
144FPS Rendering on Mobile:
Frame Prediction in Arena Breakout

Yue Qi
Mobile Programmer of Arena Breakout, MoreFun Studio, Tencent Games
E-mail: cinyqi@tencent.com

Background01 Motivation

Frame Prediction02 The implementation of frame prediction algorithm

Rendering Pipelines03 The corresponding rendering pipelines with frame prediction

Conclusion04 Analysis of performance and further applications

01 Background
Motivation

Background

Situation
• More and more mobile devices support high screen refresh rates (90, 120, 144Hz and higher)
• Players demand smoother experience without reducing the quality of graphics

Challenges
• Conflict between graphics quality and frame rate: Higher graphic quality needs more rendering time, but it will

reduce the frame rate
• Battery consumption and overheating

Background

Existing solutions?
• Deep learning based solution?

• Specific hardware dependencies ×
• High cost and low response ×

Background

Other solutions?
• Deep learning based solution ×
• Software super-resolution?

• High bandwidth cost (large number of neighborhood pixels sampling) ×
• Only a small increase in frame rate ×

Edge calculation for upsampling

Background

Other solutions?
• Deep learning based solution ×
• Software super-resolution ×
• Frame interpolation?

• Additional operation response latency ×
• Interpolation cost ×

Frame K Frame K+1Interpolated Frame

Frame interpolation

Background

Other solutions?
• Deep learning based solution ×
• Software super-resolution ×
• Frame interpolation?

• Additional operation response latency ×
• Interpolation cost ×

Time

Frame K

Player Input Response on Screen

Response latency

Background

Other solutions?
• Deep learning based solution ×
• Software super-resolution ×
• Frame interpolation?

• Additional operation response latency ×
• Interpolation cost ×

Frame display without frame interpolation

Frame K Frame K+1

Time

Background

Other solutions?
• Deep learning based solution ×
• Software super-resolution ×
• Frame interpolation?

• Additional operation response latency ×
• Interpolation cost ×

Frame K Frame K+1

Frame display with frame interpolation

Time

Interpolated Frame

Interpolation generation Pacing wait

Background

Other solutions?
• Deep learning based solution ×
• Software super-resolution ×
• Frame interpolation?

• Additional operation response latency ×
• Interpolation cost ×

Frame K Frame K+1

Frame display with frame interpolation

Time

Interpolated Frame

Additional response latency time

Background

Requirement
A solution is required to increase the frame rate on mobile devices. It should be:
• Simple, fast, no additional latency
• Robust
• Effective and efficient
• Highly compatible (no specific hardware dependence)

02 Frame Prediction
The implementation of frame prediction algorithm

Frame Prediction

Key idea
• Reusing the rendered pixels from the previous frame!

• Predicted frame = previous frame + gameplay info

Most of rendered pixels from previous frame are reusable

Frame Prediction

Static objects Static and dynamic objects

Key idea
• Reusing the rendered pixels from the previous frame!
• Separate the rendering of dynamic and static objects

• Motion of dynamic objects’ pixels: complex and even unpredictable; needs segmentation
• Pixels from static objects: can be easily reused through reprojection (majority of all pixels)

Frame Prediction

Finding Corresponding
• Scene objects are transformed to screen projection plane by MVP Transformation

• Corresponding between frames can be established with reprojection

Frame K-1

MVP Transformation (K)

MVP transformation in frames

Frame K

MVP Transformation (K-1)

Frame Prediction

Finding Corresponding
• Scene objects are transformed to screen projection plane by MVP Transformation

• Corresponding between frames can be established with reprojection

MVP Transformation (K)

MVP Transformation (K-1)

MVP transformation in frames

Frame Prediction

Finding Corresponding
• Scene objects are transformed to screen projection plane by MVP Transformation

• Corresponding between frames can be established with reprojection

Frame K-1

Reprojection between frames

Frame K

Frame Prediction

Finding Corresponding
• Scene objects are transformed to screen projection plane by MVP Transformation

• Corresponding between frames can be established with reprojection

Frame K-1

Reprojection between frames

Frame K

Reprojection matrix

Frame Prediction

Thinking
• Separate the rendering of dynamic and static objects

• Motion of dynamic objects: complex and even unpredictable; needs segmentation
• Static objects: can be easily reused by reprojection

• Per-pixel reprojection?
• From frame k to frame k-1: missed z-component (depth) without rendering ×

Reprojection from frame k to frame k-1

None!

