
How to Write Great

Design Documents

Damion Schubert

Bioware Austin

www.zenofdesign.com

About Me

• MMO Designer for 10 years

– Lead Designer for most of them

• Used to working with very complex systems

• Grew to appreciate good documentation

processes.

• Found being the ‘doc guy’ very good for my

career

• Still learning about how to do it right

What I hear

• “Design documentation is a waste of

time”

• “No one reads design docs.”

• “My programmers find reviewing design

documents a total time sink.”

This is probably a statement about your

documentation, not a true testament of

documentation in general.

The Harsh Truth

• All designers should want to share their

ideas

• All programmers (and other team

members) should want to know what

they’re building.

• On the other hand, most design

documentation isn’t very good, and

most documentation processes ignore

the iterative nature of finding fun.

This Talk

• Goals of the design document

• Why is good design documentation rare

• Rules of writing game design documents

• Tips for leads – building a game design

documentation process

Presentation Focus:

• Executive Summaries/Vision Documents

• Design Overview Documents/DDRs

• Test Plans

• Systems Design Document

Talk is not about:

Goals of Good Docs

• Capture design consensus

• Primary vision conduit between

departments

• Aid in scheduling

• Offer focus

• Give visibility to future

dependencies and design conflicts

Why is good design

documentation so rare?

• Design docs for most games deal with

complex, interconnected systems.

• Designers tend to overdesign.

– Systems take less time to design than to

build.

– “Big Book of Stupid”

• Most design docs don’t embrace

iteration.

• Most docs are rarely kept up to date as

the project progresses.

Rules of good

Design Documentation

What other devs say:

“ Just give me

something that’s

short, targetted, and

up-to-date.”

“ I just want a bullet list

of things to do.”

“Short and accurate,

easy to find the

code bits”.

1. Know your Target

• People interested in a design doc:

– Design team. To achieve design consensus.

– Programming team. To build the game.

– Producers. To schedule and go get money.

– QA. To build test plans.

– External partners. To reach quota of

annoying demands.

1. Know your Target

• Programmers are the most important

target.

– It’s how the game gets made.

– Often, other documents are more useful for

other audiences anyway.

– When in doubt, make the docs serve the

programmers

• Ask the programmers what they want

– If they say to ignore one of my rules, do it!

2. Keep it Short

• Short documents are:

– Easier to read

– Easier to write

– Easier to maintain and keep up-to-

date

– Easier to handle politically

– Less likely to be contradictory

– More likely to be simple designs

2. Keep it Short

• Kill the fluff

• Kill empty sections

• Kill ‘cut and paste’ stuff

• Kill unnecessary text of obvious

systems

2. Keep It short

• Guild Invitation Confirmation UI. Players get a Confirmation UI

when creating a guild. This asks “Do you really want to join this

guild?” and has an ‘ok’ button and a ‘cancel’ button.

• OK Button. The confirmation UI has an OK button, which

confirms the invitation of the guild.

• Cancel. The confirmation UI has a cancel button, which

prevents the guild from being formed.

• Close button. There is an ‘X’ button in the upper right hand

corner of the UI, which is identical to hitting the cancel

button.

• Esc. Pressing escape will cancel the transaction, and performs

identically to hitting the cancel button.

Too Long

2. Keep It short

• Guild Invitation Confirmation UI. Players get a confirmation

dialogue when invited to a guild (see CommonDialogs.doc).

Better

2. Keep It short

• Crafting Tithe. Hephaestus, the god of the forge, has instituted

his will upon the craftsmen of Athens, and all are humbled by his

greatness. As such, any players who wish to craft any items must

pay a tithe to the temple of Hephaestus to earn his favor, unless

that player has found an item like the Hammer of the Gods,

which allows the player to bypass these tithes.

Who cares?

2. Keep It short

• Crafting Tithe. Players who craft items must pay a cost in gold

(a tithe to the local temple) when crafting.

• Bypassing tithes. Certain tools allow the player to bypass

the tithe.

Better

2. Keep it Short

• Remember:

– Programmers almost always want a

short bullet list

– (They kind of like checking things off

of lists)

3. Prioritize the Design

• Give the features a priority, break

them into phases

• Be sure document clearly separates

out later phase features.

