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01. Why use virtualized geometry?

We’re going to start by explaining why we took the decision to develop this 
technology.
The second part, which is the biggest one, will cover the technology in more detail.
One specificity we have at Virtuos is that we work on different game engines. 
Developing the technology for multiple game engines was a must have. We’ll see 
briefly how we achieved this.
We are constantly improving the technology. I will conclude with an overview of the 
subjects we are currently working on.

4



V I R T U O S  C O N F I D E N T I A L

WHY USE 
VIRTUALIZED 
GEOMETRY?
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Artists’ dream

1. Create high-resolution
high-quality mesh

2. Import to game engine

3. Done
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Artists’ dream vs reality 1. Artist creates mesh

2. Artist imports mesh to game engine

3. QA team reports bad performance
and creates ticket

4. Programmer gets ticket, investigates, reports that 
mesh resolution is too high, and assigns ticket to artist

5. Artist spends more time to optimize mesh
and generate LODs

6. During game review,
Art Director complains about quality

7. Artist spends additional time to improve the mesh

8. QA team reports out-of-memory crash
on console & creates new ticket

9. Programmer gets ticket, investigates, reports that 
mesh resolution is still too high for consoles…

1. Create high-resolution
high-quality mesh

2. Import to game engine

3. Done
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Game engine always manages to 
get good performance and 

respect memory budget

The technology can be used on 
different game engines

Artists only work with
high-resolution meshes

Compatible with 
forward 

rendering

Compatible 
with virtual 

shadow

Compatible 
with cascade 

shadow

Support 
different 

streaming 
systems

V I R T U O S  C O N F I D E N T I A L

Objectives

What can we do to improve this?
We want artists to only work with high-resolution meshes.
And it’s up to the game engine to manage to get good performance and respect the 
memory budget.
Don’t forget that we work with multiple game engines.
So, we want the technology to be compatible with different game engines.
It must be compatible with forward rendering, deferred rendering, virtual shadow, 
cascade shadow, raytracing, various streaming systems, etc.
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Expected results

Better performance

• Dynamically adjust LOD level to 
reach expected performance

• More stable performance 
compared to classical rendering

Save production time

• Spend much less time optimizing 
meshes

Better quality

• Allow artists to use
higher-resolution meshes

• Use better resolution at runtime 
compared to classical rendering

Less out-of-memory 
crashes

• Use a fixed memory budget

• Reduce out-of-memory crashes
on consoles during production

We want to reach a better quality because artists will use higher-resolution meshes 
and the graphics engine itself will use higher-resolution compared to classical 
rendering.
We also want to get better performance and, probably as important, more stable 
performance compared to classical rendering.
We also expect to save production time because we won’t need to optimize meshes, 
or, at least, we’ll spend less time to optimize them.
And the last point is that we’ll decrease the number of out-of-memory crashes on 
consoles during production because we use a fixed memory budget.

9



V I R T U O S  C O N F I D E N T I A L

CREATING 
HI-RES VISION

OK. We set quite ambitious objectives. Let see what we did to achieve them. 
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02. Builder stage

03. Runtime stage

Traversal

Occlusion culling

Rendering

Streaming

01. Challenges to solve

I will start with the different technical challenges to solve, then we’ll dive into the 
different parts of the technology itself. The first one is the builder stage, and the 
second one is the runtime stage with the traversal, the occlusion culling, the 
rendering, and the streaming.
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Challenges to solve

Buddha 
statue

4.5-meter 
height

200 tons

3.5M triangles

Let’s take this wonderful Buddha statue, 4.5-meter height, 200 tons, and 3.5 millions 
triangles.
Let’s get closer.
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Challenges to solve

Which LOD 
to use?

Which LOD should we use to render it?
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Challenges to solve

Good quality

High LOD

Poor 
performance

If we use a higher LOD, we’ll get good quality but poor performance. 
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Challenges to solve

Good
performance

Low LOD

Poor quality

And if we use a lower LOD, we’ll get good performance but a poor quality.
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Challenges to solve

We want to 
render

an object 
with 

different 
LODs
at the

same time

I’d like to have this, which is different LODs based on the camera distance.
So, we want to render an object with different LODs at the same time.
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Challenges to solve

We want to 
render

an object 
with 

different 
LODs
at the

same time

Let’s get closer.
What will happen if I use a lower LOD for the upper part of the mesh?
Let’s try it.
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Challenges to solve

We want to 
render

an object 
with 

different 
LODs
at the

same time

with no 
seam!

