

AR
ARG

E 5--® History
cﬂ oo < Definition
< Simulation basics
- @ Where to simulate
| @ Particle operations
< High quality rendering
- @ Performance tips

\ _J&La\g

WWW.GDCONF.COM

“ 1962: Pixel clouds in

m.\m-'l‘gl “Spacewar!”

(2" video game ever)

< 1978: Explosion
physics simulation In
“Asteroids”

< 1983: First CG paper
about particle systems
In “Star Trek Il
The Wrath of Kahn”
by William T. Reeves

Images: (top) Public domain version of Spacewar! http://spacewar.oversigma.com/

(bottom) ©ACM, used by permission of Association of Computing Machinery
Reeves1983, Particle Systems - Technique for Modeling a Class of Fuzzy Objects

WWW.GDCONF.COM

http://spacewar.oversigma.com/

N\ What is a Particle System (PS)?
®1® Individual mass points moving in 3D space

+ Randomness or structure in some start values
(e.g. positions)

< Often rendered as individual primitive geometry
(e.g. point sprites)

e
-
-

WWW.GDCONF.COM

§e Particle is a point in 3D space

Forces (eg. gravity or wind) accelerate a particle

l

Acceleration changes velocity

l

Velocity changes position

WWW.GDCONF.COM

1 Evaluating closed-form functions
» stateless simulation

"W 4 Jterative integration
» updates previous state of system
Euler integration
Verlet integration
Higher (eg 4th) order Runge-Kutta integration

WWW.GDCONF.COM

§e Parametric equations describe current position

@ Position depends on initial position p,,, initial
" velocity v, and fixed acceleration (eg gravity o)

p(t)=potvet+igt

= No storage of intermediate values (stateless)

D/n/”\apm
Po

WWW.GDCONF.COM

§° Integrate acceleration to velocity:

v=V+a-At At time step
a acceleration
Integrate velocity to position: v velocity
_ . V previous velocity
p=p Vv At P position
- @ Computationally simple P_previous position

“ Needs storage of particle position and velocity

WWW.GDCONF.COM

§° Integrate acceleration to p05|t|on

p=2p—-p+aAt’

p position two time steps before

< Needs no storage of particle velocity
@ Time step needs to be (almost) constant

@ Explicit manipulations of velocity (eg. for collision)
Impossible

WWW.GDCONF.COM

Main core

Other core

< GPU
Vertex shader ?
Pixel shader
Geometry shader

“ Other
PS2 VU, PS3 SPU
Physics processor

WWW.GDCONF.COM

{+ Simple, straight forward
+ Everything possible
- General purpose processor, not optimized for this

- Uses cycles that could be used for more complex
algorithms, eg gameplay, Al

B Requires upload of resulting simulation data for

rendering every frame
L1111

CPU

WWW.GDCONF.COM

= _-@ |f other CPU cores are available (multi-core PC,

conm"lﬁi Xbox360), use their power

=™ @ PS are usually a quite isolated system, ie
relatively easy to move to separate processor

< Individual particles typically independent from
each other » distribute updates over many
threads/processors

CPUD CPU 1

WWW.GDCONF.COM

@ Vertex shaders cannot store simulation state

. |

[:Ol‘ml"&' (data only passes through to next stage)
"= % Can only simulate with ,closed form function*

methods above

< Limits use to simple ,fire and forget” effects

< DX10 can store vertex/geometry data -

discussed later

1 VS

VS

VS

VS

VS

WWW.GDCONF.COM

\ Vertex Shader Simulation:
Data Flow

(At particle birth) (At rendering time)

GOM Upload time of birth and initial

- values to dynamic vertex buffer St gl i e

parameters as vertex
shader constants

In extreme cases only a “random seed”
needs to be uploaded as initial value

Y

Render point sprites/triangles/quads
with particle system vertex shader

WWW.GDCONF.COM

§e Position and velocity data stored in textures

@ From these textures each simulation step renders
=™ into equally sized other textures

< Pixel shader performs iterative integration (Euler
or Verlet)

< Position textures are “re-interpreted” as vertex
data

< Rendering of point sprites/triangles/quads

PSr {PS| {1PS

WWW.GDCONF.COM

1PS

PS |

~ Pixel Shader Simulation:

~Data Storage

__ Position

: '._' <_> ;
1 texture

double
karg

Velocity

texture

double
buffer

: Static info
- per particle:
time of birth (tob),
particle type (pt) ...