3. Prioritize the Design

• Players can equip items on the inventory screen.

• Equipped items change the player’s combat stats.

• Player equipment is visible when worn.

• Player equipment may be enchanted with magical

effects

• Players may have their guild insignia drawn on their

player shields.

Wrong!

3. Prioritize the Design

• (Phase One) Players can equip items on the inventory

screen.

• (Phase One) Equipped items change the player’s combat

stats.

• (Phase Two) Player equipment is visible when worn.

• (Phase Two) Player equipment may be enchanted with

magical effects

• (Phase Four) Players may have their guild insignia drawn

on their player shields.

Still not great

3. Prioritize the Design

• Players can equip items on the inventory screen.

• Equipped items change the player’s combat stats.

• Player equipment is visible when worn.

• Player equipment may be enchanted with magical

effects

• Players may have their guild insignia drawn on their

player shields.

Basic Equipment (Prototype)

Advanced Equipment (Phase 2)

Guild Insignia on Equipment (Phase 4)

Better

3. Prioritize the Design

– Phase 1: Prototype feature

• (necessary to validate or demo the game)

– Phase 2: Core feature.

• (features and tools that hold up content creation

go here)

– Phase 3: Must be in shipped product

• (includes features that depend on priority 2

features)

– Phase 4: Wishlist, possibly expansion

– Phase 5: Yeah, right

3. Prioritize the Design

• Prioritization is across the project,

not the feature – an entire feature

or document may be full of phase

2, phase 3, or phase 4 features.

4. Illustrate

• A picture is worth a thousand words.

• Tactics:

– Screens of other games with similar features.

– Visio diagrams

– ‘Example’ text

4. Illustrate

• Players can remove a skill in their skill tree by going to a

special NPC (the ‘mindwiper’) and selecting that skill.

• Removing a skill has a monetary cost in credits.

• The player cannot remove a skill that is a prerequisite for

another skill in his skill tree.

Joe Bob decides that he wants to unlearn Basic Psionics and

Advanced Psionics, so he goes to a mindwiper. He tries

to remove the Basic Psionics skill tree, but the

transaction fails, as it is a prerequisite for Advanced

Psionics. So Joe Bob unlearns Advanced Psionics and

then Basic Psionics. In this case, both boxes are

successfully removed.

Example

4. Illustrate

What’s wrong with this?

• The more abstract a picture is, the easier

it is for a reader to project his own

viewpoint *

• Assuming you have a competent, well-

paid UI artist, you want to give his

imagination room to breathe – don’t try

to do his job!

• * Understanding Comics, Scott McCloud. I seriously hope

everyone has read this one.

5. Don’t tell others How

to do their jobs

Orcs

Elves

Dwarves

Hobbitses

Puma People

Kraven's Reputation

Better, believe it or not!

5. Don’t tell others How

to do their jobs

“Quests.doc”

• Quest Variables will be stored in a linked list of

bitvectors on the character object.

This is not your problem!

5. Don’t tell others How

to do their jobs

“Quests.doc”

• Memory considerations of quest variables.

• There will be approximately 2500 quests in the game.

• Players may have 20 open quests at a time.

• Players can make up to 10 decision points in one quest,

the status of which must be stored until the quest is

completed.

• Players may find content later which is unlocked by

quests they have already completed – the completion

state (and outcome) of a quest must be stored.

This is your problem. Let coders solve it.

6. Use user stories

• Independent – doesn’t overlap other user stories

• Negotiable – details and implementation are less

important than end user satisfaction.

• Valuable – written with the end user in mind.

• Estimatable – detailed enough for programmers to

architect & schedule

• Small – no more than a week.

• Testable – design and programming can agree when

it’s done.

SCRUM’s rules for User Stories,

Note the INVEST acronym.

6. Use user stories

• The player hears a sound effect when he gains a level.

Too small!

• The players can elect a new space ambassador .

Too boundless!

• When the player gains a level, he hears a sound effect, sees

a particle effect, gains 3 attribute points, gains 5 skill points

and gains access to a prestige class if he is level 10.

Too long!

6. Use user stories

• The player gains a level when he crosses the experience

point threshold.

• The player hears a ‘ding’ sound effect.

