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What Is a Vector?

e Geometric object with two properties
direction
— length (if length is 1, is unit vector)

e Graphically represented by

=N\



Algebraic Vectors

e Any entity that meets certain rules (lies in
vector space) can be called ‘vector’

* Ex: Matrices, quaternions, fixed length
polynomials

* Mostly mean geometric vectors, however



Vector Space

e Set of vectors related by +,:

e Meet rules
— V+W=W+V
— (v+w)+tu=v+(Ww+u
—v+0=v
—v+(-v)=0
— (ap) v=a (Bv)
— (a+B)v=av + Bv
— o(V+Ww)=av+aw

(commutative +)
(associative +)
(identity +)
(inverse +)
(associative )
(distributive )
(distributive )



Real Vector Spaces

e Usually only work in these

e R"is an n-dimensional system of real numbers

— Represented as ordered list of real numbers
(a,...,a,)
e R3isthe 3D world, R? is the 2D world



Linear Combination

e Combine set of n vectors using addition and
scalar multiplication

_V — (X,lVl + a2V2 + s + (XnVn
e Collection of all possible linear combinations
for given v,... v, is called a span

e Linear combination of 2 perpendicular vectors
span a plane



Linear Dependence

* A system of vectors vy, ... vV, is called linearly
dependant if for at least one v,

—Vi= oVt 0V O Vi T AV,
e Otherwise, linearly independent

 Two linearly dependant vectors are said to be
collinear
—l.e.W=0V
— |.e. they point the “same” direction



Vector Prerequisites

Linear Dependence

e Example

A

/.

e Center vector can be constructed from outer
vectors




Vector Basis

Ordered set of n lin. ind. vectors

—B =1V Va -

V)

Span n-dimensional space

Represent any vector as linear combo

_V: (X,lVl + a2V2 + s + (XnVn

Or just components

_V: ((11, (12,

, Olp)



Vector Representation

e 3D vector VvV represented by (X, Y, 2)
Use standard basis {1, j, k }
Unit length, perpendicular (orthonormal)
—v=xl+y]+zk
e Number of units in each axis direction



Vector Operations

Addition: +,-
Scale: -
Length: | |V] |

Normalize: v



Addition

e Addatob

a+b=a, +b,a, +b,a, +b,)

P



Scalar Multiplication

* change length of vector v by a

a-V=_(0-V,0-V,,0-V,;)



Length

 Length

— | |v| | gives length (or Euclidean norm) of v

[v] = \/vlz +V,° +v,°
—if | |v|| is 1, v is called unit vector
— usually compare length squared
 Normalize

— v scaled by 1/| |v| | gives unit vector v



Vector Operations

e Games tend to use most of the common
vector operations

— Addition, Subtraction
— Scalar multiplication
e Two others are extremely common:

— Dot product
— Cross product



Dot product

e Also called inner product, scalar
product
aeb=a, -b +a,-b,+a,-b,
asb = [al-b]-cos(0



Dot

Product: Uses

e aeaequals||al|?
e can test for collinear vectors

—if aand b collinear & unit length, [a*b| ~ 1
— Problems w/floating point, though

e can test angle/visibility

_a.
_a.
_a.

0 >0 if ang
0 =0if ang

0 <0ifang

e <90°
e = 90° (orthogonal)
e >90°



Dot Product: Example

e Suppose have view vector V and vector t to
object in scene (t =0 - e)

e [fvet<O, object behind us, don’t draw



Dot Product: Uses

* Projection of aonto b is

roj. a = aeb
p Jb b




Dot Product: Uses

e Example: break a into components collinear
and perpendicularto b

a—proj, a a

proj, a



Cross Product

e Cross product: definition

axb= (a2b3 B a3b2 ’ a3b1 B a1b3 ) a1b2 B a2b1)

— returns vector perpendicular toa and b
— right hand rule
— length = area of parallelogram

C
b

a



Cross Product: Uses

e gives a vector perpendicular to the other two!
* [laxDbl|=][all [[b]| sin(6)
* can test collinearity

