Game Devolopers Conterer
March 23-27, 2008 Mo

©Takahiro Harada
Introduction

» Based on my research at the university of
Tokyo
Not at havok

» The details can be found in my publications
Takahiro Harada, “Real-time Rigid Body Simulation
on GPUs”, GPU Gems 3
Takahiro Harada, Issei Masaie, Seiichi Koshizuka,
Yoichiro Kawaguchi, Massive Particles: Particle-
based Simulations on Multiple GPUs, SIGGRAPH
2008 Talk
etc...

http://www.iii.u-tokyo.ac.jp/~takahiroharada/

©Takahiro Harada

Physics Simulation

» Physics simulation is highly parallel

» Grid-based fluid simulation is well mapped on
the GPU

» How about rigid bodies?
No general solution yet
Simplified approach

+ Takahiro Harada, “Real-time Rigid Body
Simulation on GPUs”, GPU Gems3

©Takahiro Harada

“Parallelizing the Physics Pipeline
: Physics Simulations on the GPU

Takahiro Harada

havok
Senior Software Engineer
takahiro.harada@havok.com

©Takahiro Harada

GPU

» GPU is designed for graphics
» GPU is good at
Many similar computations
Simple computations
Not complicated computations
All the thread taking the same path is ideal
» Ex. particle simulation without interaction

x ST617 T

v 01213141316 T19110
HHEEHEEEEHEE
FIEIELELELELELELELEL R o
=l =l =l=l=l=2l=2===]|=
R I N L I LN R M
== =] =] =] =] = =] =] =] =

' OTTT2T3T4TST6T7T8TOTIO0

ARG LUCRTRE T

©Takahiro Harada

Particle-based Simulation

» Smoothed Particle Hydrodynamics
Compressible fluids

©Takahiro Harada

Rigid Body Simulati@AUsit{g"
Particles

» Extension to particle based simulation

» Use particles to calculate collision

» Rigid body is represented by particles
Not accurate shape
Trade off between accuracy and computation
Simple, uniform computations -> Good for GPUs

SPH Simulation

» Overview
For each particle
Look for neighboring particles
For each particle
Calculate pressure from neighbors
For each particle

Force on a particle is calculated using values of
neighbors

For each particle
+ Integrate velocity and position

» Problem is neighbor search
Use uniform grid to accomplish this
Discuss later

AEWG LU RE O

©Takahiro Harada ©Takahiro Harada

Data Structure Overview
» For each rigid body » For each particle » Computation of particle values
Positions Position For each particle: read values of the rigid body and
Quaternion Velocity write the particle values
Linear momentum Force » Grid generation
Angular momentum » For neighbor A little bit tricky, later
search » Collision detection and reaction
3D grid

For each particle: read neighbors from the grid,
write the calculated force (spring & damper)

» Update momenta

For each rigid body: sum up the force of particles
and update momenta

» Update position and quaternion
For each rigid body: read momenta, update these

Position ETEMTTIT] Linear M. BCEMITTT]
Velociy ~ ETTEMTTTT] Rotation M. BCEMTTTT]

Particle
- [EESSEEEEEEES __ EEE]

Position

Particle
[T T T T 11

Position

©Takahiro Harada ©Takahiro Harada

Grid Construction Demo

» Storing particle indices to 3D grid

» Can limit the number of particle in a cell if
particles does not penetrate

» Each thread read particle position, write the
index to the cell location

» But this fails when several particles are in the
same cell

Divide this into several pass
1 index is written in a pass
Repeat n times (max number of particles)

©Takahiro Harada
Extension

» If there are more than particles
Particles + Mesh(cloth)

» Can solve using several grids
A grid for particle
A gird for mesh

» Still not general

|

©Takahiro Harada

Tree traversal on the GPU

» Well studied in the field of ray tracing
Octree
Kd tree

» 2 problems when using for a real-time
rigid body simulation
Dynamic construction of the tree
+ Several studies but few of them can beat the CPU
Traversal

+ Packet based for ray tracing -> cannot use this for
collision detection

“ What is good for collision detection?

©Takahiro Harada

Tree Traversal

» Using stack is most common
Can implement on the GPU

But the requirement of resources is too much ->
kill the performance

» Stackless traversal with additional info
Dynamic update?
High overhead

» Restart

Cannot restart because we want the overlap of
bounding boxes (maybe can truncate BB...)

akahiro Harada

Broadphase Collisio
Detection

» Uniform grid is suited for the GPU

But not good for objects of not the same sizes
» Other approaches?

Sweep and prune

Tree
» Good for objects varying sizes

Much complicated than uniform grid

Can implement and accelerate on the GPU?

