






•

•

•

•

•

•

•



•

•

•

•

It’s also worth mentioning I joined SMS during the pandemic, so we 

were all learning about work from home, plus having to get to know 

each other remotely.



Let’s begin at the beginning itself, when I started on God of War: 

Ragnarok.



•

Getting started on a project is a pretty difficult task, and it can seem 

insurmountable. But I tried to ask the fundamental question: ”what you 

need to do to ship the game?”

Now, this is a question you ask upwards, of your managers, which is 

what I did. But coming on board as a lead I also had to get to know my 

team.



•

•

•

•

•

I actually used very similar questions to these in my initial 1:1s with my 

team, as I tried to get to know them. There’s a mix of questions here, 

where you try to understand someone personally, the internal aspect of 

things; but then you want to find out how they’re relating to the world, 

their external interactions. Similarly, you want to balance knowing what 

they’re working on now in the present, but also what their plans and 

hopes are for the future too.



•

•

The next thing I did… which admittedly sounds very boring… is to read 

JIRA. Extensively. Going through all tasks on the rendering team, some 

dating back many years, and seeing where they matched with current 

work, our game features, and also our dreams of improving things for 

the future.



•

•

The next step was one of organization. Once I had a bit of a grip on the 

major features we wanted to develop, I ensured we had Epics for each 

feature and started bucketing tasks for each of them. This personally 

really helps me organize my thoughts, as I have a clear list somewhere 

of what the rendering team needs to deliver. It also helped me keep 

track of all the work that was already there and understand where it 

fitted in (or in some cases, where it didn’t).



•

I even categorized optimizations (and memory savings) really early in 

the project, partially to organize the database, but also to ensure we 

had tasks to draw on when we entered that stage of the project.



•

But all this work is in service of the original question: what do we need 

to do to ship the game? This time though we’ve got a little closer to 

understanding it and started to tackle the task in front of us.

Rather than just breaking the work down in my head into features that 

had to be delivered, I thought about four major pillars.



The first pillar is Narrative Features. These are absolutely the most 

important thing to do – if we cannot tell the story we want to tell, then 

the game cannot ship.

Next are visual and art workflow improvements. These are what we do 

as a rendering team to achieve the quality bar we need.

Then we have PlayStation 5 Enhancements, which were a pillar particular 

to God of War: Ragnarök. We didn’t just want to improve visuals overall, 

but as a cross-platform title we wanted to work on particular 

enhancements for the PS5.

The final pillar is about Helping Ourselves. These are things that we 

want to do as a rendering team to help us work better. That could 

include improving compile times, refactoring code or writing debugging 

tools.

I’m going to walk you through each pillar to explain some of the work 

we did for each, diving into details where appropriate.



Let’s start then with narrative features. At SMS we are an incredibly 

narrative-driven studio. We need to be able to tell a story, and thus as a 

rendering team our first priority has to be ensuring we have the features 

needed to do that.

I’m going to run through the most important of these features, but this 

isn’t a section I’m going to go into technical detail on.



The first feature is deep snow. We need to be able to represent 

Fimbulwinter, so we need lots of snow and the ability for it to react to 

characters as they walk through. We did have this feature on God of 

War 2018, but with the technique used there the snow wasn’t able to go 

deep enough.

Hopefully, many of you saw Paolo’s excellent talk on Monday about this 

system – otherwise, please reference that if you need more details.

Also, as you notice, I’m crediting the many excellent people who worked 

on these features on the bottom right of the screen there.



Obviously when representing Fimbulwinter, we don’t just need snow, we 

also need ice. This is some really fantastic technology that I’m sad I 

don’t have time to talk more about today, but hopefully in the near 

future.



We also had the ability to change the time of day from day to night in 

Vanaheim, represented by this amazing cinematic. Time of day is a little 

new to us, so we had Bryan working on animating the global 

illumination, and Jon and Amy working on the dynamic sky that you see.



Finally, there is Ragnarök itself. The challenge here was having so many 

animated characters on screen to represent the battle. In the far field we 

relied on flipbooks, in the near field fully animated characters, but in the 

middle ground we prerecorded animations into buffers and played 

those in a loop on the relevant meshes, saving any CPU animation cost.



