
Hello everyone, I hope you are having a great day here at GDC, and

welcome to my talk, Re-inventing the wheel for snow rendering. Some

housekeeping before the talk starts, remember to turn your phones to

silent, and please fill out the survey at the end of the presentation.

With that out of the way, let’s get started! My name is Paolo Surricchio

and I’m a Senior Staff Rendering Programmer at Santa Monica Studio.

I’ve been working as a rendering engineer in the industry for 10 years

and going, and these are the games I worked on.

At Santa Monica Studio I work on all parts of the renderer, with a focus

on the VFX system.

The goal of this talk is to show how we write technology at SMS to

support high-quality custom setups while creating a reusable toolset for

the future, and how to apply this approach.

We are going to do that by looking at the process behind the re-write

of our snow, or more generically, height field system for GoW Ragnarök.

No spoilers for this or the previous game.

The height field system is the system responsible for displacing surfaces

like snow in real time as characters or objects intersect through it as you

can see in the video

The presentation is less about the intricate details of the system, and

more about reasons behind why we made the choices we made.

During the talk I’m also going to highlight key take-aways, which I’ll

then summarize at the end of the presentation.

Some context about how we work at SMS. We have a world class team

of artists and designers who have lots of manual control over all the

details of the game.

We use Maya as our level editor, where levels are sculpted by hand by

the level design and art team. We then run the game directly on the

development kit, and that’s the only way to see game rendering.

We use plenty of tools like Houdini to automate workflows, but we

always give the option to tune by hand at the end of the pipeline.

This poses a challenge for engineering since we have to balance

solutions that are too specific, or too generic, and we’ll see how the

height field system is an example of that.

While the details apply to our specific limitations, which might be

different for your engine or game, the lessons behind the why of our

choices are for everyone

Let’s start from the beginning of production on GoW:Ragnarok. April

2018, GoW has shipped, and we are working on the sequel.

From the beginning we knew we were going to be shipping on both

PS4 and PS5, and it was imperative that the game was a great

experience on both consoles.

When referring to performance or memory numbers in this

presentation, I’m referring specifically about PS4 numbers, since the

system must run well on the older console, and should scale up on the

faster one.

From the end of the last game, we know an event called Fimbulwinter is

affecting Midgard by covering most of the world in blanket of snow.

Since this is an area where we spend good part of the game, we know

we are going to have to deal with an awful lot of snow

At first, this might not be a concern. We shipped dynamic snow with

displacement last project, GoW 2018, and it looked good, we should be

good to go. Just “check the checkbox” on the new game.

You can see it here in motion. It looks great, so we are done! Aren’t we?

Unfortunately, it wasn’t that easy. To understand why we need to

understand how this technology works.

Snow meshes are rendered with a technique called screen-space

parallax mapping which is a variation on regular parallax mapping

invented by Florian Strauss, our at-the-time technical director.

If you are familiar with parallax mapping the principle is the same, but

instead of raymarching in tangent/texture space, you are raymarching

on the screen. This allows various shortcuts and optimizations, but it’s

not without faults.

We use meshes and VFX to render displacement information, which is

what carves displacement. Let’s look at it next:

We have a persistent top-down render target that scrolls with camera

movement every frame in which we render meshes and vfx describing

how deep we are carving into the snow.

We can render arbitrary meshes, often capsules and spheres for

characters, with a custom shader that encodes information specifically

tailored to how the parallax algorithm worked.

Like I said, our parallax mapping works in screen-space, so we need a

mesh to project the top-down information on the screen. We render a

mesh in the same position as the regular opaque mesh to do this.

This is what it looks like: the mesh is now rendered from the camera

point of view, and it samples the top-down projected texture I showed

you before.

This brings all the information onto the screen. As you can see in the

video, we then render extra details through meshes and particles from

the camera point of view.

This texture is what the screen space parallax marches through.

Let’s see what the level setup looks like.

This is a cross-cut of the main meshes needed to setup snow.

The artist creates the main rendering surface, in the image the light blue

one. This is the mesh we render with the snow material and displace

with ss parallax. Notice how the mesh must be flat to work well with

parallax mapping.