— ||a x b|| = 0 if a and b are collinear
— Better than dot — don’t have to be normalized



Other Operations

* Several other vector operations used in games
may be new to you:

— Scalar Triple Product

— Vector Triple Product

e These are often used directly or indirectly in
game code, as we’ll see



Scalar Triple Product

e Dot product/cross product combo
Ue(VXW)
 Volume of parallelpiped

e Test rotation direction
— Check sign



Triple Scalar Product: Example

e Current velocity v, desired direction d
on Xy plane

e Take Ze(vxd)
e If >0, turnleft, if <O, turn right

\Y

vxd

VvV xd



Vector Triple Product

e Two cross products
Ux(VxXW)
e Useful for building orthonormal basis

— Compute and normalize:

u
V XU

ux(vxu)



Points

Points are positions in space — anchored to
origin of coordinate system

Vectors just direction and length — free-
floating in space

Can’t do all vector operations on points
But generally use one class in library



Point-Vector Relations

e Two points related by a vector

~(Q-P)=v
-P+v=0Q

Q
\'
P



Affine Space

e Vector, point related by origin
- (P-0)=v

-O0+v=PFP 3
O /

e Vector space, origin, relation between them
make an affine space



Cartesian Frame

 Basis vectors {l, J, Kk}, origin (0,0,0)

* 3D point P represented by (p,, p,, P,)

e Number of units in each axis direction relative
to origin

T T =4



Affine Combination

e Like linear combination, but with points
-P=aP, +a,P,+...+apP,
—a4,...,a, barycentric coord., add to 1

e Same as point + linear combination
-P=P,+a,(P,-P)) + .. +a,(P,-P)

e If vectors (P,-P,), ..., (P-P,) are linearly

independent, {P,, ..., P} called a simplex
(think of as affine basis)



Convex Combination

* Affine combination with a,,...,a  between O
and 1

e Spans smallest convex shape surrounding
points — convex hull

e Example: triangle
o

A




Points, Vectors in Games

e Points used for models, position

— vertices of a triangle

e \ectors used for velocity, acceleration

— indicate difference between points, vectors



Parameterized Lines

e Can represent line with point and vector

—P+tv Q
—"
e Can also represent an interpolation from P to
Q
— P + t(Q-P)

— Also written as (1-t)P + tQ



Planes

e 2 non-collinear vectors span a plane
e Cross product is normal n to plane




Planes

e Defined by
—normaln=(A, B, C)
— point on plane PO
 Plane equation
— Ax+By+Cz+D =0
— D=-(A-P0, + B-P0, + C-P0,)



Planes

* Can use plane equation to test locality of point

n o Ax+By+Cz+D >0

By+Cz+D =0

Ax+By+Cz+D <0 o

* |f nis normalized, gives distance to plane



Transformation

Have some geometric data
How to apply functions to it?

Also desired: combine multiple steps into
single operation

For vectors: linear transformations



Transformations

e A transformation T:V—W is a function that maps
elements from vector space Vto W

e The function
f(x,y) =x>+2y

is a transformation because it maps R?into R



Linear Transformation

e Two basic properties:
—T(x+y)=TX) + T(y)
— T(ax) = aT(x)

* Follows that
—T(0)=0
— T(ax+y) =al(x) + T(y)




Linear Transformations

e Basis vectors span vector space
 Know where basis goes, know where rest goes

 So we can do the following:
— Transform basis
— Store as columns in a matrix
— Use matrix to perform linear transforms



Linear Transforms

e Example:
T(X,y)=(X+2Y,2X+Y)

e (1,0) maps to (1,2)

e (0,1) maps to (2,1)

e Matrix is
1 2
2 1



What is a Matrix?

e Rectangular m x n array of numbers

e M rows by n columns

(1.3 2.4 45.3)
21 0 98
12 69 -20,

e If n=m, matrix is square



Matrix Concepts

Number at row i and column j of matrix A is
element A;;

Elements in row i make row vector
Elems in column j make column vector

If at least one A;; (diagonal from upper left to
lower right) are non-zero and all others are
zero, is diagonal matrix