• The player sees a particle effect.

• The player gains 5 attribute points to be spend on his

stats.

• The player gains 3 skill points to be spent on his skill

tree.

• If the player has reached level 10, he can acquire his

Prestige Class (see PrestigeClasses.doc)

We use 1 user story with subrequirements,

equal to 2-5 programming days of work.

Note ‘the player’ starts each one.

7. Separate Code from

Content

• Crafting tools. Some crafting skills will require crafting

tools to be used, or the player will get an error message

saying he cannot use that skill.

• Blacksmith. Using blacksmith skills requires a blacksmith

hammer and tongs. Players may eventually find more

advanced hammer and tongs, that give access to more

crafting options.

• Tailor. Being a tailor requires a loom.

• Alchemy. Alchemy requires a test tube set. Players may

eventually find more advanced test tubes, that give

access to more crafting options.

• Sculpture. Sculpture requires a hammer and chisel.

Scary wall of bullet points!

7. Separate Code from

Content

• Crafting tools. Some crafting skills will require crafting

tools to be used, or the player will get an error message

saying he cannot use that skill.

• Advanced tools. Some crafting skills let the player craft

more powerful items with more powerful tools.

Skill Tools Advanced Tools

Smithing Hammer and Tongs Yes

Tailoring Loom

Alchemy Test Tube Set Yes

Sculpture Hammer and Chisel

Crafting Skills and Tools

Only two requirements – easy!

7. Separate Code from

Content

• Don’t make people hunt for the

information they want.

• Separate content into appendices,

or into tables.

8. Invest in a good Format

• Use a team template

• Change the font

• Use horizontal lines

• Use callout boxes for example

• Use bullet lists

• BUT don’t be a slave to your

format

Viva la Difference

• This is the default Microsoft Powerpoint

template

– Not very good looking, is it?

– Taking a little time to change out your fonts or

add a watermark can have a huge impact on

how professional your documents feel.

9. Use Clear Terminology

• This spell has a high DPS,

but also has a hate reduction

component to reduce aggro

in raids.

• There can only be six spawn

agents per superchunk.

Don’t assume what your readers know!

9. Use Clear Terminology

• Use plain english

• Avoid Wonky terms

• Avoid company-specific terms

• Use new terms consistently

• Consider a glossary

10. Kill Redundancy

• Duplication is the devil, leads to

confusion, update errors.

“CombatStats.doc”

• Strength increases the player’s

damage by STRENGTH/2.

• Dexterity increases the

player’s accuracy by

DEXTERITY/3

• Body odor reduces the

player’s chance to seduce

NPCs by BODYODOR/2

“Items.doc”

• Strength increases the player’s

damage by STRENGTH/2.

• Dexterity increases the

player’s accuracy by

DEXTERITY/3

• Body odor reduces the

player’s chance to seduce

NPCs by BODYODOR/2

Redundant Department of Redundancy !

10. Kill Redundancy

• Duplication is the devil, leads to

confusion.

“CombatStats.doc”

• Strength increases the player’s

damage by STRENGTH/2.

• Dexterity increases the

player’s accuracy by

DEXTERITY/3

• Body odor reduces the

player’s chance to seduce

NPCs by BODYODOR/2

“Items.doc”

• Enchantments on an item can

increase the players stats

when worn. See

CombatStats.doc for more

details.

Make one doc the owner, point others to it.

11. No Weak language

• Players might be able to woo NPCs of

the opposite sex.

• In the future, we may add the

functionality to increase your chances to

woo women by playing sappy love

songs.

• If this is implemented, maybe players can

write their own love songs.

No!

11. No Weak Language

Romancing NPCs (Prototype)

• Players can attempt to romance NPCs of

the opposite sex by dialogue options

• Players can also attempt to romance

NPCs of the opposite sex by serenading

them with songs they’ve learned.

Advanced Romance (Phase Four)

• Players can craft their own songs for use

in the romance system.

Better!

11. No Weak Language

• Use strong, declarative language

– No ‘maybe’, ‘could’, ‘might’

– Even avoid ‘may’.

• Don’t be ambiguous

• Don’t say ‘we’

• Choose a direction

• Move ‘maybe’ features to later phases.