Oops, we get a hole between LODs.
Let’s rephrase our objective: We want to render an object with different LODs at the 
same time… with no seam.
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Challenges to solve

Even if this part 
is displayed 

using the best 
LOD,

we don’t want 
the best LOD to 

be loaded for 
the rest

We want 
streaming at
sub-object 

level

Let’s go back to our wonderful statue.
Even if a part of the mesh is displayed using the highest LOD, I don’t want the highest 
LOD to be loaded for the rest of the mesh.
Which means that we want streaming at sub-object level.
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Challenges to solve

Even if this object
is only partly 

occluded,
I would like the 

occluded part to not 
be rendered at all to 

improve performance

We want 
occlusion culling 

at sub-object 
level

Even if an object is only partly occluded, I’d like the occluded part to not be rendered 
at all to improve performance.
Which means that we want occlusion culling at sub-object level.
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Challenges to solve

Render an object 
with different 

LODs at the same 
time Occlusion 

culling at 
sub-object 

level

Let me summarize the different challenges that we’ve identified:
We want to render an object with different LODs at the same time with no seam.
We want data streaming at sub-object level, and occlusion culling at sub-object level 
as well.
Still compatible with multiple game engines.
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02. Builder stage

03. Runtime stage

Traversal

Occlusion culling

Rendering

Streaming

01. Challenges to solve

The builder stage is usually integrated into the import process.
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Builder stage

Step 1: Cluster creation

• We use the METIS library to split the mesh 
into clusters

• Each cluster contains 128 triangles
(user-defined)

What do we do here?
The first step is to split a mesh into small parts that we call clusters.
We use the METIS library for this.
The size of the clusters is user-defined, but 128 triangles usually give the best 
performance.
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Builder stage

Step 1: Cluster creation

• We use the METIS library to split the mesh 
into clusters

• Each cluster contains 128 triangles
(user-defined)

Here are the different clusters that we get for this mesh.
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Builder stage

Step 2: Decimation

• Merge group of contiguous clusters
(typically, 32 clusters)

• Remove edges to divide the number of
triangles by 2

• Create 16 clusters to form the next level

Edges at the border are preserved
to avoid holes between LODs

The next step is what we call the decimation.
For this, we merge a group of contiguous clusters. A typical value is 32 clusters.
Then we remove edges to divide the number of triangles by exactly 2.
What is very important is to preserve edges at the border to avoid holes between 
LODs.
Then we create 16 new clusters. These clusters will be part of the next LOD.
Here, you can see the new clusters of the object.
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Builder stage

Step 2: Decimation

• Merge group of contiguous clusters
(typically, 32 clusters)

• Remove edges to divide the number of
triangles by 2

• Create 16 clusters to form the next level

One of the biggest challenges!

A lot of tweaking here
to reach good quality

The difficult part here is the edge collapse phase.
Basically, you have an error function that you use to select the edges to remove.
We have spent months to tweak this error function to improve the quality of the 
generated LODs.
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Builder stage

Step 3: Graph building

• The 16 clusters of the next level are 
the parents of the 32 previous 
clusters 

• Clusters form a
Direct Acyclic Graph

Larger triangles

Smaller triangles

Step 3 is the creation of the graph.
The 16 clusters of the next level are the parents of the 32 previous clusters.
The clusters form a direct acyclic graph.
Direct means that edges are one-way edges.
Acyclic means that there is no cycle.
It’s not a tree because a node can have several parents.
On the top, we have clusters with larger triangles.
On the bottom, we have clusters with smaller triangles.
Here, the graph is very simple.
In practice, we have graphs like this, which are more difficult to debug.
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Builder stage

Step 4: Chunk creation

• Group clusters to create chunks

• All chunks have the same size on disk

• 1 chunk = 1 block on disk to be streamed 

The last step is the creation of the chunks.
A chunk is simply a group of clusters.
Here, we have a first chunk, then a second one, and the last one.
Why are we doing this?
Remember, a cluster is very small because it only contains 128 triangles.
To be efficient, we must stream larger blocks of data.
All chunks have the same size on disk, and a chunk is the minimum amount of data 
that we can stream from the disk.
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Builder stage

Step 3: 
Graph building

Step 4:
Chunk 

creation

Step 2: 
Decimation

Step 1:
Cluster 

creation

Let me summarize the different parts of the builder phase:
First, we split the mesh into small clusters.
Then we decimate to reduce the number of clusters to create the different LODs until 
we have a single cluster left.
We build a graph with the different clusters.
And we group clusters together to create chunks that will be streamed from disk.
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02. Builder stage