Double buffers required to
avoid simultaneous
rendering from one
texture into itself!

WWW.GDCONF.COM

\ Pixel Shader Simulation:
“Allocation

§e Position/velocity textures are treated as 1D array

@ Array index (ie texture coordinate) for new
particles determined on CPU

« Use fast, problem-specific allocator —

% Important to get compact index range

< Render start values for new particles as points
Into textures

< At death of a particle

GPU: Move to infinity M’\w

CPU: Return free index to allocator

WWW.GDCONF.COM

\ Pixel Shader Simulation:
“Updates

-« Velocity update
coﬁm‘&v Set one texture of the double buffer as render target
Set up other texture for sampling

Draw full-screen quad (or smaller sub-rectangle)
Use pixel shader to do one iterative integration step
< Position update

Do the same on position textures

Use pixel shader to update positions, also sampling
from current velocity texture

< With MRT (Multiple Render Targets) can do both in
one step

WWW.GDCONF.COM

\ Pixel Shader Simulation:
"Pixel to Vertex Data Transfer

KET For final rendering position texture needs to be

cONTROL used for generating vertices at the particle
“Le= - positions
texture ? » [T T TTTTTIvertex buffer

< Two conceptual options:
Render-to-vertex-buffer
Vertex textures

WWW.GDCONF.COM

\ Pixel Shader Simulation:
"Render to Vertex Buffer

§° Two options:
' Copy texture to vertex buffer

texture copy » [T TTTTTT]vertex buffer

Re-interpret texture memory as vertex memory
texture —>
vertex buffer—>
% Available on consoles and in DX10
% Available in DX9 as unofficial ATl extension (R2VB)

“ Not generally available in DX9!

< Available in OpenGL through extensions
WWW.GDCONF.COM

\ Pixel Shader Simulation:
“Vertex Textures

e Access textures from vertex shaders
Bﬂl‘ml"&' “ Vertex shader actively reads particle positions

rrrrrrrrrr

staticvertex stream [T TTTTT]] <=

texture

read index

-

read data

D
vertex
shader

< Available in DX9 (VS3.0, except ATl X1xxx)
< Available in OpenGL on VS3.0 hardware

< High latency on early VS3.0 hardware

“ Render-to-VB has usually better performance

WWW.GDCONF.COM

Simulation Step | Rendering Step
| 0 :'l Input Assembler 4—(§W Input Assembler
c it ':'le_r":frl':"cl__: ’ @) | ’
| Vertex Shader ?D | Vertex Shader
¥ 2 | ¥
Geometry Shader ECD | Geometry Shader
L = | R |
: Stream Output |-> = T > Stream Output :
... |
Rasterizer | Rasterizer
___________________________ Vo, | ¥
Pixel Shader Pixel Shader
........................... A | ¥
Output Merger | Output Merger
... |

WWW.GDCONF.COM

1 Geometry shader can create new or destroy old
- data » use for particle birth/death

1234567—>125| I£3 > 7

< Simulation step reads and writes point prlmltlves
to/from geometry buffer

“ Render geometry shader creates quad per point
< Available in DX10 and OpenGL on SM4.0 hardware
« Check out sample in DirectX SDK

1GSF IGSF IGSF GSF
T 1 T 1 P P WWW.GDCONF.COM

L1111
- 1@ Playstation 2 Vector Unit

CONTRUL Similar to vertex and geometry shader T
pgrich ":"Ij'_.rillr.':l:*_::_-l.'. . . .
Can run closed form function simulation

< Playstation 3 Cell SPUs

Intended for high-volume vector arithmetic, like
particle simulation

Can do iterative or closed form function simulation

“ Custom physics processors
Install-base limited

WWW.GDCONF.COM

§e Number one rule:
' What processor is most under-used in your game?