Dynamic Constructi@i“8f° "=

Tree
» Tree construction is recursive subdivision of
inputs -> not good for GPUs
» Convert the problem to a sorting problem
Calculate morton key of objects
Sort them

Add child-parent information to the sorted list

Lauterbach et al., Fast BVH Construction on GPUs,
Eurographics 2009

MacCool, M., Creating Coherence-Ray tracing, Spatial Search
and irregular Data Structure, Symposium on Interactive Ray
Tracing 2008

» Still an open problem -

Tree Traversal using Hi¥es#y"™
Flags
» Observation

Descending a tree does not need any information
Start from first element of children

Ascending a tree needs where to get back

» Instead of stacking node indices, stores the
history of traversal

» Data can be small

Tree Traversal using Hites#y™

s Flags

» For each level, store 4 bits
Initialize 0000
» After visiting a node, flip the flag
1000
» Descending to the next level
Just leave the flag and do the same to the next level
» Visiting the next element
Find “0” in the history flag
» Ascending the tree
When cannot find “0”, ascend

0000

0000

I

0000

Tree Traversal using Hites#§™"
, Flags

» For each level, store 4 bits

Initialize 0000

» After visiting a node, flip the flag

1000

» Descending to the next level

» Visiting the next element

Just leave the flag and do the same to the next level
Find “0” in the history flag
When cannot find “0”, ascend

/%QMMMM‘MM\M

» Ascending the tree

Tree Traversal using Hi¥es#y"™
s Flags
» For each level, store 4 bits

Initialize 0000
» After visiting a node, flip the flag

1000
» Descending to the next level

Just leave the flag and do the same to the next level
» Visiting the next element

Find “0” in the history flag
» Ascending the tree

When canno t find “0”, ascend

1000

1000

0000

Tree Traversal using Hitts#y™”

y Flags

» For each level, store 4 bits
Initialize 0000
» After visiting a node, flip the flag
1000
» Descending to the next level
Just leave the flag and do the same to the next level
» Visiting the next element
Find “0” in the history flag
» Ascending the tree
When cannot find “0”, ascend

1000

1000

1100

Tree Traversal using Hi¥es#y"™
s Flags

» For each level, store 4 bits
Initialize 0000

» After visiting a node, flip the flag
1000

» Descending to the next level
Just leave the flag and do the same to the next level

» Visiting the next element
Find “0” in the history flag

» Ascending the tree
When cannof t find “0”, ascend

1000

1000

1000

Tree Traversal using Hites#y™

, Flags

» For each level, store 4 bits
Initialize 0000
» After visiting a node, flip the flag
1000
» Descending to the next level
Just leave the flag and do the same to the next level
» Visiting the next element
Find “0” in the history flag
» Ascending the tree
When cannot find “0”, ascend

it

i

Tree Traversal using Hit6#y™
Flags

» For each level, store 4 bits
Initialize 0000
» After visiting a node, flip the flag
1000
» Descending to the next level
Just leave the flag and do the same to the next level
» Visiting the next element
Find “0” in the history flag
» Ascending the tree
When cannot find “0”, ascend

Tree Traversal using Hi¥es#y"™
Flags

» For each level, store 4 bits
Initialize 0000
» After visiting a node, flip the flag
1000
» Descending to the next level
Just leave the flag and do the same to the next level
» Visiting the next element
Find “0” in the history flag
» Ascending the tree
When cannot find “0”, ascend

1000

©Takahiro Harada

Tree Traversal using Hit6#y™
Flags

» For each level, store 4 bits
Initialize 0000
» After visiting a node, flip the flag
1000
» Descending to the next level
Just leave the flag and do the same to the next level
» Visiting the next element
Find “0” in the history flag
» Ascending the tree
When cannot find “0”, ascend

1000

Tree Traversal using Hi¥es#y"™
Flags

» For each level, store 4 bits
Initialize 0000
» After visiting a node, flip the flag
1000
» Descending to the next level
Just leave the flag and do the same to the next level
» Visiting the next element
Find “0” in the history flag
» Ascending the tree
When cannot find “0”, ascend

» Discarding the flags of the level because they are
used when descending to this level again

» 7 level octree traversal only requires 4bit x 7level =
28bit

» Can use shared memory for the storage of history
flag -> fast access

©Takahiro Harada
Performance Comparison

14| —+—GPU(stack)

—=—GPU(history)

~

o

"

Traversal Time (ms)

do

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

Number of Boxes

©Takahiro Harada
Consideration

» Can implement tree construction and
traversal on the GPU
If compare this to best solution on the CPU??
Octree is not the best solution on the CPU

» Kd tree on the GPU is also studied

» But the CPU is better
Shevtsov et al., “Highly Parallel Fast KD-tree
Construction for Interactive Ray Tracing of
Dynamic Scenes”, EUROGRAPHICS 2007
Zhou et al., “Real-Time KD-Tree Construction on
Graphics Hardware”, SIGGRAPH Asia 2008

©Takahiro Harada
Solving Constraint

» Usually, constraints are solved for velocity

» Penalty based
No problem for parallel computation
Input: position, output: force

» Impulse based
Problem when parallelizing
Input: velocity, output: velocity
How to parallelize on the GPU?