Like I mentioned before, we then need a matching mesh to project top-

down information onto the screen, in the image it’s the yellow one, the

projection surface.

After that, a maximum and minimum meshes have to be sculpted under

it which are the actual meshes that describe the unperturbed snow

surface.

This was often done with height textures, which is why in Maya you

can’t see any wavy surface resembling a terrain.

Sorry if that was a lot of packed details, it’s not important to understand

all of them since the point is why we decided to re-write this system.

Let’s see what the pros and cons of this technique are.

Parallax mapping allows us to render displacement with per-pixel

accuracy.

Another pro is that parallax mapping cost is proportional to the surface

detail and use. If your surface is all “elevated” or “non-displaced” you

have an early out and the shader is not as expensive.

Like all techniques it does have cons though, and we’ll see how they

were a roadblock to scaling this technology.

The cost being variable is a double-edged sword. Rendering is more

expensive when the terrain is fully displaced because we have to ray-

march through more pixels.

This is exactly what happens during combat scenarios where we are

stressing our performance budgets the most.

Forgetting performance for a second, authoring was a concern. I

actually simplified the maya setup, and it didn’t include material and

texture setup either. I skipped over many small details, but all these

moving parts caused the system to be very error prone.

Lastly, parallax mapping has unavoidable artifacts that are just bound to

how the technique works, and our version, while faster, made these

artifacts worse.

Parallax mapping shows artifacts as the view vector becomes parallel to

the parallax plane. In screen space this is even worse because the screen

space texture now crams all the height information in just a few pixels.

Our screen space version added other issues on top of it: since we

render our details on the top surface, they shimmer with respect to the

displaced final result, as you can see in the video above.

The only way to address this is to use projected decals, but to get this

effect we are spawning hundreds, if not thousands of particles, and we

can’t afford anything close to that with decals.

This created a lot of design limitations about the spaces this was used

in.

To work around the artifacts we had to take many precautions which

meant lots of environment art work spent not on not making art.

And not just environment art, this is designers, gameplay programmers

for camera collision, cinematic animators, … pretty much the whole

team had to be aware of it.

This was the source of a lot of cross department dependencies which

slowed down the use of the technique

And this is why GoW 2018 only shipped a few areas in the whole game

with this technology. All of them needed special care to make this work.

I want to make sure I’m not demonizing the tech here. SS-parallax

mapping is an incredible technique, but we were pushing it too far, and

we were forcing it to do more than it was suitable for.

In fact there are other places in GoW 2018 and Ragnarok where we still

use this with a great result. Our water displacement rendering tech uses

the same screen-space parallax technique for both games (although the

rendering is improved a lot for Ragnarok)

Water is a great use case since it’s already a special case in the game

due to its nature: it’s a flat plane, and both art and gameplay already

have to work around it no matter what

It’s just not good for large terrains that intersect organically with other

meshes and delineate a curvy surface.

At the time it was the best solution, and if I went back in time, I’d

probably do the same given the constraints we had.

Now it’s hopefully clear we needed too much control to make this work

on our terrain.

All of this was because of the special requirements of parallax mapping,

and how everything revolved around feeding it the right data and

working around its limitations.

This brings us back to the beginning of the production on GoW:

Ragnarok. We had a meeting with art seniors and leads where they told

us there was no way we could use or scale the current system to the

needs of this new game.

This is a professional team of senior artists, we are talking about a room

where the total experience of game development can be counted in

tens of years each, with the total beyond the hundred. They wouldn’t

say this if it wasn’t the case.

And the main reason for it came down to the size of the development

effort. From pre-production it was clear that everything about the new

title was bigger:

the world is more than twice the size than the previous game, the team

was going to be larger than the one on the previous game, and we had

more partners and outsourcing studios helping than before.



And as I said before, snow is everywhere.

We actually ended up having snow displacement in an order of

magnitude more levels than before.

And, spoiler for future slides, we used the new system on more than

snow.

It’s clear that the main parts causing scaling issues were how much

manual control was needed to make it work, and the rendering

limitations of parallax.