Frame Prediction

Thinking
• Separate the rendering of dynamic and static objects

• Motion of dynamic objects: complex and even unpredictable; needs segmentation
• Static objects: can be easily reused by reprojection

• Per-pixel reprojection?
• From frame k to frame k-1: missed z-component (depth) without rendering ×

Reprojection from frame k-1 to frame k

Frame Prediction

Crack and overlap of per-pixel reprojection

Frame Prediction

Crack and overlap of per-pixel reprojection

Overlaps

Cracks

Cracks

Cracks

Frame Prediction

Thinking
• Separate the rendering of dynamic and static objects

• Motion of dynamic objects: complex and even unpredictable; needs segmentation
• Static objects: can be easily reused by reprojection

• Per-pixel reprojection?
• From frame k to frame k-1: missed z-component (depth) without rendering ×
• From frame k-1 to frame k: crack and overlap ×

Reprojection from frame k-1 to frame k Crack and overlap

Pixels in frame k-1

Pixels in frame k

reproject reproject

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame
• This algorithm is called Mesh Projection Estimation within the project team of Arena Breakout.

Reconstructed mesh

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame

• Step 1: Find the pixels on the SceneDepth where the vertices are most likely to exist

Cached SceneDepth

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame

• Step 1: Find the pixels on the SceneDepth where a vertex is most likely to exist
• Every n×n pixels as a tile (with n between 8 and 16)

Initial vertices state (upper left of Tile)

Frame Prediction

Solution: per-vertex reprojection

Initial vertices state (upper left of Tile)

𝜕𝑓

𝜕𝑥

2

+
𝜕𝑓

𝜕𝑦

2

𝐷𝑒𝑝𝑡ℎ𝑥+1,𝑦 − 𝐷𝑒𝑝𝑡ℎ𝑥,𝑦
2
+ 𝐷𝑒𝑝𝑡ℎ𝑥,𝑦+1 − 𝐷𝑒𝑝𝑡ℎ𝑥,𝑦

2

• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame
• Step 1: Find the pixels on the SceneDepth where a vertex is most likely to exist

• Every n×n pixels as a tile (with n between 8 and 16)
• Search for the pixel with the maximum sum of squared gradients within tiles, which is considered the

most likely location of the vertex.

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame

• Step 1: Find the pixels on the SceneDepth where a vertex is most likely to exist
• Every n×n pixels as a tile (with n between 8 and 16)
• Search for the pixel with the maximum sum of squared gradients within tiles, which is considered the

most likely location of the vertex.

Pseudo-code for searching verticesInitial vertices state (upper left of Tile)

Max squared gradiant

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame

• Step 1: Find the pixels on the SceneDepth where a vertex is most likely to exist
• Every n×n pixels as a tile (with n between 8 and 16)
• Search for the pixel with the maximum sum of squared gradients within tiles, which is considered the

most likely location of the vertex.

Move vertices to position with max depth gradient in tile Pseudo-code for searching vertices

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame

• Step 1: Find the pixels on the SceneDepth where a vertex is most likely to exist
• Every n×n pixels as a tile (with n between 8 and 16)
• Search for the pixel with the maximum sum of squared gradients within tiles, which is considered the

most likely location of the vertex.