©Takahiro Harada

Problem of Parallel Update

» If a rigid body is colliding to another rigid
body, no problem

L B Y

» If a rigid body is colliding to several rigid
bodies, cannot update in parallel

LA

¥

©Takahiro Harada

Batch Creation on GPU

» CPU can do this easily
Chen et al., High-Performance Physical Simulation
on Next-Generation Architecture with Many Cores,
Intel Technology Journal, volume 11 issue 04
» To implement on the GPU, the computation
has to be parallel

» Do it by partially serialize the computation

Synchronization of several threads, which is
available on CUDA, OpenCL

©Takahiro Harada

Batching

» Not update everything at the same time
» Divide them into several batches

» Update batches in sequential
Update collisions in a batch in parallel

A

» But how to divide into batches?? GPU??

©Takahiro Harada

Batch Creation

» A thread is assigned for a constraint

Thread ID

Constraint

R G LRGN

©Takahiro Harada

Batch Creation

» A thread reads a constraint data
ThreadO reads 0, 9
» And write a flag to 0, 9, if they are not
flagged
» Can serialize operation in a block
syncthreads

Constraint

synchronization
synchronization
synchronization

synchronization

©Takahiro Harada
Inconsistency

But it does not solve the conflict among
blocks
Thread 1 and Thread 6 run at the same time
Both try to flag 1
Need another mechanism to solve this
situation
Need global synchronization

“[rhread 1 i 2 3 Ja s 6 7 Is o 1]
Constraint |a,j a, b a,c c, d d, e e, i b, e h, i f, h f, g |
b lc [d Je|r o |n [i s a b fcfafe]r Jo[nl]i s

oo |w]|o |0

©Takahiro Harada

Solving Inconsistency

» Thread 1 -> (0, 1)
» Thread 6 -> (1, 4)

» What we get is
Thread 1 succeed, Thread 6 failed
Thread 1 failed, Thread 1 succeed
» If a thread failed to flag a rigid body, it is not
completed
» Instead of flagging, write constraint index to
rigid bodies in the constraint
Thread 1 writes 1to 0, 1
Thread 6 writes 1 to 1, 4

©Takahiro Harada

Procedure

» Batch O
Clear the buffer
Write indices sequentially in a warp
Check if the write was succeed

» Batch 1
Clear the buffer
Write indices sequentially in a warp
Check if the write was succeed

» Batch 2
Clear the buffer
Write indices sequentially in a warp
Check if the write was succeed

©Takahiro Harada

Solving Inconsistency

[0,1,4]->[1,1,6]o0r[1,6,6]

Run another kernel to check the write

A thread reads the number in rigid bodies in
the constraint

If both number is identical to the index of
the constraint, it succeeded -> keep this

otherwise, it is not valid. Delete and do in the next
pass

©Takahiro Harada

©Takahiro Harada

(UG LICHTTRETTN

©Takahiro Harada
How to Design?

» Each GPU manages its own data
» No sequential process, completely parallel

JO. GPU1 GPU2

aaaami A2
Al A N A A AR A A
FHHEELJHEEE | (4444 [$4444
ALLLL[|83 (| B

G LR DT

DecompOSition of ©Takahiro Harada

Computation
» Computation of particle values requires values of
neighbors

Inside of subdomain: all the data is in the memory of its
own

Boundary of subdomain: some data is in the memory of
others

» Have to read data from other GPUs

Communicating when required makes the granularity of
transfer smaller and inefficient

» Transfer only “Ghost Region” and_:Ghost;
L]

Particles” 1 S
Ghosts are not updated
Just refer the data

G LR ED T

©Takahiro Harada

Using Multiple GPUs

» Cannot run applications developed for a GPU
» Need two levels of parallelization
» 1GPU

*

L1
» Multiple GPUs

[} . 3

LR O LICHTTRETTN

Particle Simulation @f"° "=

Multiple GPUs

» Grid-based

Domain decomposition is a natural choice, because
elements in a subdomain does not change

» Particle-based

Have to assign particles to GPUs dynamically,
because they move

How??
Overhead can be big without careful design

i
AabnbasiEl ot LA

©Takahiro Harada
Environment

» 4GPUs(Simulation) + 1GPU(Rendering)
S870 + 8800GTS

» 6GPU(Simulation) + 1GPU(Rendering)
@GDC2008
QuadroPlex x 2 + Tesla D870 + 8800GTS

EEIG LRGN

©Takahiro Harada

100

P - 1GPU
~
g w0 [~-2GPUs
E | —4crus
Q
£
[=
- 50
L w
©
5 30
a
€ 2
S
o

0

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

Number of Particles

©Takahiro Harada

Thanks

» takahiro.harada@havok.com
» Demos :
http://www.iii.u-tokyo.ac.jp/~takahiroharada/

