
Under the Compiler's Hood:
Supercharge Your

PLAYSTATION®3 (PS3™)
Code.

Under the Compiler's Hood:
Supercharge Your

PLAYSTATION®3 (PS3™)
Code..

Understanding your compiler is the key to success in the gaming world.

Supercharge your PS3 game codeSupercharge your PS3 game code

• Part 1: Compiler internals.

• Part 2: How to write efficient C/C++ code.

Part 1: Compiler internalsPart 1: Compiler internals

• Trees & parsing
• Basic blocks
• Data flow analysis
• Alias analysis
• Invariant code motion
• Load/Store elimination
• Copy and constant propagation
• Scheduling
• Register allocation
• Profile driven optimisations
• + register allocation & “live ranges not scope are important”

Trees & parsingTrees & parsing

TREETOP
FUNC_HEADER

FUNCTION
_Q1fPi
p

EXEC_STMT
BLOCK

i= I4:0
WHILE

i< I4:6
BLOCK

*(CAST(type_44,p))[i]= I4:0
i=i+ I4:1

return NIL

void f(int *p)
{
for(int i = 0; i < 6;

++i)
{

p[i] = 0;
}

}

As a first step the text of the file is
converted into a tree structure.

Trees & parsingTrees & parsing

• Inlining done by merging trees

• Constant folding
a + 1 + 2

-> a + 3

• If conversion
if(x == 0) y = a; else y = b;

-> y = (x == 0) ? a : b;

Basic blocksBasic blocks

BB:1
i = 0
*IF (i < 6) ? goto BB:2 else goto BB:3

BB:2
tmp2 = 0
tmp3 = impy (i,4)
tmp4 = copy4s (tmp3)
store (tmp2, p, tmp4)
tmp5 = iadd (i,1)
tmp5 = copy4s (tmp5)
i = tmp5
*IF (i < 6) ? goto BB:2 else goto BB:3

BB:3
*RETURN

TREETOP
FUNC_HEADER
FUNCTION

_Q1fPi
p

EXEC_STMT
BLOCK

i= I4:0
WHILE

i< I4:6
BLOCK

*(CAST(type_44,p))[i]= I4:0
i=i+ I4:1

return NIL

Next, the tree is broken into basic
blocks.
A basic block is a section of code that
contains no branches or labels.

Basic blocksBasic blocks

• Assignments translated to loads and stores

• if, while, switch etc. converted to basic block boundaries

example:

int f(int *p)
{

*p = 1; // store
int a = *p; // load
if(a == 1) // condition
{
p++; // expression

}
return a * 2; // return expression

}

Basic blocks: UnrollingBasic blocks: Unrolling

// 1 basic block

void f(int *p)
{

p[0] = 0;
p[1] = 1;
p[2] = 2;

}

// 3 basic blocks

void f(int *p)
{

for(int i = 0; i != 3; ++i)
{
p[i] = i;

}
}

Data flow analysisData flow analysis

Example:

void f(int *p)
{
for(int i = 0; i < 6; ++i)
{

p[i] = 0;
}

}

Alias analysisAlias analysis

• Tests to see if loads, stores and calls interfere with each other.

• Enables the reordering of loads and stores.

• Enables the elimination of redundant loads and stores.

• Controllable using the __restrict keyword.

Example:

void f(char *p, int *d)
{
d[0] = 1;
int a = *p; // *p (char) does not alias d[n] (int)
d[1] = 2;
int x = 2; // d[n] does not alias x (formal vs stack)
d[2] = a;
g(&x); // call, x may have been modified
d[3] = x;

}

Invariant code motionInvariant code motion

• Moves as much code as possible out of loops
• Fewer instructions in loops
• Dependent on aliasing!

Example:

void f(int a, int b, int *p, short *q)
{

for(unsigned i = 0; i != 100; ++i)
{
// load from q doesn't alias p,
// so we can move it to before the loop.
p[i*2] = q[0] + a;

// a + b is invariant, we can move it out of the loop.
p[i*2 + 1] = a + b;

// store to q[1] is invariant,
// we can move it to after the loop.
q[1] = a;

}
}

Copy and constant propagationCopy and constant propagation

• Combine assignments and expressions
• Uses fewer instructions

Example:

void f(int i, int *p)
{
// copy propagation, all the same variable
int a = i;
int b = a;
int c = b;

// constant propagation
p[c++] = 0; // -> c + 0
p[c++] = 1; // -> c + 1
p[c++] = c; // -> c + 2

}

SchedulingScheduling

• Re-order instructions to avoid
stalls

• FPU/VMX operations take
many cycles to complete

• Bad aliasing prevents
efficient scheduling

Example:

a a

*
2.0

*

a

*

1.5

+

+

1.3

critical path

float f(float *p, float a)
{

return a * a * 2.0f +
a * 1.5f + 1.3f;

}

a

*
2.0

*
*

1.5

+

+

1.3

register pressure

dead space

dead space

dead space

Register allocationRegister allocation

Expressions allocated a “Local” or “global” register in the
function.