- =™ & Have a CPU core running idle? ?

» Move particle simulation onto it o

“ GPU upload too expensive? Or shader bandwidth
left, GPU running idle?

» Use pixel or geometry shader simulation

% (0On PC) Vertex shader often not a bottleneck
» Move simple fire-and-forget effects to vertex shaders

°
WWW.GDCONF.COM

| 1@ We have focused so far
Gﬂ ! only on simple velocity
“%%= and position updates

@ Further operations:
Velocity dampening
Rotation and scaling

Color and opacity
animation

Collision

WWW.GDCONF.COM

\ Particle Operations:
“Velocity Dampening

V| —
§e Scale down (or up) velocity vector ‘L cl

@ Simulates slow down in viscous materials or
acceleration of self-propelled objects (bee swarm)

“ lterative simulation trivial:

vV=cC'V ¢ constant scale factor

% Closed form simulation requires solving integral:
(

\

t forc=1

t)=p,+ du = pyt+vylc— |

p(t)=p, VO{C u PoTVyyc —1 forc#1
In(c)

J
WWW.GDCONF.COM

\ Particle Operations:
"Rotation and Scaling

1 Typically simple animation: x (t)=x,+dxt
Start value x,: angle/scale factor

Velocity dx: angular rate/scale shift
< Dampening of initial velocity useful

Use same formulas as position dampening

- @ Randomize start parameters
Simple random number generator enough
Can be done in shader

/\A

WWW.GDCONF.COM

\ Particle Operations:
" Color and Opacity

§e Typically animated by keyframes
@ Linear interpolation sufficient

Lo < Can be done efficiently with fixed number
(eg 4) keyframes In vertex shader

f(t)‘k ki k,

&

.

[
k,—k k,—k
— 2 t+ky————t,=m-t+b
L=t =1,

N —— | — — — —

m b
WWW.GDCONF.COM

First segment: £ (¢)=

E Generic collision (every particle against every
coNTROL particle and object in the scene) usually
=w= prohibitively expensive

\..\ {/.
o o
“ Restrict to ,important” particles «9 o’\‘«

@ Simplify collisions:
Primitives: Plane, box, sphere
Height fields: Terrain, depth maps of main objects

N

WWW.GDCONF.COM

\ Particle Operations:
" Collision Detection

< Detect collision ie if position is inside collider body

.Gﬂl‘m‘&' Primitives:

< Test implicit surface formula (eg point below plane)

Height field:

< Simple 2D test of particle position vs height value

< Similar to shadow map depth test » can be done in pixel
shader simulation

< Can also use depth cube maps to approximate convex objects

< Also determine surface normal at approximate
penetration point (implicitly or via normal map)

WWW.GDCONF.COM

\ Particle Operations:
" Collision Reaction

1 Split velocity (relative to collider) into normal v,
.~ and tangential v, component:

WWW.GDCONF.COM

\ Particle Operations:
" Collision Reaction (cont.)

§° Friction U reduces tangential component

@ Resilience € scales reflected normal component

“ Resulting velocity:

:(I_U)Vt_evn

Shows some artifacts (see references for fixes)

WWW.GDCONF.COM

1 When rendering with alpha-blending, particles
should be sorted

S (> Sorting is expensive. Make sure you need it!

“ Not necessary when a commutative blend
operation (add or multiply) is used
@ Ordering issues might be hardly noticeable, eg
Low contrast particles like middle-gray smoke

Small particles
Roughly ordered particles, eg emitted in sequence

WWW.GDCONF.COM

§e CPU simulation: Use your favorite sort algorithm

Potentially exploit frame-to-frame coherence (order
does not change much):

Sort algorithm with good optimal case performance
might be more important than good average case
performance

< Vertex shader simulation: Can't sort properly, only
by emission position on the CPU

“ Pixel or geometry shader simulation: Can sort in
pixel shader! See references [Latta2004]

WWW.GDCONF.COM

< Traditionally particles don't have a surface normal

'co,mﬁ » cannot take lighting
= @ Normal can be read from texture

< Basically tangent-based normal mapping
| - @ Tangent space based on edges of particle

binormal

tangent

normal

WWW.GDCONF.COM

S EN Normal mapping is still expensive, esp with high
co L. overdraw of particles