We need to improve the workflow, and we know a geometrical

approach won’t suffer from any of the issues we had before.

Once we addressed those, this was what we needed for the new system:

We don’t have a de-facto terrain system in our engine; terrain is

sculpted with bespoke meshes created by art, so the tech must work on

arbitrary meshes.

On top of that, we want to make sure our system integrates

automatically with all our rendering features of our material editor, and

it must be easy to setup

With respect to performance, we want less variance between best- and

worst-case scenario.

We don’t want to pay any cost for memory if we are not using this

technique as there are large portions of the game that don’t use it.

Lastly, it must run well and look good on the older console, and scale in

quality with little to no extra work on the newer one.

There are compromises though,

And it’s the per pixel quality parallax provided. We knew it was hard to

reach that with geometry, especially on PS4.

This was not a concern for the art team.

Allow me to jump to the end and tell you we shipped a system that hit

all these requirements, but more importantly, and that’s the

interpretation key for this talk, we achieved this goal while leaving

ourselves open during development, and after, to do much more

without compromising reaching the goal.

Let’s see how we went about doing that.

The first step is to get a spec from art on what the visual goal is, and

what features we’d like to have.

Kyle Bromley, one of our Senior Environment Artist got assigned as the

environment art point person to work on the snow tech with me.

I mentioned to him it would be cool to get an idea of what the final

result could look like. Kyle told me “give me a day or two and I’ll write

down a few notes”.

This is what he came back with. I want to take a second to highlight the

level of mastery of our art team.

It actually looked prettier, I had to cut it and remove parts to make it fit

in this presentation.

We now have a visual bar with guidelines and ideas for what it should

achieve. It is also possible to see three distinct sub-systems emerging

from the document:

From left to right, first, we have displacement based on where the player

has walked, then we want to alter the look of the inner part of the

displacement, and lastly we would like to have details around the

displaced areas.

So now it’s on engineering to do our part: the main question we had

was how many triangles we could push before tri-count or tiny-triangle

overdraw would be an issue.

I took a mesh in maya, sub-divided it a few times until I could represent

detail reasonably well.

I ran some more tests with those goals in mind, and in the end we knew

we could confidently rely on geometry displacement for what we

needed.

There are more details about this in a few slides, but what’s more

important is our first exciting take-away.

Always start from the product and then work your way backwards.

Do an estimate of costs to make sure your solution is in the ballpark of

doable to the best of your knowledge

If your knowledge is bad, try everything to make it better.

Well, after our rendering/hardware test, we actually have to make it real

and work dynamically in game.

Before doing anything new, we took a look at how other games had

solved this problem. Geometry displacement is by far not a new topic.

Unfortunately some of our requirements are really strict: most of the

techniques we analyzed didn’t work with our requirements.

Some have artifacts like T-junctions they were able to ignore, or start

from pre-processed meshes with a limited set of features.

This is a topic worth of its own presentation, but after more research we

realized what was out there didn’t work for us.

I would recommend looking into the research though because their

limitations might not be a problem for your game, or your engine.

I left the references at the end of the presentation.

We did some research ourselves: given the number of rendering

engineers and the production schedule at the time we had to heavily

timebox this effort.

We tried a few approaches, and I’ll just mention the goals: try to only

tessellate where needed, but ideally try to reduce tessellation factor as

much as possible, where possible.

I don’t need to mention that no artists were involved with the making of

this video.

This is a proof of concept of how, artifacts aside, we can support a high

level of tessellation if we only do it where needed.

You can see in the wireframe that we only tesselate if there are details

to tessellate.

Around the same time another rendering programmer, Valerio

Guagliumi, was working on adding hardware tessellation to our general

shader pipeline.

This was to spear head an effort to get better mesh details for PS5 only.

Hardware tessellation fits all our boxes: no extra memory, can be tuned

and can scale dynamically. We knew about its performance woes, but

we were confident enough in one way or another we could address that.

The real story is a bit more complicated than that.

