
Populating the
world with an
acoustic graph in
Cyberpunk 2077

Marek Bielawski

▶ 5 years at CD PROJEKT RED

▶ Sound system profiling and optimization

▶ Acoustics graph

CREDITS

▶ Colin Walder – lead (Colin’s talk at GDC: Friday 13:30)
▶ Marek Bielawski - audio code - acoustics
▶ Giuseppe Marano - audio code
▶ Mateusz Ptasiński - audio code
▶ Daniel Murray - audio code expert
▶ Engine code (Charles’s talk at GDC: tomorrow 11:30)

1. Motivations behind the acoustics graph Why?

2. The journey and the juicy stuff What?

3. Can those gang members hear me? Oh Really?

4. Acoustics from the depths What Else?

5. Go and build acoustics So what?

Agenda

Motivations behind
the acoustics graph

How DID IT all begIn?

▶ Witcher 3 tech: reverbs, raycast occlusion

▶ Next game needs to push us forward

▶ CP is vertical and dense — Not enoughtm

▶ Checking out some different tech, papers, presentations

Obstruction
▶ Raycast from the listener

▶ Muffle / lowpass the sound

Occlusion
▶ Tells us about the room presence

▶ Pathfinding

▶ Affects the reverb

Result sound
▶ Exposing a minimum value of both

▶ Sound designer chooses how they affect the sound

Can we use navmesh for pathfinding?

▶ Glued to the floor

▶ CP is a layered vertical game:

balconies, staircases

▶ Not enoughtm

Fast forward to some results

The Journey and the
juicy stuff

What’s going on
▶ Generating the graph — offline voxelization, node placement, serializing

▶ Runtime — streaming

▶ Pathfinding — algorithm, influence on occlusion

Generating the graph — Voxelize
▶ Iterate over each meaningful mesh

▶ Get the bounding box of a mesh to build an output buffer

▶ Iterate over each triangle

Generating the graph — Voxelize

Generating the graph — IntCoords
▶ 1 unit = 0.5m

▶ Moving from discrete

space to float vector

back and forth

Generating the graph — Voxelize
▶ One patch is a 32 meter-wide cube

▶ 64 by 64 by 64 bits = 4K uint64 = 32KB

▶ Using full uint64 to represent a row

Generating the graph — Voxelize
▶ One patch is a 32 meter-wide cube

▶ 64 by 64 by 64 bits = 4K uint64 =

32KB

▶ Using full uint64 to represent a row

Generating the graph — place nodes

Generating the graph — place nodes

Generating the graph — place nodes

Generating the graph — place nodes

Generating the graph — place nodes

Generating the graph — place nodes

Generating the graph — place nodes

Generating the graph — place nodes

Generating the graph — place nodes
Desired result Achieved result

Generating the graph — determine connections

Generating the graph — determine connections

Generating the graph — determine connections
▶ max 6 neighbors

▶ pick the best node for each of 6 directions

▶ 2-way connections ➞ we find only 3

directions and the negative ones will come

automatically

Generating the graph — determine connections
▶ The smaller the taxi distance is

the better the connection is

dist = |dx| + |dy| + |dz|

▶ Taxi distance favors axis aligned

connections

▶ Connecting computations are

heavy

▶ Heavy use of SSE

Generating the graph — determine connections
▶ Connection sectors in Parallel

▶ No neighboring sectors at the same

time ➞ otherwise:

▶ Race condition (never crashed)

▶ Indeterministic result

▶ Broken incremental build

Generating the graph — packing
▶ Overall size was 8GB when I first measured it (with the grid size of 1 meter)

▶ The budget was ~1GB

▶ Streaming some large quantities of data

Generating the graph — pack
▶ Using sectors aligned with

64x64x64 units

▶ 12 bytes per node

Generating the graph — pack
▶ using raw buffers (the

less rtti fluff the

better)

▶ automatic cracken

compression

▶ One file is 64 sectors

(4x4x4)

Generating the graph — pack
▶ using raw buffers (the

less rtti fluff the

better)

▶ automatic cracken

compression

▶ One file is 64 sectors

(4x4x4)

▶ 814 MB night city

Generating the graph — Summary
▶ Voxelize meshes, add them up to sectors

▶ Iterate over voxelized and dilated buffers, with the most dilated first

▶ Limit Connections to 6 per node, use taxi distance to favor the most aligned ones

▶ Compress

Runtime — Streaming Behavior
▶ Same size as the voxel patch (32 meters)

▶ Usually we are interested in fewer than 27

sectors (center of focus + neighbors)

▶ Sector holds a vector of nodes

Runtime — Node
36 bytes per runtime node

▶ Old pending connection

data for reconnecting

▶ Global world position

▶ Adding some runtime state

like auto room generation

Runtime — Global Node Id
▶ 1 byte + 2 bytes

— still less than 8 byte ptr

▶ Small sector id 0-216 /

1 byte

▶ we never deal with sectors 96 meters

apart (though there was a teleport

bug once)

3 4 5 0 1 2 3

5x6 33 34 35 30 31 32 33

0x6 3 4 5 0 1 2 3

1x6 9 10 11 6 7 8 9

2x6 15 16 17 12 13 14 15

3x6 21 22 23 18 19 20 21

4x6 27 28 29 24 25 26 27

5x6 33 34 35 30 31 31 33

Player
You again!