03. Runtime stage

Traversal

Occlusion culling

Rendering

Streaming

01. Challenges to solve

Let’s switch to the runtime stage.
The first step is the traversal.
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Runtime stage – Traversal

• A compute shader which traverses the graphs to 
determine for each object:

Output: List of pairs (cluster ID, object ID)

Will be read by the next 
compute shader

Output: List of cluster ID
Will be sent to RAM

• The clusters to render

• The clusters to stream

• Clusters are selected based the projected 
bounding volume size on the screen Goal: each triangle has 

the same size on screen

Clusters to render

Clusters to stream

The traversal is a compute shader which traverses all graphs to compute for each 
object the list of clusters to display.
We start from the graph’s root, and we go down until we reach a cluster whose size 
on the screen is small enough.
The output is a list of pairs of cluster ID and object ID. We need the object ID to get 
the transform to apply, as well as the other per-object properties.
This list will be used by the next compute shader.
We also compute the list of clusters that need to be streamed from disk.
This time, we only need the cluster IDs.
This list will be sent to RAM and used to generate the streaming requests.
We select the clusters based of the size of their bounding spheres projected onto the 
screen.
The goal is to have triangles with approximately the same size on screen.
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02. Builder stage

03. Runtime stage

Traversal

Occlusion culling

Rendering

Streaming

01. Challenges to solve

Next step is the occlusion culling.
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Runtime stage – Per-cluster occlusion culling

• 1 compute shader for per-cluster frustum culling

Output: List of DrawIndirect commands with (cluster ID, object ID)

Uses the results of the traversal phase

Must be done after the Z-Prepass

Tests the bounding sphere of each 
cluster against the hierarchical Z Buffer

• 1 compute shader for per-cluster occlusion culling

We have a compute shader which takes the input of the traversal phase, does the 
frustum culling for the different clusters, and generates a new list of clusters.
Then another computer shader which does the same for the occlusion culling.
It uses the result of the Z-Prepass, that’s why it must be executed after the Z-Prepass.
Basically, we test the bounding volume of each cluster against the hierarchical Z 
Buffer.
The output is a list of DrawIndirect commands with pairs of cluster ID and object ID.
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Runtime stage – The rendering

• We simply execute the list of DrawIndirect commands

• Pixel shaders are not modified

Very important to stay 
compatible with all materials

The rendering phase itself is pretty simply because we simply execute the 
DrawIndirect commands.
We don’t modify the pixel shaders.
This is very important because we need to stay compatible with all materials, 
whether hardcoded or generated.
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02. Builder stage

03. Runtime stage

Traversal

Occlusion culling

Rendering

Streaming

01. Challenges to solve

The last step is the streaming.
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Runtime stage – Streaming

• We work at the chunk level

• Fixed memory budget = fixed number of chunks

• For each chunk, store the time of last use

• Use LRU (Least Recently Used) algorithm to choose chunks to unload

• Chunks can have a priority level

All chunks have the same size on disk

1 chunk = a list of clusters

Remember, for the streaming, we work at the chunk level.
A chunk is a list of clusters, and all chunks have the same size on disk.
We used a fixed memory budget, so we have a fixed number of chunks that can be in 
memory at the same time.
For each chunk, we store the time of last use, and we use a classical LRU – Least 
Recently Used – algorithm to choose a chunk to unload when we need to load a new 
chunk.
This part was not too difficult to implement, until we had to add a notion of priority. 
Then things became more complex.
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HOW TO SUPPORT 
MULTIPLE
GAME ENGINES?

We’re going to see some techniques that we used to support several game engines.
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Support for multiple game engines

All code in C++ libraries

Zero dependency
on engine code

Create interfaces and only use 
interfaces to access engine code

Implement these interfaces
on game engine side

The main idea is that we put all code in C++ libraries, that have no access to the 
engine code.
We can access the engine code only through interfaces that we created, basically 
abstract classes.
And we implement these interfaces on the game engine side.
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The interfaces – The easy ones

IMemoryAllocator

IVideoMemoryAllocator

ILogger

Allocates memory  in RAM

Allocates memory in VRAM

Displays messages in editor

Let see some of these interfaces.
Some are very simple, such as a memory allocator to allocate memory in RAM, a 
video memory allocator, or a logger to display messages.
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The interfaces – The streaming

IIdProvider • Provides ID to identify data
(file, part of file)

An ID is fully generic (array of bytes)

It can be a GUID, a file name, a full path or anything

IStreamingManager
• Send request to stream data
• Be called when data has been loaded

We need to 
support both

Use small files and always read entire files?