View vertices in SceneColor Pseudo-code for searching vertices

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame

• Step 1: Find the pixels on the SceneDepth where a vertex is most likely to exist
• Step 2: Reproject the reconstructed vertices and cache position and UV

View vertices in SceneColor Pseudo-code for reprojection

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame

• Step 1: Find the pixels on the SceneDepth where a vertex is most likely to exist
• Step 2: Reproject the reconstructed vertices and cache position and UV
• Step 3: Redraw the reconstructed screen space aggregated mesh (SSAM) to generate predicted frame

Redrawn SSAM (camera moves forward)

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame

• Step 1: Find the pixels on the SceneDepth where a vertex is most likely to exist
• Step 2: Reproject the reconstructed vertices and cache position and UV
• Step 3: Redraw the reconstructed screen space aggregated mesh (SSAM) to generate predicted frame

Redrawn SSAM (camera moves forward) Pseudo-code of redrawn vertex shader

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame

• Step 1: Find the pixels on the SceneDepth where a vertex is most likely to exist
• Step 2: Reproject the reconstructed vertices and cache position and UV
• Step 3: Redraw the reconstructed screen space aggregated mesh (SSAM) to generate predicted frame

Pseudo-code of redrawn pixel shaderRedrawn SSAM (camera moves forward)

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame

• Step 1: Find the pixels on the SceneDepth where a vertex is most likely to exist
• Step 2: Reproject the reconstructed vertices and cache position and UV
• Step 3: Redraw the reconstructed screen space aggregated mesh (SSAM) to generate predicted frame

Generated prediction frame Pseudo-code of redrawn pixel shader

Frame Prediction

Solution: per-vertex reprojection
• Key idea: reconstruct the mesh in screen space and reproject to generate the predicted frame

• Step 1: Find the pixels on the SceneDepth where a vertex is most likely to exist
• Step 2: Reproject the reconstructed vertices and cache position and UV
• Step 3: Redraw the reconstructed screen space aggregated mesh (SSAM) to generate predicted frame

Compare with cached SceneColor Pseudo-code of redrawn pixel shader

Frame Prediction

Correction of distortion

Shear (1) and tensile (2) distortion Schematic of distortion

Naïve redrawn SSAM could cause:
• Shear distortion: The windows in the background are bent
• Tensile distortion: Bleeding color from the foreground into the background

Frame Prediction

Correction of distortion

Shear (1) and tensile (2) distortion

Naïve redrawn SSAM could cause:
• Shear distortion: The windows in the background are bent
• Tensile distortion: Bleeding color from the foreground into the background

Schematic of distortion

Foreground (fast)

Background (slow)

Foreground
(fast)

Background
(slow)

Frame Prediction

Correction of distortion

Shear (1) and tensile (2) distortion

Correction of tensile distortion: Compare the relative displacements of neighboring pixels
• If the relative displacement is very small: in the same depth semantic layer
• If the relative displacement is large: in different depth semantic layers, needs correction

Foreground UV boundaries

Frame Prediction

Correction of distortion

Shear (1) and tensile (2) distortion

Correction of tensile distortion: Compare the relative displacements of neighboring pixels
• If the relative displacement is very small: in the same depth semantic layer
• If the relative displacement is large: in different depth semantic layers, needs correction

Small and large relative displacements

reprojectreproject

Foreground
Vertex

Foreground
Vertex

Foreground
Vertex

Foreground
Vertex

Frame Prediction

Correction of distortion
Correction of tensile distortion: Compare the relative displacements of neighboring pixels
• If the relative displacement is very small: in the same depth semantic layer
• If the relative displacement is large: in different depth semantic layers, needs correction

• Solution using a tiny UV-bias: apply the foreground pixel's clip-space position with the background pixel's UV

Schematic of tensile distortion correctionPseudo-code of tensile distortion correction

Furthest

Nearest

Frame Prediction

Correction of distortion

Schematic of tensile distortion correctionPseudo-code of tensile distortion correction

Correction of tensile distortion: Compare the relative displacements of neighboring pixels
• If the relative displacement is very small: in the same depth semantic layer
• If the relative displacement is large: in different depth semantic layers, needs correction

• Solution using a tiny UV-bias: apply the foreground pixel's clip-space position with the background pixel's UV

Furthest

Nearest

Apply UV of Background pixel

Large relative displacement

Frame Prediction

Correction of distortion
Correction of shear distortion: inverse reprojection and compare UV during redrawing

Schematic of shear distortion correction

Pseudo-code of shear distortion correction Reprojection from frame k to frame k-1 in pixel shader

Got!