I-'r-\. yCISED

= @ Simpler solutions:

» Average light source colors. Tints particles to color
scheme of scene

» Use particle velocity (normalized) as surface normal.
Totally fake, but “sort-of works”

» Use vertex normals approximating a (squished)
sphere. Improve by adding vertices in the middle of the

quad
n W i « vertex normals
(side view) WWW.GDCONF.COM

| 1@ Particles have ugly hard edges where they
m L intersect with opaque scene geometry (eg terrain)

- Franciscl

normal (“hard”) particles soft particles

< Can be avoided with blending them out softly at
Intersection edges

WWW.GDCONF.COM

side view:

flat particle deep particle

< Compute how much the view ray travels trough
the box before hitting the depth in the depth map

- Treat particle conceptually as a screen-aligned
box, not a flat billboard

deep particle with intersection

% Use the ratio of the view ray length vs the total
depth to blend out the particle opacity (multiply
with original opacity)

WWW.GDCONF.COM

< How to detect intersection edges?

conmﬁ < Special case: Height field » Can lookup/encode
" approximate terrain height into particle info

< General case: Need the depth values of scene
objects as a texture.

DX9: Depth texture needs to be rendered separately
(extra pass over whole scene or with multiple-RT)
» expensive, If you don't do it for other effects already

DX10: Can use current depth buffer as texture
Can't use it as depth buffer at the same time though
» either copy it, or don't test z, as it is not needed here

WWW.GDCONF.COM

| < Remember:
cm\ml"g" < Updating particles is your ,inner loop”

''''''''''''' Code executed in high frequency, many per frame
Relatively simple behaviors

< Particles are often “fluff”
Game logic does not depend on them

Accuracy non-critical
Determinism of low importance

» Optimize aggressively! EEj:

WWW.GDCONF.COM

AKE | Operate on large batches, not individual particles
co : No: class Particle { void update(); }

Better:| voia updateParticles (Particle* begin, Particle* end);

< Group as-large-as-possible (or -sensible)
Group at least all particles of one system/emitter

Group all particles of one type/set of configuration
parameters

But don't group too much, forcing to add branches
[] O [
oL = °% pUo
WWW.GDCONF.COM

1 Batching even more important for rendering than
- simulation

- =™ @ Draw calls are expensive!

< Batch at least all particles with the same
configuration parameters

@ Maybe batch all particles with the same render
states (eg blend mode)

< Texture changes often break batches
» put them together in a texture atlas

N\

WWW.GDCONF.COM

~Performance:
\) .
Instruction cache misses

< Especially important on Xbox360/PS3 CPUs
c[ll\m""&' < Avolid virtual functions:

0_ class PhysicsModule { virtual void simulate() = 0; }

% Avoid branches:

NoO: | void update ()
{

if (hasRotation) { updateRotation(); }

if (hasScaling) { updateScaling(); }

if (hasColorAnimation) { updateColorAnimation(); }
if (hasAlphaAnimation) { updateAlphaAnimation(); }

}

“ Maybe use generic programming (templates) to
compile variations taking/skipping a branch

WWW.GDCONF.COM

1 If you can, use processor specific vector
- Instructions: SSE, Altivec, .

L5 4 On GPU you have to use them anyway
< Try compiler intrinsics, if you are no assembler
expert
@ Orjust use your super-optimized math library...
< 0n PC:

Can use different code paths depending on processor
feature support

Slightly different results usually not problematic here

WWW.GDCONF.COM

§e Avoid using your standard allocation for particles

@ Pre-allocate a pool of particles and just hand out
" elements from the pool (fixed-size pool allocator)

-
. [

pool allocator i 112|345 6|7
....... LR 576 varticle system 2

< Keep particles close together in memory to avoid
data cache misses

1]|2|4] particle system 1

% Avoid cache unfriendly structures, eg linked lists

< When using GPU particles, use these allocation
schemes to determine the ,address” of the data in

vertex buffers/textures
WWW.GDCONF.COM

| « Particles often need level-of-detail (LOD)
GOML reductions
Too many particle systems due to long view distance
On PC: machine specific performance differences

< Typically a priority level is necessary

Some particles are game-play critical, ie convey
Important information about some event or state of an
object » don't cut them, at most reduce them

Other particles will be more or less important to overall
visual quality » usually requires artists’ judgment

WWW.GDCONF.COM

W\ Summary

_© 50 many options to
E | beefupyourold
Ggﬁﬂ » particle system code!