But lets look at our second, and most important, take-away:

This is a summary of the development philosophy I’m talking about in

this presentation: build things in blocks without any of them being a

core pillar without which everything collapses

We designed things so that nothing would rely specifically on how the

triangles were going to be tessellated, just that they were.

The issue with the previous technology was how much had to be

designed around the specific requirements of the parallax algorithm.

Let’s look at how the new system evolved through its iterations. I’m

going to show you an example of what the output of the system was at

every step.

Unlike before, artists just sculpt meshes as they normally do. The only

limitations we had was that mesh topology had to respect some density

rules. This got addressed later.

For a mesh to be displaced, it’s a checkbox in our material, everything

else is done for you during the build pipeline.

At runtime, we kept the same carving logic as before, although much

more simplified since all the requirements of parallax were gone.

We render an area of the same size as before around the camera from a

top-down view of the original un-displaced mesh. We then render

carving shapes into a render target. We test them against the un-

displaced mesh depth so that shapes that are not intersecting with the

snow don’t carve anything.

While the depth texture is re-drawn every frame, the carving map is

persistent, and like before we scroll it every frame depending on the

camera movement, keeping the center of the projection where the

camera is.

In a compute shader we then composite all the information into a few

textures for displacement, and we also smooth out the heights to avoid

sharp displacement.

Given for every pixel we are analyzing the neighbors, we calculate the

detail variance in an area around every pixel and derive a tessellation

factor, which we write in a texture.

When rendering the mesh, we use hardware tessellation to subdivide

the triangle as much as the tessellation texture suggests, and then

displace the mesh. This is a look at this first iteration in a test scene.

Again, programmer art.

What was cool about this is the fact we could already render a surface

that would have been impossible with the previous technique.

Now with this you just get a displaced surface, which doesn’t look like

much. Let’s look at how we improved the look.

We built a suite of tools to translate the system-specific height

information into the language of our material editor. Heights are

transformed into alpha, which means we can blend different layers

depending on the displacement

This means that we immediately have the whole blending feature set of

our material system available to us, without having to do anything, and

that’s the bread and butter of our artists’ workflow.

This is what this iteration looked like. Again, very much programmer art

here. You can see how when snow is displaced, we reveal a mud layer. It

can be any layer the artist desires, or any number of layers.

After this, art started asking for features like vertex color masking to

control the displacement. At first one might think we were going down

the same path as the previous system but there’s a major, fundamental,

difference:

this was not necessary to ship the tech. It was just to have more control.

I find that if a tool gives more verbs to the user, it is additive. If a tool is

the only way to control a feature, it’s subtractive.

Next step was to get some of the high-resolution details we lost when

moving away from parallax:

we generate another top-down persistent scrolling low-res mask

around where the player steps that is used to blend a detail normal map

on the snow mesh to add detail around the displaced areas.

On top of that, we also generate a top-down height mask from which

we derive every frame a dynamic normal map to simulate finer snow

details on the surface.

We used this on all our materials by default, and while this is currently

working and shipped in the final game, we didn’t push this second part

as much as we could because the VFX team at the time didn’t have

room in the schedule.

This was not a requirement though, so the team was happy to get what

we could get.

Lastly we addressed the limitation of the mesh topology. You can now

throw any reasonable mesh at the feature, and it behaves correctly.

And like we had designed, we are only tessellating around

displacement, and only as little as we need to.

Also in this video you can see a good example of the detail normal map

blended around the displacement.

This is a zoomed in screenshot to show how we tessellate only around

displacement. I turned off all the other features to make it cleared to

see.

This is what it looks like up until this point.

While we knew tessellation was slow, it still surprised us by how slow it

was in some areas.

Let me show you what we had:



This is a capture on base PS4 of a large terrain mesh using hardware

tessellation. You can see all the waves I have highlighted: those are all

hull and domain shader invocations.

As you can see at the bottom our occupancy goes to almost 0. That’s

because we are waiting on the tessellator to do its thing and return.

I highlighted how simple the hull shader is. It doesn’t matter. We are

bound by how fast the tessellator comes back to us.

