
Non-Uniform 
Bone Scaling

From Art Pipeline to 
Real-Time Rendering 



Why Non-Uniform Bone Scaling?



Different Forms of Scaling:
• The illustration on the right 

displays the different ways 
scales can be applied to a 
transformation matrix.

• Scaling illustrated in pictures 
2-4 can be achieved using a 
‘regular‘ transformation matrix 
with only ‘Position‘, ‘Rotate‘ 
and ‘Scale‘ components.

• Picture 5 illustrates a form of 
scaling that can only be 
achieved by introducing a 
‘Stretch Quaternion‘ as a 
component to the 
transformation matrix.

1. No Scale: 2. Uniform
Scale:

3. Y-Axis
Scale:

4. X-Axis
Scale:

5. Arbitrary Non-Uniform
Scale:



Stretch Quaternion
• The stretch quaternion defines how the object is 

rotated before the scale component gets applied 
to the transformation matrix.

• The following illustration shows how a non-
uniform scale is applied:

• 1. Apply inverse stretch quaternion
• 2. Apply scale
• 3. Apply stretch quaternion
• 4. Apply rotation
• 5. Apply position



How to Extract the Data
1. For each bone of each frame of animation in the 3D 

application (3DS Max, Maya, etc.), get the 
transformation matrix

2. Run decomp_affine ("Polar Matrix Decomposition" by 
Ken Shoemake, shoemake@graphics.cis.upenn.edu in 
"Graphics Gems IV”) on these matrices and check if 
stretch quaternion is identity.

3. If stretch quaternion is not identity, mark the bone for 
this animation as non-uniformly scaled.

4. Store all frames in the animation as you would 
normally, but also store the stretch quaternion data for 
all non-uniformly scaled bones as marked in step 3.



How to Reconstruct the Data
• Code for recomposing of the final matrix from its components:

Matrix FinalMatrix;
if(CurrentBone.StretchQuat)
{

Matrix PosMtx.FromTranslation(PosVector); // sets 4th row
Matrix ScaleMtx.FromScale(ScaleVector); // sets scale entries
Matrix RotMtx.FromQuaternion(RotQuat); // quaternion to matrix
Matrix StrMtx.FromQuaternion(StretchQuat); // quaternion to matrix
Matrix InvStrMtx.Inverse(StrMtx); // inverse of matrix
FinalMatrix = InvStrMtx * ScaleMtx * StrMtx * RotMtx * PosMtx;

}
else
{

Matrix PosMtx.FromTranslation(PosVector); // sets 4th row
Matrix ScaleMtx.FromScale(ScaleVector); // sets scale entries
Matrix RotMtx.FromQuaternion(RotQuat); // quaternion to matrix
FinalMatrix = ScaleMtx * RotMtx * PosMtx;

}
• As you can see, the performance is only impacted for bones that do stretch in a non-

uniform way.
• Therefore, additional storage of the stretch quaternion component data is only 

required for these types of bones.



So, that‘s why!



Scale Inheritance Problem
• When traversing a skeleton, each child bone by default 

inherits the parent bones scale value. This can lead to 
problems when applying non-uniform bone scaling to a 
bone that has children. The children will most likely be 
affected by an undesired (sheared) scale component.

• 3D modelling programs such as 3DS Max, Maya, etc., 
therefore provide a per bone ‘Don‘t inherit scale‘ option. 

• This data needs to be exported, stored with your 
animation data, and respected by the game engine for 
the animations to look correct.

• Not respecting these flags will result in wrongly sheared 
animations.



Scale Inheritance You Say?



Respecting Scale Inheritance Flag 
at Run-Time

• Traverse the skeleton and compute bone matrices using 
ONLY the position and rotation components.

• Store the resulting bone matrices twice.
• Traverse the skeleton again to compute and add the 

scale components to only the second set of matrices. 
• Do a final pass on the scaled skeleton (second set of 

matrices) to compute the posed bone matrices with one 
rule: If the „Don‘t inherit scale“ flag is set, then look up 
the parent matrix from the unscaled set of matrices, 
otherwise use the parent matrix from the scaled version.



Aha! Scale Inheritance!



Thank you!
• Special thanks to the owners of Incinerator 

Studios and THQ for letting me use their 
content.

• Special thanks to Mike Howard and Nikita Wong 
for creating the animations.

• Special thanks to Michael Seare and Shaun 
McIntyre, my collaborators.

• Special thanks to Ken Shoemake for 
decomp_affine (Google it if you want to use it.)

• For questions I can be reached at:
alex.ehrath@thq.com , alex@ehrath.org

mailto:alex.ehrath@thq.com
mailto:alex@ehrath.org

	Non-Uniform �Bone Scaling�From Art Pipeline to �Real-Time Rendering 
	Why Non-Uniform Bone Scaling?
	Different Forms of Scaling:
	Stretch Quaternion
	How to Extract the Data
	How to Reconstruct the Data
	So, that‘s why!
	Scale Inheritance Problem
	Scale Inheritance You Say?
	Respecting Scale Inheritance Flag at Run-Time
	Aha! Scale Inheritance!
	Thank you!