You might have thought I raced through that first section. And that’s 

true, but it’s also reflective of my experience. Many of these features 

and goals were predetermined before I joined, and my job was just to 

shepherd them to completion. This next topic though, of visual 

improvements and art workflow, was where I first started to get my 

hands dirty and try to make a difference on the project.



Let’s use a cricket analogy… (but if you’re more familiar with baseball, 

that analogy works equally well).

In cricket, we say that it’s not the batters who win the game, it’s the 

bowlers. The batters can set up the win for sure, but at the end of the 

day you need to get 20 wickets to win, and only the bowlers can do 

that.

In game development, I view the programmers as the batters and 

content creators as the bowlers. Sure, as rendering programmers we can 

produce amazing technology, but that’s just giving our artists an easier 

platform to go out an achieve an amazing looking game. That’s why I 

include improving art workflows alongside visual improvements – it’s 

not just about better technology or visual features, it’s also about 

helping our artists achieve higher visual quality faster.

[Photo attribution: Robert Drummond, 

https://www.flickr.com/photos/47229455@N04/36141616805/, CC0 

license]



•

•

I want to talk through two major art workflow concerns we dealt with. 

The first, lighting, was one of the first things I identified as a problem on 

the project – where the goal was to save the time of lighting artists. The 

second concern, how we set up reflection and refraction, came later in 

the project, and the goal here was to save the time of environment 

artists.



•

•

Let’s start by looking at lighting.



Let me walk you through how we originally set up lighting for a simple 

outdoor scene…



Hope that this never goes out of sync with the sky model!











This is in our material editor, Mesa, outside of Maya.





•
•



•
•



•
•



•
•

This was difficult for new people on the team to understand – in fact, no 

one did, which ended up being very hard to standardize across lighters 

and our technical art team.



•
•

This also encouraged a bad workflow. If your lights are relative, they 

need to be relative to *something*. The easiest thing is to say that’s 

your “ambient” lighting, which is traditionally how you would work in 

days gone past. You first add your ambient lighting, then you add your 

direct lights on top. However, in a world with global illumination, that 

creates a dangerous feedback loop. Because your lights cause the 

global illumination, you have to place the lights first, not the “ambient”.



For more info on our GI system, see [Hobson2019]













Now, I used to work on open world games, like Far Cry 5, so this was 

very new to me. I was used to a physical sun and sky system, and a light 

baking process that executed over night. It meant that the lighting was 

always up to date and you could change time of day and get different 

looks in an instant.







Next was the “outdoor lighting environment node”, which is a simple 

way to set sun and sky brightness in the same place.



This sky EV intensity also modifies the brightness of the sky material.



•

•

•

•

•

Thanks to Josh Hobson, Nathan Kennedy and Amy Chen for staying up 

late with me to do the conversion! Bourbon (and rye in my case) helped 

get Josh and I through the night!



•

•

•

•

•

•

•

•



To show you the difference, I’ve taken some captures from a test level 

we have. This is the original tonemapping with no exposure bias. It’s not 

too bad, but it is just a tiny bit too bright.



This is with an exposure bias of 0.5, something our lighting artists 

typically did to get the lighting they were after. This looks a lot better I 

think.



Now if we switch to the new tonemapping, now with handling the mid 

point correctly, you’ll see that we don’t need the exposure bias any 

more. It’s very slightly darker than the previous scene but actually very, 

very close to what the artists were trying to get.

So handling your lighting data correctly is important! This is just another 

small thing that helped our lighting team out by ensuring everything 

was as good as possible out of the box.





•
•

We had both a list of GI data to generate every night, plus a separate 

list for each day of the week, just to manage the build times. It takes a 

long time to generate GI data.



See [McAuley2018] for a more detailed discussion of outdoor and 

indoor lighting challenges.



•

•

Now that we’ve solved some of the lighting team’s workflow issues, let’s 

move onto environment art and talk about reflection and refraction.



•

•



•



•

•

•

•

•

•



•

•

•

•

Here are some images one of our producers, Brielle Porter, gave me, 

about notes she had on reflection and refraction cost.



•

•

•

•

•

•

Screen space techniques are much maligned, for many reasons, but the 

immediate quality lift and art time saved was phenomenal.

You can see a great quote from our Director of External Development, 

John Palarmarchuk, being very happy about how much time we’re 

saving the art team.

This is also a great example of building up trust. The art team know that 

we are listening to their concerns, and we are delivering on features that 

make their lives easier.



