

Overview

 History
 Definition
 Simulation basics
 Where to simulate
 Particle operations
 High quality rendering
 Performance tips

History of Particle Systems

 1962: Pixel clouds in
“Spacewar!”
(2nd video game ever)

 1978: Explosion
physics simulation in
“Asteroids”

 1983: First CG paper
about particle systems
in “Star Trek II:
The Wrath of Kahn”
by William T. Reeves Im

ag
es

: (
to

p)
 P

ub
lic

 d
om

ai
n

ve
rs

io
n

of
 S

pa
ce

w
ar

! h
ttp

://
sp

ac
ew

ar
.o

ve
rs

ig
m

a.
co

m
/

(b
ot

to
m

) ©
A

CM
, u

se
d

by
 p

er
m

is
si

on
 o

f A
ss

oc
ia

tio
n

of
 C

om
pu

tin
g

M
ac

hi
ne

ry
R

ee
ve

s1
98

3,
 P

ar
tic

le
 S

ys
te

m
s

-
Te

ch
ni

qu
e

fo
r

M
od

el
in

g
a

Cl
as

s
of

 F
uz

zy
 O

bj
ec

ts

http://spacewar.oversigma.com/

What is a Particle System (PS)?

 Individual mass points moving in 3D space
 Forces and constraints define movement
 Randomness or structure in some start values

(e.g. positions)
 Often rendered as individual primitive geometry

(e.g. point sprites)

Basic Particle System Physics

 Particle is a point in 3D space

Forces (eg. gravity or wind) accelerate a particle

Acceleration changes velocity

Velocity changes position

Particle Simulation Options

 Evaluating closed-form functions
 stateless simulation

 Iterative integration
 updates previous state of system
 Euler integration
 Verlet integration
 Higher (eg 4th) order Runge-Kutta integration

Closed-Form Function

 Parametric equations describe current position
 Position depends on initial position , initial

velocity and fixed acceleration (eg gravity)

 No storage of intermediate values (stateless)

p0
v0 g

pt = p0v0 t 1
2
g t2

p0

pt 

Euler Integration

 Integrate acceleration to velocity:

Integrate velocity to position:

 Computationally simple
 Needs storage of particle position and velocity

v=va⋅ t

p= p v⋅ t

time step
acceleration
velocity
previous velocity
position
previous position

 t
a
v
v
p
p

p p

Verlet Integration

 Integrate acceleration to position:

 Needs no storage of particle velocity
 Time step needs to be (almost) constant
 Explicit manipulations of velocity (eg. for collision)

impossible

p=2 p − p a⋅ t2

position two time steps beforep

pp p

Where to Simulate?

 CPU
 Main core
 Other core

 GPU
 Vertex shader
 Pixel shader
 Geometry shader

 Other
 PS2 VU, PS3 SPU
 Physics processor

?

CPU Simulation

+ Simple, straight forward
+ Everything possible
- General purpose processor, not optimized for this
- Uses cycles that could be used for more complex

algorithms, eg gameplay, AI
- Requires upload of resulting simulation data for

rendering every frame

CPU

CPU Simulation: Multi-core

 If other CPU cores are available (multi-core PC,
Xbox360), use their power

 PS are usually a quite isolated system, ie
relatively easy to move to separate processor

 Individual particles typically independent from
each other  distribute updates over many
threads/processors

CPU 0 CPU 1

Vertex Shader Simulation

 Vertex shaders cannot store simulation state
(data only passes through to next stage)

 Can only simulate with „closed form function“
methods above

 Limits use to simple „fire and forget“ effects

 DX10 can store vertex/geometry data -
discussed later

VS VS VS VS VS

Vertex Shader Simulation:
Data Flow

Upload time of birth and initial
values to dynamic vertex buffer Set global function

parameters as vertex
shader constants

Render point sprites/triangles/quads
with particle system vertex shader

At rendering timeAt particle birth

In extreme cases only a “random seed”
needs to be uploaded as initial value

Pixel Shader Simulation

 Position and velocity data stored in textures
 From these textures each simulation step renders

into equally sized other textures
 Pixel shader performs iterative integration (Euler

or Verlet)
 Position textures are “re-interpreted” as vertex

data
 Rendering of point sprites/triangles/quads

PS PS PS PS PS

Pixel Shader Simulation:
Data Storage
Position
texture

Velocity
texture

Static info
per particle:
time of birth (tob),
particle type (pt) ...

double
buffer

double
buffer

Double buffers required to
avoid simultaneous
rendering from one
texture into itself!