We don’t have too much time to go into the nitty-gritty details, but the

summary is that hardware tessellation has a high entry fixed cost. If you

take a mesh and turn on tessellation with a passthrough hull shader,

without any subdivision, it’s going to be about 30% to 40% slower than

a regular draw call, all other things equals. Again, this is a rough

estimate just to give a high-level idea.

This cost is higher on older generation hardware than newer one, so

keep that in mind. The rule of thumb for tessellation is if you use it,

really use it and subdivide those triangles. Big fewer triangles that are

tessellated more are better than more smaller triangles tessellated less.

There’s more tradeoffs to consider, so I left a reference to a great

presentation on the topic which goes more in details in the bonus

section of this presentation.

Also keep in mind that I’m referring to AMD hardware specifically.

Let’s continue the development story with our last takeaway:

There is a huge difference between a hiccup like this if you know it’s

coming or not. As much as the total cost did surprise us a bit, we were

aware of this since we started using tessellation, so we had been

thinking of a few solutions to address it since day one.

We know we need to run hardware tessellation on as few triangles as

possible.

Unfortunately, terrain is the worst-case scenario for this: you have large,

oddly shaped meshes, which are hard to cull, and it’s easy to have quite

a few active ones at the same time even though only a limited area

really needs tessellation.

Art offered to manually split the meshes to help with this in their LOD

pass, but we knew we could automate this for them.

I’ll give you a quick summary of the solution first to finish the story, and

then we’ll go into details.

Inspired by GPU driven rendering techniques, we thought about

automatically splitting the mesh in smaller pieces and render as few as

possible with tessellation.

This made a huge difference and was the major part in shipping this

whole system on PS4.

All of this was possible because of the RnD we had done at the

beginning of the project.

This is another example of technology we built for a specific case, but

the lessons will keep paying off for the future.

We divide the index buffer into sections of geometrically cohesive

triangles. For this specific technique try having patches of the same

triangle count, or as close as possible to each other. We save the max

index count of our meshlets for each mesh.

While doing that, generate a buffer of the index offset and index count

of each meshlet, and whatever culling info you need. For our culling

scenario spheres were good enough.

For each mesh we have a compute shader dispatch where we go

through each individual meshlet, and decide whether it is not in the

frustum and should be culled. If it’s not culled, the second step is to

decide whether it’s far enough from the displacement area that it

should be a non tessellated meshlet.

We enqueue their indices in 2 buffers, one for tessellated meshlets, one

for regular ones.

Lastly, instead of rendering the mesh with one draw call, we render the

mesh with 2 indirect draws, one with hardware tessellation, one with

regular vertex pipeline.

The compute shader that does the culling fills the

vertexCountPerInstance of the two indirect draw arguments assuming

the worst-case index count for all meshlets, times the number of

patches that passed the test for each type.

If we rendered the mesh with a regular shader, the indices we’d get

wouldn’t match the mesh ones.

The vertex shader is where it all ties together. This is simplified

pseudocode.

In the vertex shader we use the index we get from the hardware to grab

our meshlet information which allows us to know how many indices we

actually have in the meshlet this vertex belongs to.

We clip the extra vertices that are not part of our meshlet by collapsing

them to 0. This is how we achieved rendering the meshlets with

different index count, and why it’s important to try to divide the mesh in

meshlets with as close to the same index count as as possible.

Side note here: for this technique we rely on not using automatic vertex

fetching. On consoles we don’t do that since it’s the same on that GCN

hardware.

We end up with exactly what we wanted: as few triangles as possible are

getting tessellated. In the video you can see red patches appearing as

we move forward. Red is tessellated patches, while green is non-

tessellated.

If I lock the frustum with debug commands and look behind me, we see

how effective the culling is.

It’s great to see how much of the mesh is being culled.

Art was very happy with this. We came back with an optimization worth

from 0.5 ms to 2 ms in some scenarios. This was great for the team. It

saved lot of optimization work, which can now be dedicated to making

the game better.

But wait, there’s more!

During the production of Ragnarök Stephen McAuley joined Santa

Monica Studio as lead of the rendering team, and with more people

joining we had more breathing room.

This gave us room to experiment and improve the system. While we

were happy with the result, we knew we could push it further.