12. Capture your Reasoning

• But compartmentalize it.

• Players may not place items on the

ground. This is to help reduce visual

clutter and ensure that players may not

be disruptive through the placement of

hundreds of items.

No!

12. Capture your Reasoning

• But compartmentalize it.

• Players may not place items on the

ground.

…

FAQ: Why can’t players place items on the

ground?

This is to help reduce visual clutter and

ensure that players may not be disruptive

through the placement of hundreds of

items.

Much better!

12. Capture your Reasoning

• Capturing your reasoning is especially

useful for longer projects, where the

team may literally forget why they

chose one side or the other.

• Capturing your reasoning, by extension,

reduces the number of times contentious

issues are reopened.

Tips for Leads

1. Embrace Iterative Design

• Design the next immediate phase to fine-

tooth detail

• Design far off phases to man-month

degree

• Don’t allow designers to emotionally

invest in far-off features

• Revisit documentation as the design shifts

and iterates.

2. Make it Searchable

• Design docs will only be used as a

reference if the user can find what he

needs.

• Possible means:

– Wiki

– Desktop Search

– Design Bibles

3. Automate what you can

• Need proof?

– Thottbot, Wowhead, Allakhazam

• Advantages of Documentation

Automation:

– Accuracy, even postscriptively

– Searchable

– Easy to add auditing and reports

4. Design Documentation

is a collaborative Process

Designer/Lead Design Setup Meeting

"Experts" Brainstorm

Document First Pass (Lead Designer Review)

Design Team Review

Senior Leads Review

Approved!

("Publish to team")

Design documents

written in a vacuum

almost never survive

‘contact with the

enemy’.

5. Always start with a

Kickoff Meeting

• Designer meets with Lead Designer,

and answers these three questions:

– What are the goals of this system?

– What are the questions this document

should answer?

– How complex can this system be?

The kickoff meeting

• “What are the goals?”

– Justify the system

– Help decide fencepost issues

• Example: the following two goals are

worthy, but contradictory, unless the

design plans for it up front.

– “Crafting is a sideline activity, to fill

downtime, and can be done on the field.”

– “Dedicated crafters can own their own

forges and blacksmith shops, and achieve

fame and fortune serving other players.”

The Kickoff Meeting

• “What questions does document this

answer?”

– Since all systems touch each other eventually,

important to decide where a document

ends.

– Allows leads to schedule the documentation

process.

– Prevents jumping the gun

– Prevents design ‘claim jumping’

– Highlights phase 1 features

The Kickoff meeting

• “How much complexity?”

– Token Representation. We just want the

bullet point on our box

– Competitive. We want what the market

leader has with minor tweaks, but we don’t

want to be too risky.

– Alternative. Nothing too big, but definitely

different from our competitor.

– Innovative. This feature will crush

opponents, and we will hear the

lamentations of their women.

6. Have an Approval Process

• Should telescope out

– Lead Designer Approval First

– Design Team Approval Next

– Senior Leads/Cross-Team Approval Next

• This approach allows the design team to speak

with one voice about a finished design.

• Is always tough to get up and running, but

usually accelerates once teammates find value.

7. Mandate expert

consultation.

• MANDATE that your designers do not work in

a vacuum on any document. They should

seek out resident experts.

– Other designers on the team.

– The engineer who is building the feature.

– Artists or programmers with unique expertise

– For tools, the ‘customers’

– Members of other project teams if their insight is

particularly valuable.

8. Have a visual Method of

Tracking Progress

In Queue In Progress LD Review

Team Review

SL Review

Approved

(I like using post-it notes)

9. Have a change Process

• Designs will shift as the game iterates. A

process is necessary to ensure that design

changes are disseminated to decision makers

on the team.

• The Lead Designer can usually act as the

arbiter of when the Senior Leads need to be

notified of and/or approve of a major change.

10. Occasionally audit the

process.

• Design documentation procedures must work

for the team. If the team sees the

documentation process as oppressive, the

design documentation process will end up

subverted.

• Never lose sight of your goals:

– Short

– Up-to-date

– Programmer Friendly

• Every 4-6 months, ask yourself (and your

programmers) what’s working and what’s not.

Questions?