(x/y/z)

(x/y/z)

(tob/pt)

(x/y/z)

(x/y/z)

Pixel Shader Simulation:
Allocation
 Position/velocity textures are treated as 1D array
 Array index (ie texture coordinate) for new

particles determined on CPU
 Use fast, problem-specific allocator
 Important to get compact index range
 Render start values for new particles as points

into textures
 At death of a particle

 GPU: Move to infinity
 CPU: Return free index to allocator

∞

Pixel Shader Simulation:
Updates
 Velocity update

 Set one texture of the double buffer as render target
 Set up other texture for sampling
 Draw full-screen quad (or smaller sub-rectangle)
 Use pixel shader to do one iterative integration step

 Position update
 Do the same on position textures
 Use pixel shader to update positions, also sampling

from current velocity texture

 With MRT (Multiple Render Targets) can do both in
one step

Pixel Shader Simulation:
Pixel to Vertex Data Transfer
 For final rendering position texture needs to be

used for generating vertices at the particle
positions

 Two conceptual options:
 Render-to-vertex-buffer
 Vertex textures

 ?texture vertex buffer

Pixel Shader Simulation:
Render to Vertex Buffer
 Two options:

 Copy texture to vertex buffer

 Re-interpret texture memory as vertex memory

 Available on consoles and in DX10
 Available in DX9 as unofficial ATI extension (R2VB)
 Not generally available in DX9!
 Available in OpenGL through extensions

 texture vertex buffercopy

texture
vertex buffer

Pixel Shader Simulation:
Vertex Textures
 Access textures from vertex shaders
 Vertex shader actively reads particle positions

 Available in DX9 (VS3.0, except ATI X1xxx)
 Available in OpenGL on VS3.0 hardware
 High latency on early VS3.0 hardware
 Render-to-VB has usually better performance

read index

texture

static vertex stream
vertex
shader

read data

Input Assembler

Vertex Shader

Geometry Shader

Stream Output

Rasterizer

Pixel Shader

Output Merger

Rendering Step

Geometry Shader Simulation

Input Assembler

Vertex Shader

Geometry Shader

Stream Output

Rasterizer

Pixel Shader

Output Merger

G
eom

etry B
uffer

Simulation Step

Geometry Shader Simulation

 Geometry shader can create new or destroy old
data  use for particle birth/death

 Simulation step reads and writes point primitives
to/from geometry buffer

 Render geometry shader creates quad per point
 Available in DX10 and OpenGL on SM4.0 hardware
 Check out sample in DirectX SDK

1 2 53 4 6 7 1 2 3 7

2a 2b

54 6

GS GS GS GS

Other Processors

 Playstation 2 Vector Unit
 Similar to vertex and geometry shader
 Can run closed form function simulation

 Playstation 3 Cell SPUs
 Intended for high-volume vector arithmetic, like

particle simulation
 Can do iterative or closed form function simulation

 Custom physics processors
 Install-base limited



So many choices... What to do?

 Number one rule:
 What processor is most under-used in your game?

 Have a CPU core running idle?
 Move particle simulation onto it

 GPU upload too expensive? Or shader bandwidth
left, GPU running idle?
 Use pixel or geometry shader simulation

 (On PC) Vertex shader often not a bottleneck
 Move simple fire-and-forget effects to vertex shaders

?

?
?

Particle Operations

 We have focused so far
only on simple velocity
and position updates

 Further operations:
 Velocity dampening
 Rotation and scaling
 Color and opacity

animation
 Collision

Particle Operations:
Velocity Dampening
 Scale down (or up) velocity vector
 Simulates slow down in viscous materials or

acceleration of self-propelled objects (bee swarm)
 Iterative simulation trivial:

v=c⋅v constant scale factorc

vv
P P

pt = p0v0∫
0

t

cudu = p0v0⋅{ t for c=1
c t−1
ln c

for c≠1}
 Closed form simulation requires solving integral:

Particle Operations:
Rotation and Scaling
 Typically simple animation:

 Start value : angle/scale factor
 Velocity : angular rate/scale shift

 Dampening of initial velocity useful
 Use same formulas as position dampening

 Randomize start parameters
 Simple random number generator enough
 Can be done in shader

P P

x t =x0dx t
x0

dx

Particle Operations:
Color and Opacity
 Typically animated by keyframes
 Linear interpolation sufficient
 Can be done efficiently with fixed number

(eg 4) keyframes in vertex shader

f t 

t

k 0
k1 k 2

k 3

f 0t =
k1−k 0
t1−t 0
m

tk 0−
k1−k 0
t1−t 0

t 0
b

=m⋅tbFirst segment:

Particle Operations: Collision

 Generic collision (every particle against every
particle and object in the scene) usually
prohibitively expensive