•

•

•

•

•

•

•











Let’s take a quick look at the performance of this pass on PS4, so I’m 

bringing up our GPU profiler. You probably can’t see it too well right 

now, so let’s enlarge…



Our total cost for the water here is 2.26ms on PS4, which is a little 

expensive but it does contribute to a lot of the screen.

We split the costs of the passes into two categories, “Art” for the base 

water surface and “Lighting” for the SSR part. This is partially historical –

the old mirror and opaque refraction passes were under the “Lighting” 

cost, so this allows us to maintain roughly the same burden of this 

feature across teams.



•

•

•

•

•

•

•

•

•

Obviously, the water surface is always going to be expensive as it’s 

forward shaded, so it has to perform material and lighting evaluation.







•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•



•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•



•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•



•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•



•

•

•

The image on the left shows all the cubemap volumes in the RBR house 

area of the game (the red colour indicates the outer region, the blue 

colour the inner region). The image on the right shows our Maya set up 

for a cubemap region.



•

•

•

•



•

•

•

•

•

•

•







Hit position (in world space, relative to the camera position)



Hit position (in world space, relative to the camera position)





•

•

•

•

We decided not to use actual game geometry for the sake of simplicity 

and performance.  This is our first time using raytracing so we wanted to 

contain the scope.

Instead, we created special geometry for areas we wanted to have 

raytraced cubemaps via Houdini.

Credit to Blair Pierpont for his excellent work on this!



Wrote tool to read gi fragments (pulls in position, albedo, normal).



Use ball and pivot algo to generate mesh from point cloud (open3d 

python library has a convenient wrapper).

Easy to get false positives if the data is very coarse, thin geometry was 

problematic.



Clean the ball and pivot algorithm resultresult by generating VDB, then 

rasterize to geometry.



VDB raster result is double-sided, remove backfaces by line tracing from 

fragments to identify front faces.



Decimate and retain geometry by curvature using polyreduce in 

Houdini, original target was 33k tris per wad.

This limit was increased eventually once raytracing perf had improved. 

RBR is currently around 150k tris.



And here we have a final comparison of the input data on the right, and 

the final mesh on the left.



If we go back to the part of RBR we were looking at, here is the 

raytraced cubemap result…



…and here is the BVH geometry projected onto the scene.



Let’s bring up our profiler now and discuss performance.



•

•

•

•

•

•

•

•

•

•

The combine pass does the work of combining BVH and screen space 

ray tracing results and performing the screen space colour or cubemap

lookup.

The resolve pass combines neighbouring and temporal samples into a 

final reflection result, using importance sampling. See 

[Stachowiak2015].



•

•

•

•



Look at the light leaking onto Kratos’ nose. (Screenshot from God of 

War 2018, taken by Josh Hobson.)



•

•

•

•

•

•

Our technical director Josh Hobson had the idea to ray trace in screen 

space.



Let’s see how this works in practice. Let’s consider how we shade a pixel. 

We want to trace rays to this area light source, through this depth 

buffer which is represented as a set of green lines – each line segment is 

a depth buffer texel with a certain depth. It’s important to remember 

that this depth buffer really doesn’t represent a contiguous height field, 

we have to treat it as an isolated collection of fragments.

We’re ray tracing to see if we intersect the depth buffer. In this case, 

let’s imagine we trace the simplest ray, one aligned with the direction of 

the light. In this case you can see that the first three samples are 

occluded, and the fourth sample is not occluded. As we’ve changed 

from shadowed to non-shadowed, we detect that we’ve hit an object, 

stop ray marching, and take the shadowed sample.

This all seems rather naïve though – we might as well have just taken 

the original shadowed sample. However, other rays that aren’t parallel 

to the direction of the light are more complex.



Let’s trace another ray. After a few steps we notice we are no longer 

shadowed. Does this mean that we’ve intersected an object? Well, 

clearly it doesn’t in this case.



We also sample on the disk at the original pixel’s depth, and discover 

that sample isn’t shadowed either. The fact that the two samples are in 

agreement (they’re both non-shadowed) shows that no boundary has 

been crossed.



So we continue ray tracing until we hit the light…



The samples on the disk vs the samples on the ray are always in 

agreement, showing we never crossed a boundary. This means we take 

the last result and say that the ray isn’t shadowed.



