

Eric Lengyel

Terathon
Software

WWW.GDCONF.COM

= Projection Matrix Internals

= Infinite Projection Matrix
- Depth Modification
= Oblique Near Clipping Plane

= Slides available at
http://www.terathon.com/

WWW.GDCONF.COM

From Camera to Screen

| Camera
E Space
l «— Projection Matrix
Homogeneous
Clip Space
l < Perspective Divide

Normalized Device
Coordinates

l < Viewport Transform

Viewport
Coordinates

WWW.GDCONF.COM

= The 4x4 projection matrix is really just a linear
transformation in homogeneous space

It doesn’t actually perform the projection, but
just sets things up right for the next step

= The projection occurs when you divide by w to
get from homogenous coordinates to 3-space

WWW.GDCONF.COM

. - |.
. G, ak
el % o pcisco
DA

e O
0 e/a

0 O

0 0
0 0
f+n 21n
f-n f—n
-1 0

= n, T =distances to near, far planes
- e = focal length =1 / tan(FOV / 2)
= a = viewport height / width

WWW.GDCONF.COM

Normalized
Camera Space Device Coordinates

— 5

WWW.GDCONF.COM

= Take limit as f goes to infinity

n
i} '.:l'l-'_ .
San 12t

n

e O 0 0 _

0 e/a 0 0 e 0 0 0
lim f+n 2fn | = 0 e/a 0 0
f>o|0 0 — — 0O 0 -1 -2n
f—n f—n
0 0 1 0 0 0 -1 0 |

WWW.GDCONF.COM

= Directions are mapped to points on the
infinitely distant far plane

= A direction is a 4D vector withw =0
(and at least one nonzero X, vy, 2)

= Good for rendering sky objects

= Skybox, sun, moon, stars

= Also good for rendering stencil
shadow volume caps

WWW.GDCONF.COM

Jﬂ‘ﬁ' = The important fact is that z and w are
cﬂ equal after transformation to clip space:

(e 0 O O |[x ex
0 e/a 0 O ||y| [(e/a)y
0 0 -1 -2nllz| | -z
o 0 -1 0 |0} [-z

WWW.GDCONF.COM

= After perspective divide, the
z coordinate should be exactly 1.0,

meaning that the projected point is
precisely on the far plane:

EX

(e/a)y __eeyx//;
- - 1
| _Z —))

WWW.GDCONF.COM

= But there’s a problem...

= The hardware doesn’t actually perform
the perspective divide immediately after
applying the projection matrix

= Instead, the viewport transformation is
applied to the (X, y, z) coordinates first

WWW.GDCONF.COM

= Ordinarily, z is mapped from the range
[-1, 1] in NDC to [0, 1] in viewport space
by multiplying by 0.5 and adding 0.5

= This operation can result in a loss of
precision in the lowest bits

= Result is a depth slightly smaller than
1.0 or slightly bigger than 1.0

WWW.GDCONF.COM

| mi = If the viewport-space z coordinate is
co | slightly bigger than 1.0, then fragment
culling occurs

.....
- Erant 15

= The hardware thinks the fragments are
beyond the far plane

= Can be corrected by enabling
GL_DEPTH_CLAMP_NV, but this is a
vendor-specific solution

WWW.GDCONF.COM

WWW.GDCONF.COM

: mi = Universal solution is to modify

co | projection matrix so that viewport-space
z is always slightly less than 1.0 for
points on the far plane:

parcl CraREISER
Can

e O 0 0
0 e¢a O 0
0 0 &-1 (¢6-2)n
0 0 -1 0 |

WWW.GDCONF.COM

= This matrix still maps the near plane
to -1, but the infinite far plane is now
mapped to 1 - ¢

PR NN
o

WWW.GDCONF.COM

: m&l = Several methods exist for performing
CONTRT™ polygon offset

« Hardware support through glPolygonOffset
« Fiddle with glDepthRange

« Tweak the projection matrix

WWW.GDCONF.COM

: 7 = glPolygonOffset works well, but
confhoL

- Can adversely affect hierarchical
z culling performance

« Not guaranteed to be consistent across
different GPUs

= Adjusting depth range
= Reduces overall depth precision

= Both require extra state changes

WWW.GDCONF.COM

n
ch '.:l'l-'_ .
San 121

= NDC depth is given by a function of
the lower-right 2x2 portion of the
projection matrix:

_f+n _21‘n'Z _f+nz_ 2fn |
f—n f —n [J = f —n f —n
-1 0 | i —Z |
, _f+n+ 21n
A z(f—n)

WWW.GDCONF.COM

W\ Depth Modification

: Jﬂﬁ!' = We can add a constant offset ¢ to the
cONTRT NDC depth as follows:

