parent triangle

Refinement algorithms upon a subdivision rule

Subdivision Key

Length of the key represents the subdivision level

0

1 00

0101 0100

1010

1011

1101

1100

111100

011

0100 → M0 * M1 *M0 * M0

The algorithm is based on a binary triangle subdivision rule

Subdivision Key
The rule splits a triangle into two sub-triangles 0 and 1, each sub-triangle has its
own barycentric space transformation matrices (M0 and M1) that can be used
to compute its vertex position from the parent triangle.
Any sub-triangle can be represented via concatenations of binary words, which
we call a key.
We retrieve the subdivision matrix for each key through successive matrix
multiplications with the same sequence as the binary key concatenates.
For example, the transformation matrix for key 0100 denotes as M0100, it can
be concatenated as M0100 = M0 * M1 *M0 * M0.

Subdivision Level:
Natively, the length of the key represents the subdivision level that a triangle is
applied. For example, key 0101 means the triangle is subdivided 4 times from
the original triangle.

Performance issue?

89

It looks like a performance issue that a triangle with 10 subd level will do 10
matrix concatenation, but in reality, it is not that slow as the highly detailed
mesh only exist in a small range close to the camera.
We have also tried pre-cache the matrix for each key, it doesn’t improve the
performance but only used more memory.

89

Merge
Merge and Subdivide Triangles

• Two key buffers, initialized with coarse mesh

• Op code buffer, stores which operation to execute

• Execute the op code buffer, read from one key buffer and
store to another. (Pingpong)

• Shift Right
• Key 0 will output parent key, Key 1 will be removed

Merge

Keep

Khoury, Jad, Jonathan Dupuy, and Christophe Riccio. "Adaptive GPU Tessellation with Compute Shaders." GPU Zen: Advanced Rendering Techniques 2 (2019): 3-17.

Match the target subd level
00

0101 0100

1010

1011

1101

1100

111100

011

00

0101 0100

1010

1011

1101

1100

111100

011

00

0101 0100

1010

1011

1101

1100

111100

011

00

0101 0100

1010

1011

1101

1100

111100

011

010

0100 → 010
0101

Subdivide
00 → 000
→ 001

000

001

Subdivide
• Shift Left, append 0 and 1 for child keys

Key update

Implementation:
The subdivision starts from a coarse mesh which represents the entire ocean
plane
For each frame, we process each key in the working buffer based on its
distance to the camera to compute its target subdivision level.

There are 3 cases:
• Merge

If the target subdivision level is smaller than the current subdivision level, we
will abandon this triangle but write the key to its parent triangle to the
output buffer.
The key of the parent triangle can be simply gotten by removing the right
most bit.
For example (Figure: Merge), key 0101 has parent key 010
During the merge, only the keys ending with 0 will output its parent key,
keys ending with 1 will be removed.
So only one parent key is outputted from the 2 children after the merge.

• Subdivide
If the target level is bigger then current level, we will need to subdivide

90

current triangle and output 2 sub-triangles to the output buffer.
It can be done by simply appending 0 and 1 on current key.
For example, key 00 can be split into 000 and 001. (Figure: Subdivide)

• Keep
If target subdivision level is the same as the current level, simply write it to the
output buffer.

In the implementation , the root key is 1, so the most significant bit is always 1.

90

Triangle 10 and
1010, 1011 are
overlapping

Triangle 011
is removed
and leaves a
hole

Subdivision Flickering Issues

• When a key (ending with 0) tries to merge, but the sibling
key does not exist(subdivided), it will generate duplicated
keys

• When a key (ending with 1) tries to merge, it rely on the
sibling key to merge, but the sibling key does not exist, the
key will be removed and leave a hole

• Merge is only allowed if
• Both sibling keys exist
• Both have MERGE op,

• Otherwise, MERGE op will be changed to KEEP

How to get a sibling key?

Fix

Wrong merge
00

0101 0100

1010

1011

1101

1100

111100

011

00

0101 0100

1010

1011

1101

1100

111100

00

0101 0100

1010

1011

1101

1100

111100

011

00

0101 0100

1010

1011

1101

1100

111100

011

10
1010

1011

011

We found that when the camera is moving fast, some random mesh flickering
can be observed, and even worse, sometimes it leaves a permanent hole on the
water mesh.
Debugging
We dump all the key buffers, sort them, check the diff, and found the reason.

Reason
In most cases, both sibling keys will get the same operation code as merge or
subdivide, but there are cases they got a different operation, and then the next
merge command will be an issue.

91

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

Subdivision Key Buffer Sorting

In a sorted key buffer, the siblings must be at adjacent pos

• Compute shader output is unordered. Sorting is required

Prefix sum sorting

• Our implementation uses the in-place up/down sweep in LDS

• The total is 3 passes of prefix sum and 2 passes of block sum add.

• Each pass uses a group size of 64 and it can support up to 262,144 items.

• Under 0.1ms for subdivision and sorting.

We realize that if the key is sorted, the siblings must be located beside each
other.
As the keys are output from the computer shader in random order. we need a
GPU sorting algorithm.
Prefix sum is a popular algorithm for parallel GPU sorting,

There was a Unity talk in 2021, they are using the same subvision algorithm on
terrain, with concurrent binary tree.
We haven’t tried that method, but prefix sum sorting in group share memory is
very fast, it only took less than 0.1ms for both subdivision and sorting on PS5.

92

Subdivision Memory Issues

Running out of memory with 2x64M buffers

Two Solutions

• Limit the max subdivision level

• Reduce the ocean mesh size

• 32 bits x 2 buffer to store the keys

• One triangle can be subdivided up to 30 times (some bits reserved)

• Ocean size 20km x 20km

After implemented the subdivision, we quickly runs into memory issues.
We use 32bits key and double buffered, allow it to subdivide up to 30 times,
The ocean will cover 20km x 20km, the mesh center will keep following the
player/camera.
It can quickly run out of the buffer.