Let’s trace yet another ray, a more complex one this time.

We trace until we find a disagreement between the disk and the ray 

samples, which means a boundary has been crossed… but has it?



This is an innate problem of screen space ray tracing techniques. We 

don’t know if those individual depth texels are connected or not (or if 

they’re not, how “thick” each individual texel is).



•

•

However, for our purposes, we say the depth buffer is contiguous. This 

prevents light leaking and worst case, will just give us the same result as 

regular PCF filtering.



So in the case of this ray, we determine we’ve crossed a boundary, and 

take the result of the sample before that. This ray is shadowed.



We trace each ray a sample at a time, killing a ray whenever it intersects 

the depth buffer



// We choose to ray march in step order: for each step, iterate over all the rays
for (float percent = minPercent; percent <= maxPercent; percent += stepSize)
{

uint sampleInd;
uint latch = rayMask;
while ((sampleInd = FirstSetBit_Lo(latch)) != 0xFFFFFFFF)
{

latch &= ~(1 << sampleInd);
float2 rayDelta = PoissonPCFSampleOffset(sampleInd, 1.0f, sc);
// Ensure the filter size is never smaller than a texel
float filterSize = max(1.0f, texelFilterRadius * percent);
float rayZ = testZ + percent * maximumRayMarchDistance;
float rayVisible = ShadowTap(float3(shadowmapUV.xy + filterSize * rayDelta, rayZ), int2(0, 0));
float discVisible = ShadowTap(float3(shadowmapUV.xy + filterSize * rayDelta, testZ), int2(0, 0));
// We compare ray vs disc to detect the cases where the ray "escapes" between texels
if (0.99f < abs(rayVisible - discVisible))
{

rayMask &= ~(1 << sampleInd);
}
else
{

// Doing this here prevents the first sample from being overoccluded, when the disc self-shadows
rayResults[sampleInd] = discVisible;

}
}

}



•

•

•

•

•

A note here – you might think, why are we taking shadow taps on both 

the ray and the disk? Theoretically you need to just sample the depth of 

the shadow map then compare against the ray and the disk’s depths. 

That would eliminate a lot of texture samples. However, we found for 

quality’s sake we needed to take filtered samples when sampling 

shadow maps, and using hardware filtering meant that we needed to do 

those two shadow taps.

I think with more work we could eliminate that requirement and 

optimize that some more, but we ran out of time.











•

•

•

•

•

•

•

•



•

•

•

•

•

•

•

This means that we go from “sharp” to “most blurry” shadows over the 

course of two metres.

Actually, for the directional light, we allowed the contact hardening 

shadows to have a shadow filter radius twice as big as authored 

previously, as they ideally wanted blurrier shadows.



•

•

•

•

•





When enabling SSDO, you see a big difference. Spots on Freya, Kratos

and Atreus that were abnormally lit suddenly go into shadow.

SSDO also helps a lot when you have unshadowed lights (one of the 

biggest causes of light leaking). We use it to fake shadows on those 

lights.



Let’s turn it off again, and focus on a few specific areas.



You can see better shadowing behind Freya’s sword hilt, plus where 

Kratos’ arm shadows Atreus.



Now let’s look at SSGI, I’ll highlight a few areas in advance since this is 

much harder to see. You can see Kratos’ groin getting a little brighter 

from extra bounce light, as well as some spots in the background (see 

far right), plus the object near Hildisvini’s right hand.



When enabling SSGI, you do get an improved image but it’s very subtle. 



SSDO doesn’t just help with diffuse light, it helps with specular light too.



You can see a lot of rogue reflection goes away. Just look at the side of 

Freyr’s leg, where it hits the table.



Next let’s look at our sky and indirect lighting.



There is a huge change here. Even look at the colour changes on Atreus.



This again is subtle. But look at the object on the desk, near Hildisvini’s

right hand. It picks up some bounce from the table and is better 

grounded.



Finally let’s look at direct lighting. We use SSDO to shadow direct lights, 

in particular when they are unshadowed in themselves.



The most obvious gain here is on Freya’s upper back, in the upper left. 

Unnatural light just goes away.



Let’s see it all put together again. This is with SSDO and SSGI off.



And this is with SSDO and SSGI on. A much better image.