T f +n 2fn] (f+n 2fn |
— o — — —e 72—
f —n f —n [z} - f—n f —n
-1 0 L —Z
f+n 2fn
INDC = &

+ +
f-n z(f-n)

WWW.GDCONF.COM

= W-coordinate unaffected

= Thus, X and y coordinates unaffected
= z offset is constant in NDC
= But this is not constant in camera space

= For a given offset in camera space, the
corresponding offset in NDC depends on
the depth

WWW.GDCONF.COM

W\ Depth Modification

W\

| Jﬂﬁ' - What happens to a camera-space
CONTRT™

offset o7

_f+n B 2fn _f+n(z+5)_ 21fn
f —n f—n {z+5} - f—n f—n
-1 0 : -(z2+9)

INDc =

f+n+ 2fn 2fn o
f-n z(f-n) f-nlz(z+9)

WWW.GDCONF.COM

ml = NDC offset as a function of camera-
CONIES: space offset 6 and camera-space z:

2fn o
#(0.2)="7 —n(z(z+5)j

= Remember, ¢ is negative for an
offset toward camera

WWW.GDCONF.COM

- Need to make sure that ¢ is big enough
to make a difference in a typical 24-bit
integer z buffer

= NDC range of [-1,1] is divided into
2%4 possible depth values

- So |¢| should be at least 2/2%4 = 2723

WWW.GDCONF.COM

= But we’re adding ¢to (f + n)/(f - n),
which is close to 1.0

= Not enough bits of precision in 32-bit
float for this

= S0 in practice, it’s necessary to use

£|>22 ~4.77x107

WWW.GDCONF.COM

It’s sometimes necessary to restrict
rendering to one side of some arbitrary
plane in a scene

For example, mirrors and water surfaces

Using an extra hardware clipping plane
seems like the ideal solution

WWW.GDCONF.COM

= But some older hardware doesn’t

support user clipping planes

- Enabling a user clipping plane could
require modifying your vertex programs

= There’s a slight chance that a user
clipping plane will slow down your
fragment programs

WWW.GDCONF.COM

= Extra clipping plane almost always
redundant with near plane

= No need to clip against both planes

WWW.GDCONF.COM

= We can modify the projection matrix so
that the near plane is moved to an
arbitrary location

= No user clipping plane required

= No redundancy

WWW.GDCONF.COM

: I\mﬁi = In NDC, the near plane has
co | coordinates (0, 0, 1, 1)

Warc - Francisc®
o

—... .*_

0.0,1.1)

T

WWW.GDCONF.COM

« Planes are transformed from NDC to

camera space by the transpose of the
projection matrix

= So the plane (0, 0, 1, 1) becomes
M; + M4, where M, is the i-th row of the
projection matrix

= M, must remain (0, 0, -1, 0) so that
perspective correction still works right

WWW.GDCONF.COM

- Let C = (C,, C,, C,, C,,) be the camera-
space plane that we want to clip against
instead of the conventional near plane

= We assume the camera is on the

negative side of the plane, soC, <0

- We must have C = M; + My, where
M;= (0, 0, -1, 0)

WWW.GDCONF.COM

& « My=C-M,=(C, C,, C, +1,C,)
i 3 4 Xy “yy 7 y MW

n
ch '.:l'l-'_ .
San 121

: e O 0 0

= This matrix maps points on the plane C
to the z = -1 plane in NDC

WWW.GDCONF.COM

N

-\

o nfencisee F = M4 - M3 = 2M4 - C

Oblique Near Clipping Plane

= But what happens to the far plane?

WWW.GDCONF.COM

= Far plane is completely hosed!

= Depths in NDC no longer represent
distance from camera plane, but
correspond to the position between the
oblique near and far planes

« We can minimize the effect,
and in practice it’s not so bad

WWW.GDCONF.COM

- We still have a free parameter:
the clipping plane C can be scaled

= Scaling C has the effect of changing the
orientation of the far plane F

- We want to make the new view frustum
as small as possible while still including
the conventional view frustum

WWW.GDCONF.COM

- LetF=2M4_aC

= Choose the point Q which lies opposite
the near plane in NDC:

Q=(sgn(Cy),san(Cy),L1)
= Solve for a such that Q lies in plane F:

_2M,-Q
B

WWW.GDCONF.COM

| g, = Near plane doesn’t move, but far plane
cﬂl’]wﬁ becomes optimal

Mt Franclsce
3

___________ e

WWW.GDCONF.COM

= This also works for infinite view frustum

= Far plane ends up being parallel to one
of the edges between two side planes

= For more analysis, see Journal of Game
Development, Vol 1, No 2

WWW.GDCONF.COM

= lengyel®@terathon.com

WWW.GDCONF.COM