Transpose

Represented by Al

Swap rows and columns along diagonal

(1 2 3)
4 5 6

7 8 9)

ATIJ — Aj

T

=12 5 &

(1 4 7)

3 6 9,

Diagonal is invariant



Transpose

 Transpose swaps transformed basis vectors
from columns to rows

e Useful identity

(AB)" =BTAT



Transforming Vectors

Represent vector as matrix with one column
# of components = columns in matrix
Take dot product of vector w/each row

Store results in new vector

AxXx =D



Transforming Vectors

e Example: 2D vector

(bll blzj'(a1] _ (albll T azblzj
b21 bzz a, albzl T azbzz

e Example: 3D vector to 2D vector
(a,)

(bll b12 b13j. a :(albll +a’2b12 +a3b13]
b21 b22 b23 i al b21 + a2 b22 T a3 b23

\ &3



Row Vectors

Can also use row vectors

Transformed basis stored as rows

Dot product with columns

Pre-multip

(al a, )

y instead of post-multiply

b11 blzj _ (albll + azbzlj
\b21 bzz a1b12 + azbzz

If column default, represent row vector by v’



Row vs. Column

e Using column vectors, others use row vectors
— Keep your order straight!

M,-M,-M,-v  Column vector order (us, OpenGL)

v'-M,-M,-M; Row vector order (DirectX)

 Transpose to convert from row to column (and
vice versa)



Matrix Product

e Want to combine transforms

(T o S)(X) =T(S(x))
 What matrix represents(T -S)?

e |dea:
— Columns of matrix for S are xformed basis
— Transform again by T



Matrix Product

(an alz](bn b12]:(a11'b11+alz'b21 a11'b12+a12'b22j
d,; ay b21 bzz d,| 'b11 +a,y 'bzl a,| 'b12 +a,, 'bzz
or

! a, eb, a eb
alT '(bl bz): L L
a a,eb, a,eb,

2

* In general, element AB;; is dot product of row i
from A and column j from B



Matrix product (cont’d)

e Number of rows in A must equal number of
columnsin B

 Generally not commutative
A-BxB-A
* |s associative
A(BC)=(AB)C



Block Matrices

e Can represent matrix with submatrices

A B
C D

e Product of block matrix contains sums of
products of submatrices

A B)(E F) (AE+BG AF+BH
C D/|G H/ \CE+DG CF+DH



ldentity

e |dentity matrix | is square matrix with main
diagonal of all 1s

1 0 0)
0 1 0
0 0 1

 Multiplying by | has no effect
—A-1=A



Inverse

 Alisinverse of matrix A such that
A-At=1

 A'lreverses what A does

 Aisorthogonal if AT = Al

— Component vectors are at right angles and
unit length

—|.e. orthonormal basis



Computing Inverse

Only square matrices have inverse
Inverse doesn’t always exist
Zero row, column means no inverse

Use Gaussian elimination or Cramer’s rule (see
references)



Computing Inverses

e Most interactive apps avoid ever computing a
general inverse

* Properties of the matrices used in most apps
can simplify inverse

e If you know the underlying structure of the
matrix, you can use the following:



Computing Inverse

If orthogonal, A-l =AT

Inverse of diagonal matrix is diagonal matrix
If know underlying structure can use

(AB)"' =B'A""

We'll use this to avoid explicit inverses



Storage Format

e Row major
— Stored in order of rows

(0 1 2 3)
4 5 6 7
8§ 9 10 11

12 13 14 15,

— Used by DirectX



Storage Format (cont’d)

e Column Major Order
— Stored in order of columns

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15,

— Used by OpenGL, and us



Storage Format (cont’d)

* Note: storage format not the same as
multiplying by row vector

e Same memory footprint:
— Matrix for multiplying column vectors in column
major format
— Matrix for multiplying row vectors in row major
format

e |.e.two transposes return same matrix



System of Linear Equations

e Define system of m linear equations with n
unknowns

n

N

b, =a, Xy + a8, X+ ... +a,. X,
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