•

•

•

•

•

•



I first talked about these pillars of Narrative Features, Visual 

Improvements and Art Workflow and PS5 Enhancements during an 

internal presentation, telling the rest of SMS what the rendering team 

were up to. In which case, it’s understandable I didn’t talk about this 

fourth pillar of Helping Ourselves. But I have a confession… at the time, I 

didn’t even think of this pillar as existing. It was only when coming to 

write this GDC presentation that I realized I’d missed out a chunk of 

work that my team did, and it should be classified under something 

new: a fourth pillar, “helping ourselves”.



Relatively early in my time on the project, I hit a frustrating workflow 

blocker. We maintain a fairly rough PC build of the game, that is still on 

DirectX 11, and we have some Python code (shown here) to help us 

generate shader bindings on all platforms: PC, PS4 and PS5. However, 

DirectX 11 bindings come with some limitations, such as the number of 

resources that can be bound, and I ran into this limit as I added a new 

feature. Now, you’d think that we could just use some #defines to 

ignore those resources and that code on PC as a work around, but our 

shader binding code had no knowledge of the preprocessor… so I was 

stuck.

I had a conversation with our technical director, Josh Hobson, about 

this, and to my surprise he just said, “Why don’t we get someone to fix 

it next sprint?” I felt so refreshed and empowered – I’ve been used to 

living with these problems and believing them unfixable, with work for 

content teams being prioritized at almost all cost. Now I knew I would 

be allowed to fix them, and actually my opinions and those of my team 

mattered – if something was affecting our work, we should certainly fix 

it.

I even interviewed someone recently who asked a bit about how we 

determine and prioritize work, and his rather excited reply at the end of 



my answer was, “So you’re saying that you get to decide what work you do?” 

It’s not like this at all companies! But this is why it’s so important to talk about 

– this fundamentally is about empowering your teams to make the best 

decisions for the project. Sometimes that decision is to cut corners; sometimes 

that decision is to prioritize work for another team; and other times it’s about 

helping your own team.





•

•

•

•

•

•

•



•

•

•

•

•



We created the following budget categories with each category having 

the subsequent general owners.



•

•

•

•



•

Next, we actually needed to find the performance issues in game. That 

was the job of our amazing QA team.

However, we needed to tell them what to do when they found a 

performance issue. We created this decision tree to follow, which first 

involves pulling up the GPU and CPU profilers.



•

If we zoom in a bit more, we can see the steps taken when the lighting 

category is overbudget. It involves enabling various options in our 

debug menus, bringing up various debug displays, and taking various 

screenshots to attach to the JIRA. It also helps determine which team to 

send the JIRA to at the end of the process.



That would result in a JIRA looking something like this (a real world 

example!). It details where and how the performance issue occurred, 

and what areas of the game were over budget. In this case it’s lighting, 

and the decision tree determines that the JIRA should go to the lighting 

team (as opposed to the rendering team, which would be the other 

option). If multiple budget categories were over budget in the same 

location, we’d create JIRAs for each one.



Each JIRA would have many screenshots attached. Which screenshots 

were taken would depend on the steps determined in the decision tree. 

For example, if lighting was overbudget as in this case, then we would 

take screenshots of debug views to help figure out what the problem 

was.



So, for example, this is screenshot #2 in the hierarchy, which is the GPU 

budgets with async compute turned off. We first turn async compute off 

as that allows us to get accurate budgets – we then know the shadow 

budget contains just shadows, not shadows plus whatever async work 

was happening at the same time.



As we know lighting is one area that’s over budget, we capture a 

screenshot with the list of active lights.



And we also capture a screenshot with the visible light counts per tile. 

As you can see, there’s a lot of “red” here meaning a lot of lights, so this 

is likely the cause of us being over budget here.

We capture other screenshots too, but hopefully this helps you 

understand what’s happening.



•

•

•

•

•

•



•

•

•

•

•

•



•

•

•

•



•

•

•

•

•

•

•

•

•

Even better, in some circumstances, team members started commenting 

in advance on others’ thoughts, so you have some pre-debate!





•

•

•

•

•

•

•

•

Another fun benefit is that if you don’t get through everybody’s pre-

written ideas in one meeting, then you absolutely know you have 

content for another brainstorming meeting on the same topic.

We’ve carried on with this method of brainstorming since then, for 

example, with brainstorming rendering improvements for our next 

project.