Got depth in PS

Frame Prediction

Correction of distortion
Correction of shear distortion: inverse reprojection and compare UV during redrawing

Schematic of shear distortion correction

Pseudo-code of shear distortion correction Reprojection from frame k to frame k-1 in pixel shader

Got!

Frame Prediction

Correction of distortion

Shear (1) and tensile (2) distortion

Comparison:

With corrections

Frame Prediction

Prediction accuracy analysis: Camera moves forward, DeltaTime = 16.67ms

Difference

Generated Frame Rendered Reference

Difference (exaggerated color diff)

Frame Prediction

Prediction accuracy analysis: Camera moves forward, DeltaTime = 16.67ms

Generated Frame Rendered Reference

Difference (exaggerated color diff)

Frame Prediction

Prediction accuracy analysis: Camera rotates to right, DeltaTime = 16.67ms

Difference

Generated Frame Rendered Reference

Difference (exaggerated color diff)

Frame Prediction

Generated Frame Rendered Reference

Difference (exaggerated color diff)

Prediction accuracy analysis: Camera rotates to right, DeltaTime = 16.67ms

Frame Prediction

Correction of missing pixels at the edge of the screen
If it's necessary to correct the interpolated pixels through rasterization at the screen edge, we can predict the
motion of camera, render additional pixels in the previous frame, and clip when used.

Rendering additional pixels and clip when used

Rendered Frame

Predicted Frame

03 Rendering Pipelines
The corresponding rendering pipelines with frame prediction

Structure of Frame Prediction Based Rendering

Camera
Moves

Forward
Rendered Frame Predicted Frame

Draw static
scene objects

and cache scene
color and depth

Draw dynamic
objects

Reconstruct the
triangles of static
objects by cached

scene depth,
which are combined
to form a "Screen
Space Aggregated

Mesh (SSAM)"

Reproject SSAM
by the camera

parameters (such
as VP matrices)

to generate
render result of
static objects

Draw dynamic
objects

High
Performance

Frame Prediction
Generation

Cached
Depth to

Reconstruct
Triangles
in Screen

Space
Cached Color as Surface Texture of SSAM

Rendering Pipelines

Pipeline 1: Rendered and predicted frame in different logic frame
This pipeline pairs every two frames into a "rendered frame-predicted frame" set:
• One logic frame corresponds to one graphic frames
• Perfect game control feel in high frame rate
• Reduce the workload of drawing static objects by half

Static Pass
Opaque

Static Pass
Translucency

Dynamic Pass
Opaque

Main Pass
Translucency Post Process Present To

Screen

Dynamic Pass
Opaque

Main Pass
Translucency Post Process Present To

ScreenFrame Prediction

Rendered
Frame

Predicted
Frame

Static objects Dynamic objects

Cache

cached textures as input

Structure of rendering pipeline 1

Rendering Pipelines

Pipeline 2: Rendered and predicted frame in one logic frame
Make intermediate frame by frame prediction (static) and interpolated uniform parameters (dynamic):
• One logic frame corresponds to two graphic frames
• No negative impact on game control feel (rendered frame can still be presented immediately)
• Very high efficiency

Structure of pipeline with smoothed intermediate frame

Post
Process

Present To
Screen

Moveable Pass
Opaque 1

Main Pass
Translucent 1

Post
Process

Present To
Screen

Frame
Prediction

CacheBase Pass
Translucent

Base Pass
Opaque

VP Matrices
Interpolation

Moveable Pass
Opaque 2

Main Pass
Translucent 2

Uniform params
Interpolation

cached textures

Rendering Pipelines

Workload balance
The imbalanced frame workload could be inefficient with some device driver strategies (e.g. Qualcomm DCVS)
• CPU and GPU wait each other