Use bigger files and read parts of files?
We need a generic 

way to identify a data

For the streaming, we have a streaming manager to send a request to stream a block 
of data and register a callback to be warned when the data has been loaded.
Should we put one chunk per file? Or all chunks in a single file?
Well… It depends on the game engine.
We need to support both.
So, we need a generic way to identify a data to stream.
To do so, we created another interface to provide an ID to identify a data.
The ID must be generic. In fact, it’s just an array of bytes.
It can be whatever we want, a path, a file name, a GUID, etc.
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The interfaces – The rendering

IBinder Binds a buffer to a shader

The rest of the rendering is engine-specific

For the rendering phase, we have a binder interface to bind a buffer to a shader.
And the rest of the rendering code is engine specific.

42



V I R T U O S  C O N F I D E N T I A L

The shaders

Shaders are 
written in HLSL in 

the library
but rewritten for 

each game 
engine

Usually a 
straightforward 

operation

Game engines 
usually have their

own shader 
language

As for the shaders, game engines usually have their own shader language on top of 
HLSL.
Our shader are written in HLSL in the library but rewritten for each game engine.
This is usually a straightforward operation.
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The rendering

Quite a lot of
engine-specific

code

We need to
integrate the shaders

in the different
rendering passes

For the rendering itself, we need to integrate the shaders in the different rendering 
passes.
This requires quite a lot of engine-specific code.
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GOING FURTHER: 
GEOMORPHING AND 
FUTURE WORK

I’m going to finish this presentation with our current work in progress.
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Geomorphing

Smooth transition

between LODs

We are currently working on geomorphing.
What is geomorphing?
It’s simply a smooth transition between LODs.
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Geomorphing

Transition LOD when
triangles are extremely small

Lots of triangles

Bad performance because GPU are 
not designed to handle this

Software rasterizer
to get good performance

Smooth transition between LODs 
(geomorphing)

Transition when triangles are larger  
(e.g., 5 pixels instead of 1 or 0.5)

Good performance with classical 
rendering architecture

Minimize popping

Too many changes in rendering engine
Almost impossible to be compatible with multiple engines

What can geomorphing be useful for?
One challenge we have is to minimize popping when switching from LOD to another.
One possible solution is to transition between LODs when triangles are very small, 
typically smaller than one pixel.
The drawback is that we have a lot of triangles, which is bad for performance.
A solution is to implement a software rasterizer.
We didn’t go this way because it has a big impact on the rendering engine, and it 
would be very difficult to have an implementation that is compatible with multiple 
game engines.
Another possibility is to have smooth transition between LODs, which is exactly what 
geomorphing does, and switch from LOD to another when triangles are larger, for 
example 4 or 5 pixels instead of 1 or less than 1.
We did some tests: there is no quality increase when using 1-pixel triangles compared 
to 5-pixel triangles.
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Future work

Foliage support Animated mesh support

Our R&D team is also working on foliage support, which isn’t too difficult, and 
animated mesh support, which is a bigger challenge.
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CONCLUSION
AND
TAKEAWAY

What are the most relevant topics to remember?
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Conclusion & takeaway

Virtualized geometry is becoming standard

Chunk 
creation

Graph 
buildingDecimationCluster 

creation

• METIS is your friend, don’t reinvent the wheel

• Quite complex algorithms to implement

• The quality of the decimation is key

• Expect a *long* tweaking phase to get good results

• Mesh build times are important

Builder stage

I do believe than virtualized geometry is becoming standard in video games.
I’m recalling here the different steps of the builder stage: cluster creation, 
decimation, graph building, and chunk creation.
METIS is a very powerful library, it’s open source, use it when you need it.
The algorithms of Builder stage are not so easy to implement, it can take a long time 
to achieve a good quality for LODs, with a lot of specific cases to handle.
And a point I didn’t mention yet: the time to build meshes can be significant.
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Conclusion & takeaway (cont’d)

• Classical LRU algorithm easy to write
• Things become more complex when dealing with priorities

• Naïve implementation quite easy to write
• Optimized version took a much longer time

• We will disclose our results when available

Rendering

Streaming

Geomorphing, foliage, animated mesh

For the rendering stage, a simple implementation is not so difficult to write, the 
challenge is more to get an optimized version.
As for the streaming part, a LRU algorithm gives good results, but managing priorities 
is more complex.
About our current work, we will disclose our results when they are available.
Stay tune!
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