•

•

•

•



•

•

•

•







•

•

•



•

•

•

•

•

•

•



Let’s take look at this scene in Midgard. This area saw a surprisingly 

large benefit from improving sorting. Let’s bring up the profiler…





Around 0.7ms is a good saving – we saw less in some areas and even 

more in others!



By disabling the shader prefetch we save even more. Perhaps this 

doesn’t work for us as we have so many shaders in our game?



•

•

•

•

•

•

•

•

I had never used shadow proxies before, perhaps just biasing the LODs 

used in the shadow, but this made a huge difference.



Let’s take a look at this scene on the PS4…



We’ll bring up the profiler and see the shadows are 4.95ms…



And if we look in more detail, we’ll see that there are 

ShadowDecompressDepth and ShadowResolveESM calls for every 

shadow map, that are taking up time.



Let’s take a look at a Razor GPU capture and see what’s happening…

You can see the blocks of green and orange, rendering the shadow 

geometry. And then a gap (the depth decompression) and then blue 

(the resolve to ESM). For the most part these fixed costs aren’t that high 

compared to rendering the shadow map itself… but look at the end of 

the image! The fixed cost looks higher than actually rendering the 

shadow map.

You might think that the resolve to ESM should be ‘free’, in that it 

should be running in async with the next frame’s shadow map. I have 

async compute disabled here and that’s definitely the intention of this 

system. However, the depth decompression can’t run async… and 

nothing in this life is free. Having this work run async with the shadows 

not only slows down the shadows (so we’d want it to be as fast as 

possible), but also blocks other possible async compute work from 

running in this space.)



•

•

•

•

•

•



•

•

•

•

•

•

•

•



•

•



•

•

•

•





And let’s look at a Razor capture. You can see that we’ve changed the 

position of the fixed cost passes to happen at the end of shadow 

rendering. It turned out that grouping these passes together was faster.



•

•

•

•

•

•



•

•

•

float FilterShadowPPCF(float3 shadowmapUV, float texelFilterRadius, in float rotation)
{

float2 minMaxZ =
ShadowDilatedMinMaxBy8Texture.SampleLevel(gLightSamplers.smpPointClamp, shadowmapUV.xy, 0);

if (minMaxZ.x > shadowmapUV.z)
return 0.0f;

else if (minMaxZ.y < shadowmapUV.z)
return 1.0f;

...
}





So in this scene it was actually a 0.01ms loss (a 0.01ms gain in sampling 

shadows but 0.02ms loss in calculating the dilated shadow map), but 

overall across the game it was a net win. (It has a bigger effect in areas 

with more overlapping shadow maps, this just has one directional light 

per lighting tile).





•

•

•

•

•

•



•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•





JOIN US AT GDC 2023 BUILD YOUR GOD OF WAR GDC AT:
SCHEDULE.GDCONF.COM

ERICA PINTO  LEAD NARRATIVE ANIMATOR



MEHDI YSSEF  LEAD GAMEPLAY ANIMATOR

BRUNO VELAZQUEZ  ANIMATION DIRECTOR
DAVID GIBSON  ANIMATION DIRECTOR

 



SUE PACETE  SR USER RESEARCHER

 



PAOLO SURRICCHIO  SR STAFF PROGRAMMER

 



BEN HINES  SR STAFF DEVOPS ENGINEER

 



ETHAN AYER  SR ENVIRONMENT ARTIST

 



XUANYI ZHOU  PROGRAMMER

 



GÖKSU UĞUR  AI LEAD 

 



VICKI SMITH  SR STAFF LEVEL DESIGNER

 



STEPHEN McAULEY  LEAD RENDERING PROGRAMMER

 





ERIC GOTTESMAN  SR STAFF DEVOPS ENGINEER

 



SAM STERNKLAR  SR PROGRAMMER

 



ADAM OLIVER  SR COMBAT DESIGNER

 



GÖKSU UĞUR  AI LEAD 

 



ZACH BOHN  SR STAFF TECHNICAL UI DESIGNER

 



SALAAR KOHARI  PROGRAMMER

 



TENGHAO WANG  SR PROGRAMMER

 



HARLEIGH AWNER  TECHNICAL NARRATIVE DESIGNER

 



http://sms.playstation.com/careers
mailto:sms.recruiting@sony.com?subject=We're%20Hiring%20Inquiry





	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184