Runtime — Streaming Behavior
▶ The sector is actually referring to a larger asset that covers

4 by 4 by 4 sectors

▶ Optimal approach on the hdd drives

▶ Loading only the packed representation

▶ Largest asset is ~2MB, while the mediate is about 120KB

Runtime — Streaming Behavior
▶ Unpacking nodes — fast

▶ filling octree — slow

▶ connecting nodes — slow

▶ 0.5ms budget in a frame for

filling octree and the same

for connecting nodes

▶ using stop watch

▶ unpacking can take several

frames

Runtime — Streaming Behavior
▶ Unpacking nodes — fast

▶ filling octree — slow

▶ connecting nodes — slow

▶ 0.5ms budget in a frame for

filling octree and the same

for connecting nodes

▶ using stop watch

▶ unpacking can take several

frames

Runtime — Streaming Behavior
▶ Unpacking nodes — fast

▶ filling octree — slow

▶ connecting nodes — slow

▶ 0.5ms budget in a frame for

filling octree and the same

for connecting nodes

▶ using stop watch

▶ unpacking can take several

frames

Runtime — Streaming Behavior
▶ Unpacking nodes — fast

▶ filling octree — slow

▶ connecting nodes — slow

▶ 0.5ms budget in a frame for

filling octree and the same

for connecting nodes

▶ using stop watch

▶ unpacking can take several

frames

Runtime — Octree

Runtime — Octree
▶ Values of the octree leaf are indices of the nodes in the

sector vector

▶ Using 16 bit numbers

▶ One node can cover multiple branches

▶ Oh Wait: We have over 64K octree nodes :)

Runtime — Octree
▶ Even more custom octree ;)

▶ 18 bit index -> 256K range

Runtime — Connecting nodes
▶ Find neighboring nodes based on coords from packed representation

neighbourPos = nodePos + connectionDelta
▶ Use octree lookup for that

▶ We don’t want to place the vector of neighbors in the node

Runtime — Connection System
● SLAB like allocator

● Each node count holds its own free list allocator.

When we add a connection we move the set to a

different array.

Runtime — Connection Set Id

● Example — fetch
connection
count

1 byte

inner index

3 bytes

Runtime — Connection Set Id
▶ Example — Add

Connection

▶ passing in out

reference to

update the

current

connectionId

connection
count

1 byte

inner index

3 bytes

Memory — heaviest place
▶ About 20 MB — slightly more than planned

▶ Most of the memory is in the octree lookups

Runtime — Summary

▶ Streaming files of 4x4x4 sectors, parsing only the sectors near the player (max 27)

▶ Spatial lookup via Octree

▶ Using a custom allocation method for connections

Pathfinding
▶ Finding path from source to the listener

▶ It handles all playing sounds

▶ By design there is one center for the paths (didn’t apply to ai pathfinding)

Pathfinding — Why not Dijkstra
▶ It’s iterating over unvisited neighbors and picks up the closest path from neighbors

distance + dist to neighbor

▶ Only needs to be updated anytime listener moves

▶ Can be done across multiple frames

… but it’s still slow as hell!

Pathfinding A*
▶ Depth first search over the graph with picking the most promising nodes (with cartesian distance)

▶ Similar to dijkstra

▶ Once we reach the target we are done (it might miss the best path)

Pathfinding A* — limits
▶ Flexible limits based on circumstances but overall max 100 size of closed set, and number of iterations

▶ Limit reached ➞ path not found

▶ Path through closed doors ➞ path not found

Pathfinding A* — paths cache
▶ Many sounds play from the same position

▶ Many sounds don’t move during the playback

Pathfinding A* — paths cache
▶ Calculate the hash

▶ Do we have the path matching this cache?

▶ confirm and return or,

▶ Perform a pathfinding

▶ Add results in the cache

Pathfinding A* — paths cache
▶ c_pathCacheTime = 0.5;

▶ c_maximumCacheSize = 200;

—--

▶ Hit rate over 50%

Pathfinding: interpreting path

Possible approaches:

▶ Compare path length with cartesian distance

▶ Use average deviation from the direct straight line connecting start and end

▶ Use max deviation from the direct straight line connecting start and end

▶ Increase occlusion when walking through small nodes

▶ Increase occlusion by walking through the doors

Trial and error

Pathfinding: interpreting path

Used approaches:

▶ Compare path length with cartesian distance

▶ Use average deviation from the direct straight line connecting start and end

▶ Use max deviation from the direct straight line connecting start and end

▶ Increase occlusion when walking through small nodes

▶ Increase occlusion by walking through the doors

Multiply inverse occlusion

Pathfinding: Summary

▶ Using A* with max 100 iterations

▶ Caching 200 paths, with path TTL = 500 ms

▶ Occlusion = MaxDeviation, additionally halving the opacity when passing through doorway

Can those gang
members hear me?