 Restrict to „important“ particles
 Simplify collisions:

 Primitives: Plane, box, sphere
 Height fields: Terrain, depth maps of main objects

Particle Operations:
Collision Detection
 Detect collision ie if position is inside collider body

 Primitives:
 Test implicit surface formula (eg point below plane)

 Height field:
 Simple 2D test of particle position vs height value
 Similar to shadow map depth test  can be done in pixel

shader simulation
 Can also use depth cube maps to approximate convex objects

 Also determine surface normal at approximate
penetration point (implicitly or via normal map)

n

Particle Operations:
Collision Reaction
 Split velocity (relative to collider) into normal

and tangential component:

vn=v⋅nv v t=v−vn

vn
v t

vn

v t v

n

Particle Operations:
Collision Reaction (cont.)

 Friction reduces tangential component
 Resilience scales reflected normal component

 Resulting velocity:

Shows some artifacts (see references for fixes)

v=1−v t− vn




vn

v t
v

v

Particle Sorting

 When rendering with alpha-blending, particles
should be sorted

 Sorting is expensive. Make sure you need it!
 Not necessary when a commutative blend

operation (add or multiply) is used
 Ordering issues might be hardly noticeable, eg

 Low contrast particles like middle-gray smoke
 Small particles
 Roughly ordered particles, eg emitted in sequence

Particle Sorting Options

 CPU simulation: Use your favorite sort algorithm
 Potentially exploit frame-to-frame coherence (order

does not change much):
 Sort algorithm with good optimal case performance

might be more important than good average case
performance

 Vertex shader simulation: Can't sort properly, only
by emission position on the CPU

 Pixel or geometry shader simulation: Can sort in
pixel shader! See references [Latta2004]

Normal Mapping

 Traditionally particles don't have a surface normal
 cannot take lighting

 Normal can be read from texture
 Basically tangent-based normal mapping
 Tangent space based on edges of particle

P

tangent

binormal

normal

Alternative Lighting

 Normal mapping is still expensive, esp with high
overdraw of particles

 Simpler solutions:
 Average light source colors. Tints particles to color

scheme of scene
 Use particle velocity (normalized) as surface normal.

Totally fake, but “sort-of works”
 Use vertex normals approximating a (squished)

sphere. Improve by adding vertices in the middle of the
quad

(side view)

vertex normals

Soft Particles

 Particles have ugly hard edges where they
intersect with opaque scene geometry (eg terrain)

 Can be avoided with blending them out softly at
intersection edges

normal (“hard”) particles soft particles

Soft Particles Algorithm

 Treat particle conceptually as a screen-aligned
box, not a flat billboard

 Compute how much the view ray travels trough
the box before hitting the depth in the depth map

 Use the ratio of the view ray length vs the total
depth to blend out the particle opacity (multiply
with original opacity)

flat particle

side view:

deep particle deep particle with intersection

Soft Particles Requirements

 How to detect intersection edges?
 Special case: Height field  Can lookup/encode

approximate terrain height into particle info
 General case: Need the depth values of scene

objects as a texture.
 DX9: Depth texture needs to be rendered separately

(extra pass over whole scene or with multiple-RT)
expensive, if you don't do it for other effects already

 DX10: Can use current depth buffer as texture
Can't use it as depth buffer at the same time though
either copy it, or don't test z, as it is not needed here

Programming for Performance

 Remember:
 Updating particles is your „inner loop“

 Code executed in high frequency, many per frame
 Relatively simple behaviors

 Particles are often “fluff”
 Game logic does not depend on them
 Accuracy non-critical
 Determinism of low importance

 Optimize aggressively!

Performance: Batching

 Operate on large batches, not individual particles
 No:
 Better:

 Group as-large-as-possible (or -sensible)
 Group at least all particles of one system/emitter
 Group all particles of one type/set of configuration

parameters
 But don't group too much, forcing to add branches

class Particle { void update(); }

void updateParticles(Particle* begin, Particle* end);

Performance: Batch Rendering

 Batching even more important for rendering than
simulation

 Draw calls are expensive!
 Batch at least all particles with the same

configuration parameters
 Maybe batch all particles with the same render

states (eg blend mode)
 Texture changes often break batches

  put them together in a texture atlas

Performance:
Instruction cache misses
 Especially important on Xbox360/PS3 CPUs
 Avoid virtual functions:

 No:

 Avoid branches:
 No:

 Maybe use generic programming (templates) to
compile variations taking/skipping a branch

class PhysicsModule { virtual void simulate() = 0; }

void update()
{

if (hasRotation) { updateRotation(); }
if (hasScaling) { updateScaling(); }
if (hasColorAnimation) { updateColorAnimation(); }
if (hasAlphaAnimation) { updateAlphaAnimation(); }

}

Performance: Vector Arithmetic

 If you can, use processor specific vector
instructions: SSE, Altivec, ...