93

Adaptive Subd + Pre-subd

Limit the maximum subdivision level to 20

• Keep the subdivision buffers under 100k keys. (2 x 3.2M)

Pre-subdivided triangle mesh is used for higher mesh density

CDLOD Subd Subd +
Pre-Subd

By limiting the subdivision level to 20, we can control the key buffer under 100k
keys.
It can reach the same mesh density as cdlod where close to the camera, but
less triangles in distance.

Pre-subdivision
For the Adaptive sub, one key represents one triangle. we can pre-subdivided
this one triangle into 2 or 4 or 8 triangles, this can further increase the mesh
density without increasing the key buffer memory.

94

Left, Screen space mesh in debug view
Right, After screen space mesh applied

Adaptive Subd + Screen Space Tessellation

Reduce the Ocean mesh size

• How about just 10km x 10km?

Solution

• Use screen space tessellation to fill
the gap between horizon

• Render without displacement

We experiment with reducing the ocean mesh size, surprisingly the ocean keeps
extending to the horizon visually until the size is reduced to 10k. But there is a
small gap.
That means a large area in this ocean mesh close to the horizon only
contributes a few pixels on the screen.
We tried again with the screen space tessellation to fill the gap， and it works
great.
We rendered the screen space grids to cover the entire ocean but skipped all
the pixels already been rendered. With the tile categorization.
As we will fade out the displacement at the horizon anyway, only normal is
applied, there is no displacement

95

● CDLOD is fast for rendering rivers and lakes, but not suitable for large
water bodies like oceans.

● Screen-space tessellation is flexible without requiring a quad tree but
can cause artifacts in the mid-distance with large displacement.

● Adaptive subdivision is elegant in its algorithm, but one needs to
experiment with different combinations to find a balance between
quality and memory usage.

Tessellation methods comparison

Using adaptive subdivision in ocean rendering is a relatively easier problem to
solve if compared to terrain rendering.
• No height map
• No Lod tweak for slope or mountain
• Ocean mesh can be attached to the player, so we can render a much

smaller mesh than the terrain

96

Final Thoughts

Future plansKey takeaways

• Decoupling each subsystem and
making each sub-feature tweakable
is a key to enabling tech scalability
from mobile to PC/console.

• When working on the Unreal Engine,
minimizing engine code changes will
significantly assist with engine
upgrades.

• Improve the tool set.

• High resolution SWE and more optimizations.

• Momentum transfer between SWE and baked
water.

• Use SWE on ocean shoreline waves.

When creating a system that can be scaled from mobile to high-end pc, break
the rendering pass to multiple passes gives us more freedom to tweak the LOD.
We tried our best to put all the code in the Unreal plugin. All the engine
modifications are wrapped with a MACRO.

Plane
• We plan to add more tools like custom wave, painting foam or algae layers,

and paint a river channel to control the SWE simulation.
• Current SWE simulation runs at the resolution of 1 square meter per pixel,

any objects small than this size will be ignored, we will try to increase the
resolution to get more detailed waves.

• We have tried blending between SWE and baked water where they are
connected, but the result it not good. We will try to get momentum from
the baked height map and flow map for more realistic effects.

• We have tested moving the water source up and down to create a
shoreline wave, but still need more optimization and figuring out how to
extend it to a large area.

97

Fengquan Wang

Yang Zhang

Yong Ding

Zhen Luo

Siyu Zhang

Roger Law

Wei Li

Acknowledgment

98

Branislav Grujic & Cristian Cutocheras. “Water Rendering in Far Cry 5”, GDC 2018

Jeremy Moore . “Terrain Rendering in Far Cry 5”, GDC 2018

Strugar, Filip. "Continuous distance-dependent level of detail for rendering heightmaps." Journal of graphics, GPU, and game tools 14.4
(2009): 57-74.

Svante Lindgren . “Continuous Distance-Dependent Level of Detail” 2020-06-13

Tessendorf, Jerry. "Simulating ocean water." Simulating nature: realistic and interactive techniques. SIGGRAPH 1.2 (2001): 5.

Khoury, Jad, Jonathan Dupuy, and Christophe Riccio. "Adaptive GPU Tessellation with Compute Shaders."

Macklin, Miles, and Matthias Müller. "Position based fluids." ACM Transactions on Graphics (TOG) 32.4 (2013): 1-12.

Wu, Kui, et al. "Fast fluid simulations with sparse volumes on the GPU." Computer Graphics Forum. Vol. 37. No. 2. 2018.

Yuksel, Cem, Donald H. House, and John Keyser. "Wave particles." ACM Transactions on Graphics (TOG) 26.3 (2007): 99-es.

Chentanez, Nuttapong, and Matthias Müller. "Real-time Simulation of Large Bodies of Water with Small Scale Details." Symposium on
Computer Animation. 2010.

Kass, Michael, and Gavin Miller. "Rapid, stable fluid dynamics for computer graphics." Proceedings of the 17th annual conference on
Computer graphics and interactive techniques. 1990.

Zhou, Jian Guo. ”Lattice Boltzmann methods for shallow water flows”. Vol. 4. Berlin: Springer, 2004.

Reference

99

March 20-24, 2023 | San Francisco, CA

Website: https://www.lightspeed-studios.com/

Facebook：LightSpeedStudiosGames

Twitter：LIGHTSPEED STUDIOS

Youtube：LIGHTSPEED STUDIOS

Welcome to stop by our booth S1069 if you would

like to learn more about LIGHTSPEED STUDIOS!

WE’RE HIRING!

100

https://www.lightspeed-studios.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