Before I continue it’s important to point out: we could have stopped

here, we didn’t plan on having more time. But also, when we did have

time, we had the tool to expand the system, and use that extra precious

time in the best way possible.

Looking at the original pitch made from Kyle we decided to add more

fine details to the system.

Thanks to our composite pass already running we could generate more

textures and information really cheaply.

We ended up adding two more pieces to the system.

Our particle system runs the simulation particles fully on the GPU.

Among other features we support depth collision.

Unfortunately, depth collision is not supported for our opaque particles,

and for our mini-models, which are opaque models rendered for each

particle instead of sprites.

This is because both opaque particles, and mini-models write to depth,

which means they collide with themselves and each other if you turn

depth collision on.

Now though we have a representation of the surface from the top

down, and we have all the information we need to do accurate collision.

We added height field collision to our particles systems, and in the

game you can see pieces of snow being thrown around as you walk,

colliding realistically with the terrain.

This is also incredibly cheap, which is great when you are adding a

feature toward the end of production.

We can now create hundreds of small models and have them collide

without any issue. This is even better than depth collision since we are

not bound to the screen, and instead we can do it anywhere we have

snow in a 25 meter radius from the camera.

Another feature we added is permanent models spawned around the

displacement in real time around the camera. This is not that much

different than your regular vegetation system spawning meshes on a

terrain reading a mask, but instead of a painted mask we read the

displacement information generated by the height field compositing

pass. We can then tweak the parameters and see their effect in real time

as you can see in the video.

Offscreen I’m changing the system parameters and you can see its

effects here.

This was tunable per area, and art got a taste at the power of procedural

model placement in real time, and how it can adapt situationally to

information that we have in our pipeline.

This not only looked great, but also showed what is possible in the

future if we invest in this type of technology.

Our artists are aware of the power of procedural model placement, we

use it plenty in our level editor. Seeing it running in real time, with close

to no authoring cost, on a dynamically changing mesh, for an irrisory

run-time cost is another thing though.

This was an invaluable lesson that I know will inform what technology

we’ll invest in the future.

Both of these features came online late, but we were able to squeeze

them in both in terms of production schedule and in terms of

performance budgets because of how malleable the system and it

components were.

The information we needed was easily accessible, and it was cheap to

do so.

Had we hardcoded the composite pass to be too specific or not

malleable enough, we would have had to change it later in production,

or we would have had to add it when we didn’t have the budget.

I have mentioned we learned many lessons through this, and a key

component here is that we shipped every one of them in the final game.

There is a big difference between RnDing some systems for the future,

and bringing it all the way through production in a final product.

And we didn’t just use this on snow: we used this same tech on the

sands of Alfheim as well.

What’s notable is that the sand was created by the artists at Bluepoint

Games, our partner studios. They were able to use this technology in a

different way while achieving a different look with very little input.

Let’s look at the breakdown of all the parts of the system one last time:

this is a scene from behind Kratos’ house.

This is just the base mesh with no features turned on.

We add displacement from Kratos walking around

We then blend different material layers depending on height

displacement

We reveal the detail normal map created by the player walking around

We then rendering particles, both opaque and transparent ones

And finally, we add procedurally placed models

So this is where we started and what we shipped. I am really proud we

were able to match the original vision as much as we did, and arguably,

we even went beyond it.

It’s worth considering that the mesh on the left is a bespoke sculpt,

while the one on the right is dynamically generated just by the player

running around.

So far, all assets I showed you were captured on PS4. Lastly, I want to

show how the system scales on PS5. I turned off the dynamic models

and extra details to show how much we achieved with just good

textures and tessellation.

All you see here is just the base mesh with tessellation and

displacement.

We are approaching the end of the presentation. Let’s summarize where

we got.

First of all, we achieved all our goals.

The system is easy to use, and it’s fully integrated in our standard

workflow. We used it everywhere we wanted to use it.

We shipped the technology on multiple platforms with way to scale

quality in between them without art having to modify any content.

We hit our performance target on both consoles, while shipping a

product that lives up to the standard of the Santa Monica Studio art

team.