 On GPU you have to use them anyway
 Try compiler intrinsics, if you are no assembler

expert
 Or just use your super-optimized math library...
 On PC:

 Can use different code paths depending on processor
feature support

 Slightly different results usually not problematic here

Performance: Memory

 Avoid using your standard allocation for particles
 Pre-allocate a pool of particles and just hand out

elements from the pool (fixed-size pool allocator)

 Keep particles close together in memory to avoid
data cache misses

 Avoid cache unfriendly structures, eg linked lists
 When using GPU particles, use these allocation

schemes to determine the „address“ of the data in
vertex buffers/textures

1 2 54 6 7
5 6

1 2 4
pool allocator

particle system 1

particle system 2
3

Performance: Scalability

 Particles often need level-of-detail (LOD)
reductions
 Too many particle systems due to long view distance
 On PC: machine specific performance differences

 Typically a priority level is necessary
 Some particles are game-play critical, ie convey

important information about some event or state of an
object  don't cut them, at most reduce them

 Other particles will be more or less important to overall
visual quality  usually requires artists' judgment

Summary

 So many options to
beef up your old
particle system code!

 Find your optimal
processor (mix)!

 Make it fast!

 Make it spit out
millions of particles!

 Make them look great!

Questions

?
More info: www.2ld.de/gdc2007

Thanks:
Ofer Estline, Mike Jones, John Versluis and the

amazing Command and Conquer 3 team at EALA
Wolfgang Engel and my co-presenters

http://www.2ld.de/gdc2007/

References:
Particle system basics
 Reeves1983: Reeves, William T.; Particle Systems – Technique for

Modeling a Class of Fuzzy Objects. In SIGGRAPH Proceedings 1983,
http://portal.acm.org/citation.cfm?id=357320

 Sims1990: Sims, Karl; Particle Animation and Rendering Using Data
Parallel Computation. In SIGGRAPH Proceedings 1990,
http://portal.acm.org/citation.cfm?id=97923

 McAllister2000: McAllister, David K.; The Design of an API for Particle
Systems, Technical Report, Department of Computer Science,
University of North Carolina at Chapel Hill, 2000,
ftp://ftp.cs.unc.edu/pub/publications/techreports/00-007.pdf

 Burg2000: van der Burg, John; Building an Advanced Particle System,
Game Developer Magazine, 03/2000,
http://www.gamasutra.com/features/20000623/vanderburg_01.htm

http://portal.acm.org/citation.cfm?id=357320
http://portal.acm.org/citation.cfm?id=97923
ftp://ftp.cs.unc.edu/pub/publications/techreports/00-007.pdf
http://www.gamasutra.com/features/20000623/vanderburg_01.htm

References:
Particle systems on the GPU
 Latta2004: Latta, Lutz; Building a Million Particle System. In GDC

2004 Proceedings, http://www.2ld.de/gdc2004/
 Kolb2004: Kolb, Andreas; Latta, Lutz; Rezk-Salama, Christof;

Hardware-based Simulation and Collision Detection for Large
Particle Systems. In Graphics Hardware 2004 Proceedings,
http://www.2ld.de/gh2004/

 Green2003: Green, Simon; Stupid OpenGL Shader Tricks, 2003,
http://developer.nvidia.com/docs/IO/8230/GDC2003_OpenGLShaderTricks.pdf

 Kipfer2004: Kipfer, Peter; Segal, Mark; Westermann, Rüdiger;
UberFlow: A GPU-Based Particle Engine. In Graphics Hardware
2004 Proceedings,
http://wwwcg.in.tum.de/Research/Publications/UberFLOW

http://www.2ld.de/gdc2004/
http://www.2ld.de/gh2004/
http://developer.nvidia.com/docs/IO/8230/GDC2003_OpenGLShaderTricks.pdf
http://wwwcg.in.tum.de/Research/Publications/UberFLOW

References: Example code

 Pixel shader simulation:
http://www.2ld.de/gdc2004/

 Vertex shader simulation:
NVIDIA SDK, http://developer.nvidia.com/

 Geometry shader simulation, soft particles:
DirectX SDK, http://msdn.microsoft.com/directx/

 Particle System API, McAllister, David K.:
http://www.cs.unc.edu/~davemc/Particle/

http://www.2ld.de/gdc2004/
http://developer.nvidia.com/
http://msdn.microsoft.com/directx/
http://www.cs.unc.edu/~davemc/Particle/