@ Find your optimal
processor (mix)!

- @ Make it fast!

e Make it spit out
millions of particles!

< Make them look great!

WWW.GDCONF.COM

More info: www.2ld.de/gdc2007

Thanks:
Ofer Estline, Mike Jones, John Versluis and the
amazing Command and Conquer 3 team at EALA

Wolfgang Engel and my co-presenters

WWW.GDCONF.COM

http://www.2ld.de/gdc2007/

e

®

References:
" Particle system basics

Reeves1983: Reeves, William T.; Particle Systems — Technique for
Modeling a Class of Fuzzy Objects. In SIGGRAPH Proceedings 1983,
http://portal.acm.org/citation.cfm?id=357320

Sims1990: Sims, Karl; Particle Animation and Rendering Using Data
Parallel Computation. In SIGGRAPH Proceedings 1990,
http://portal.acm.org/citation.cfm?id=97923

McAllister2000: McAllister, David K.; The Design of an API for Particle
Systems, Technical Report, Department of Computer Science,
University of North Carolina at Chapel Hill, 2000,
ftp://ftp.cs.unc.edu/pub/publications/techreports/00-007.pdf

Burg2000: van der Burg, John; Building an Advanced Particle System,
Game Developer Magazine, 03/2000,
http://www.gamasutra.com/features/20000623/vanderburg_01.htm

WWW.GDCONF.COM

http://portal.acm.org/citation.cfm?id=357320
http://portal.acm.org/citation.cfm?id=97923
ftp://ftp.cs.unc.edu/pub/publications/techreports/00-007.pdf
http://www.gamasutra.com/features/20000623/vanderburg_01.htm

\ References:
“Particle systems on the GPU

| & @ |atta2004: Latta, Lutz; Building a Million Particle System. In GDC
GUM'{ 2004 Proceedings, http://www.2ld.de/gdc2004/

a0 @ Kolb2004: Kolb, Andreas; Latta, Lutz; Rezk-Salama, Christof;
Hardware-based Simulation and Collision Detection for Large

Particle Systems. In Graphics Hardware 2004 Proceedings,
http://www.2ld.de/gh2004/

< Green2003: Green, Simon; Stupid OpenGL Shader Tricks, 2003,
http://developer.nvidia.com/docs/I0/8230/GDC2003_OpenGLShaderTricks.pdf

< Kipfer2004: Kipfer, Peter; Segal, Mark; Westermann, Ridiger;
UberFlow: A GPU-Based Particle Engine. In Graphics Hardware

2004 Proceedings,
http://wwwcg.in.tum.de/Research/Publications/UberFLOW

WWW.GDCONF.COM

http://www.2ld.de/gdc2004/
http://www.2ld.de/gh2004/
http://developer.nvidia.com/docs/IO/8230/GDC2003_OpenGLShaderTricks.pdf
http://wwwcg.in.tum.de/Research/Publications/UberFLOW

| - ...'-.-1@ Pixel shader simulation:
[:m\m"ﬁ http://www.2ld.de/gdc2004/

+r Francise?

% Vertex shader simulation:
NVIDIA SDK, http://developer.nvidia.com/

< Geometry shader simulation, soft particles:
DirectX SDK, http://msdn.microsoft.com/directx/

@ Particle System API, McAllister, David K.:
http://www.cs.unc.edu/~davemc/Particle/

WWW.GDCONF.COM

http://www.2ld.de/gdc2004/
http://developer.nvidia.com/
http://msdn.microsoft.com/directx/
http://www.cs.unc.edu/~davemc/Particle/