Thanks to the planning and to our approach, we were able to ship the

needed features first, and then expand the system when we had

time/resources to do that.

We created new technologies that solved the specific need of the game,

and looking at the future we have a set of tools we can, and will, easily

reuse.

More importantly we have built a knowledge base and explored new

avenues that have inspired us for what’s to come. And those lessons are

invaluable

Let’s look at those takeaways all together one last time:

Always start from the end goal, and while working always make sure

you are in the ballpark of doable.

Force yourself into a modular approach so that no parts of your

technology dictate everything around it.

Plan and be prepared for what’s to come, so nothing will surprise you

and you’ll always have a plan.

These takeaways are high level, so you will have to break them. You and

your team have to grow an intuition about when and how to do that.

But if you keep on building your toolset and your knowledge with these

principles, you’ll tackle more problems faster, and more easily than

before.

We are at the actual end! First of all, I want to thank you all for coming

to my talk.

I want to thank the incredible team at Santa Monica Studio, and in

particular the people who helped putting this presentation together: my

lead, tech director, manager, Kevin, Kyle, Chris, and Valerio, and my

advisor Julien.

We have quite a few presentations on God of War: Ragnarök this year at

GDC. Go see them all!

I’m going to leave my contact in the next slide up, feel free to reach out

with questions or just to say hi!

We have some time for questions, please line up to the mics and ask.

JOIN US AT GDC 2023 BUILD YOUR GOD OF WAR GDC AT:
SCHEDULE.GDCONF.COM

ERICA PINTO  LEAD NARRATIVE ANIMATOR



MEHDI YSSEF  LEAD GAMEPLAY ANIMATOR

BRUNO VELAZQUEZ  ANIMATION DIRECTOR
DAVID GIBSON  ANIMATION DIRECTOR

 



SUE PACETE  SR USER RESEARCHER

 



PAOLO SURRICCHIO  SR STAFF PROGRAMMER

 



BEN HINES  SR STAFF DEVOPS ENGINEER

 



ETHAN AYER  SR ENVIRONMENT ARTIST

 



XUANYI ZHOU  PROGRAMMER

 



GÖKSU UĞUR  AI LEAD

 



VICKI SMITH  SR STAFF LEVEL DESIGNER

 



STEPHEN McAULEY  LEAD RENDERING PROGRAMMER

 





ERIC GOTTESMAN  SR STAFF DEVOPS ENGINEER

 



SAM STERNKLAR  SR PROGRAMMER

 



ADAM OLIVER  SR COMBAT DESIGNER

 



GÖKSU UĞUR  AI LEAD

 



ZACH BOHN  SR STAFF TECHNICAL UI DESIGNER

 



SALAAR KOHARI  PROGRAMMER

 



TENGHAO WANG  SR PROGRAMMER

 



HARLEIGH AWNER  TECHNICAL NARRATIVE DESIGNER

 

We have a big presence here at GDC. Go watch all these talks, they are

all really interesting!

And we are hiring!

http://sms.playstation.com/careers
mailto:sms.recruiting@sony.com?subject=We're%20Hiring%20Inquiry

https://advances.realtimerendering.com/s2015/
https://research.activision.com/publications/2021/09/boots-on-the-ground--the-terrain-of-call-of-duty
https://www.gdcvault.com/play/1023109/Optimizing-the-Graphics-Pipeline-With
https://gdcvault.com/play/1027011/Advanced-Graphics-Summit-Lifting-the

As the camera moves, we lock it to pixel movement. We then “scroll” the

texture in the opposite direction, and clear the new area to the default

color that makes sense with our technique

We only used screen space shadows since re-rendering the mesh in the

shadow map with tessellation was too expensive

Since we don’t tessellate gradually, and instead tessellate only where we

need to, we might have edges that have a big subdivision difference on

the two sides.

If we have a t-junction, it’s likely we’ll have a big gap

Other solutions addressed this concern by having a more progressive-

gradual tessellation, so the difference between 2 sides of the same edge

is not that big.

In that case, the gap is less likely to happen, and when it happens it’s

smaller

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