CPU and GPU wait each other

CPU：

GPU：

Enqueue a large number of
commands

Heavy GPU workload

A small number
of commands

Wait
GPU

Enqueue a large number of
commands

Light GPU
workload Wait CPU……

……

……

time

Rendering Pipelines

Workload balance

Post
Process

Present To
Screen

Moveable Pass
Opaque 1

Main Pass
Translucent 1

Post
Process

Present To
Screen

Frame
Prediction

CacheBase Pass
Translucent

Base Pass
Opaque Part2

VP Matrices
Interpolation

Moveable Pass
Opaque 2

Main Pass
Translucent 2

Uniform params
Interpolation

Base Pass
Opaque Part1

Render Target 0 Render Target 1cached textures

Workload balance for pipeline with smoothed intermediate frame

Render Target 0

The imbalance frame workload could be inefficient with some device driver strategies (e.g. Qualcomm DCVS)
• CPU and GPU wait each other
• Solution: Split the rendering of base pass and use two render targets —— but additional bandwidth
• Looking forward specific GPU/API optimizations for inhomogeneous workloads

04 Conclusion
Analysis of performance and further applications

Conclusion

Frame Prediction is successfully applied in the released game!
Select 90, 120 and 144 FPS in setting of Arena Breakout to activate rendering pipelines with frame prediction!

Analysis of Performance

Performance data comparison
With the frame prediction on iPhone 14 Pro, the average frame rate has increased from 97.7 to 118.3 FPS, the
surface temperature has been reduced from 40.3°C (104.5°F) to 36.4°C (97.5°F), and the battery power consumption
has been reduced by 19%.

Data source: Perfdog

Analysis of Performance

Performance data comparison
With the frame prediction on Android smartphone equipped with Qualcomm Snapdragon 7+ Gen 2, the average
frame rate of 720P can reach up to the impressive 140.2FPS.

Data source: Perfdog

Further Applications

Reuse ray’s info in mobile ray tracing
Frame prediction can also be used in mobile ray tracing to reuse the ray-infos in screen space.

Mobile ray tracing OFF Mobile ray tracing ON

Further Applications

Reuse ray’s info in mobile ray tracing
Frame prediction can also be used in mobile ray tracing to reuse the ray-infos in screen space.

Reusable features in screen space

Analysis of Performance

Performance data comparison
With the frame prediction on Android smartphone equipped with Mediatek Dimensity 9300, the average frame rate
for mobile ray-tracing reflection has increased from 62.5 to 89.2 FPS, and frame prediction avoids also the
overheating protection of chip and the frame rate limitation from OS.

Data source: Perfdog

↑ Overheating and
OS limits the frame rate

Further Applications

Accelerate the screen space global illumination
• Mipmap acceleration: has “Canyon-Effect” (rays hit in higher-level mipmap but missed in lower-level mipmap,

because mipmap uses the nearest depth pooling) – can cause a lot of additional sampling

Screen Space Ray

Hit!

Hit!

Hit!

Further Applications

Accelerate the screen space global illumination

Screen Space Ray

Miss!
Miss!

Miss!

Miss!
Miss!

Miss!

• Mipmap acceleration: has “Canyon-Effect” (rays hit in higher-level mipmap but missed in lower-level mipmap,
because mipmap uses the nearest depth pooling) – can cause a lot of additional sampling

Further Applications

Accelerate the screen space global illumination
• Mipmap acceleration: has “Canyon-Effect” (rays hit in higher-level mipmap but missed in lower-level mipmap,

because mipmap uses the nearest depth pooling) – can cause a lot of additional sampling
• Screen space aggregated mesh (SSAM) acceleration: ray-pixel intersection → ray-triangle intersection

Reconstructed triangles of SSAM

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68