Acoustics for the NPCs

▶ It all started with an internal highlights feed…

What if we used your acoustics graph, check the occlusion from

NPC to some event and we’d know if the NPC can hear that

explosion, or player sneaking, or a soda machine deliberately

broken?

Acoustics for the NPCs — benefits

▶ Additional QA

▶ Contribution to the actual gameplay

Acoustics for the NPCs

RAYCAST + GRAPH COMBO

▶ Using the most optimistic results (to solve some tricky edge cases)...

▶ … unless the distance is too big (and the physics is not streamed in).

Acoustics from the
depths

Hedgehog
▶ 36 horizontal directions

▶ 7 vertical angles

▶ 36 raycasts per frame — one pitch direction

HEDGEHOG Vs. DYNAMIC REVERB

Early Reflections
▶ Mainly for player sounds (footsteps, weapon

sounds, player vehicle)

▶ Just the first reflection

▶ We tested different variants — fixed

directions / most aligned walls

▶ Using the broadcast plugin

Weapon tails
▶ Picking prebaked tails

▶ Using statistics:

▶ ceiling distance,

▶ avg horizontal distance,

▶ average elevated distance

▶ outdoorness factor

Newly calculated stats contributed to

environmental sounds as well

Go and build
acoustics

Final thoughts
▶ Every bit of memory counts

▶ Automated testing

▶ Talk to people, ask for ideas

▶ There is always room for improvement (Not enoughtm)

Questions:

	Slajd 1: Populating the world with an acoustic graph in Cyberpunk 2077
	Slajd 2: Marek Bielawski
	Slajd 3: CREDITS
	Slajd 4: Agenda
	Slajd 5: Motivations behind the acoustics graph
	Slajd 6: How DID IT all begIn?
	Slajd 7
	Slajd 8: Can we use navmesh for pathfinding?
	Slajd 9: Fast forward to some results
	Slajd 10: The Journey and the juicy stuff
	Slajd 11: What’s going on
	Slajd 12: Generating the graph — Voxelize
	Slajd 13: Generating the graph — Voxelize
	Slajd 14: Generating the graph — IntCoords
	Slajd 15: Generating the graph — Voxelize
	Slajd 16: Generating the graph — Voxelize
	Slajd 17: Generating the graph — place nodes
	Slajd 18: Generating the graph — place nodes
	Slajd 19: Generating the graph — place nodes
	Slajd 20: Generating the graph — place nodes
	Slajd 21: Generating the graph — place nodes
	Slajd 22: Generating the graph — place nodes
	Slajd 23: Generating the graph — place nodes
	Slajd 24: Generating the graph — place nodes
	Slajd 25: Generating the graph — place nodes
	Slajd 26: Generating the graph — determine connections
	Slajd 27: Generating the graph — determine connections
	Slajd 28: Generating the graph — determine connections
	Slajd 29: Generating the graph — determine connections
	Slajd 30: Generating the graph — determine connections
	Slajd 31: Generating the graph — packing
	Slajd 32: Generating the graph — pack
	Slajd 33: Generating the graph — pack
	Slajd 34: Generating the graph — pack
	Slajd 35: Generating the graph — Summary
	Slajd 36: Runtime — Streaming Behavior
	Slajd 37: Runtime — Node
	Slajd 38: Runtime — Global Node Id
	Slajd 39: Runtime — Streaming Behavior
	Slajd 40: Runtime — Streaming Behavior
	Slajd 41: Runtime — Streaming Behavior
	Slajd 42: Runtime — Streaming Behavior
	Slajd 43: Runtime — Streaming Behavior
	Slajd 44: Runtime — Octree
	Slajd 45: Runtime — Octree
	Slajd 46: Runtime — Octree
	Slajd 47: Runtime — Connecting nodes
	Slajd 48: Runtime — Connection System
	Slajd 49: Runtime — Connection Set Id
	Slajd 50: Runtime — Connection Set Id
	Slajd 51: Memory — heaviest place
	Slajd 52: Runtime — Summary
	Slajd 53: Pathfinding
	Slajd 54: Pathfinding — Why not Dijkstra
	Slajd 55: Pathfinding A*
	Slajd 56: Pathfinding A* — limits
	Slajd 57: Pathfinding A* — paths cache
	Slajd 58: Pathfinding A* — paths cache
	Slajd 59: Pathfinding A* — paths cache
	Slajd 60: Pathfinding: interpreting path
	Slajd 61: Pathfinding: interpreting path
	Slajd 62: Pathfinding: Summary
	Slajd 63: Can those gang members hear me?
	Slajd 64: Acoustics for the NPCs
	Slajd 65: Acoustics for the NPCs — benefits
	Slajd 66: Acoustics for the NPCs
	Slajd 67: RAYCAST + GRAPH COMBO
	Slajd 68: Acoustics from the depths
	Slajd 69: Hedgehog
	Slajd 70: HEDGEHOG Vs. DYNAMIC REVERB
	Slajd 71: Early Reflections
	Slajd 72: Weapon tails
	Slajd 73: Go and build acoustics
	Slajd 74: Final thoughts
	Slajd 75: A*?