Global registers usually in short supply.

Too many registers used lead to “spills” to memory.
Also if address is taken of variable.

Example:

x is in a global register

x = a;
if(cond) { /*...*/ }
y = x + 1;

x is in a local register

if(cond) { /*...*/ }
x = a;
y = x + 1;

Profile driven optimisationsProfile driven optimisations

• Use results of profiling to determine “hot” and “cold”
code

• Hot code gets more instructions
– Inlining
– Loop unrolling

• Cold code gets fewer instructions
– Moved away from hot code to prevent icache

pollution

• On GCC “gcov” tool

if

cold code

hot code

if

cold code

hot code

Part 2: How to write efficient C/C++ codePart 2: How to write efficient C/C++ code

• Maximising basic block sizes
• Minimising effects of latency
• Avoiding aliasing
• Type conversions and unions
• PS3 intrinsics vs. inline assembler
• Vector classes dos and don’ts
• Multithreading effects on PS3
• Virtual function calls and switches
• Console vs. PC programming
• Using SN systems tools to examine your code
• new SNC optimizations
• SnMathLib

Maximising basic block sizesMaximising basic block sizes
• Inline everything you can and use fewer, larger modules
• Use __attribute__((always_inline)) on small functions
• Be aware of the high latency on floating point compares on PPU
• Even predicted branches are slow on deeply pipelined processors

void good(bool x)
{

if(x)
{

// do something
// do something
// do something

}
}

void bad(bool x)
{

if(x)
{

// do something
}
// do something
if(x)
{

// do something
}

}

Minimising effects of latencyMinimising effects of latency
• Interleave similar expressions in same basic block

• Use two threads on the PPU

• Load-hit-store on modern processor cores

• Floating point compare

• Simplify && and || expressions

int p1 = p[1];
if(p[0] == 0 && p1 == 0)

lwz
lwz
cmp
cmp
crand

bc # 2-22 cycles

if(p[0] == 0 && p[1] == 0)

lwz
cmp
bc # 2-22 cycles
lwz
cmp # 2-22 cycles
bc

a0 = b0 * 3.14f + c0 * 1.257f;
a1 = b1 * 3.14f + c1 * 1.257f;
a2 = b2 * 3.14f + c2 * 1.257f;

a[10] = b;
c = a[10]; // same address

// try to make this block very big
if(fabsf(x) < epsilon) {}

Avoiding aliasingAvoiding aliasing

• May use the restrict keyword for similar pointer parameters
• Inlining improves visibility of expressions
• Aliasing manifests as

– Seemingly redundant loads and stores
– Bad scheduling

• Move loads to start of basic block and stores to the end

void Butterfly(float *p1, float *p2)
{

p1[0] = p2[0] + p2[1];
p1[1] = p2[0] - p2[1]; // bad, p2[0] and p2[1] must be reloaded

}

void Butterfly(float *p1, float *p2)
{

float p20 = p2[0];
float p21 = p2[1];
p1[0] = p20 + p21;
p1[1] = p20 - p21; // good, no need for reload

}

Type conversions and unionsType conversions and unions

• Ok to use unions on the stack frame

static inline float f(vector float x)
{
union { float f[4]; vector float v; } u;
u.v = x;
return u.f[1];

}

• Bad to use unions in classes – structure copies are ambiguous

struct Naive
{
union { float f[4]; vector float v; } u;

};

float f(Naive x)
{
return x.f[0];

}

PS3 intrinsics vs. inline assemblerPS3 intrinsics vs. inline assembler

• Intrinsics
– schedulable
– alias analysis
– portable

• atomic access
• time base __mftb()
• time-saving machine ops __fctiwz()
• io __eieio()
• debugging __builtin_frame_address()
• system calls __system_call_nnn()

• Inline asm
– machine specific
– not schedulable
– more flexible?

Vector classes dos and donVector classes dos and don’’tsts

• Use __attribute__((always_inline))

• Use access functions instead of unions

• Pass by value if and only if class has one data member

• Always use multiples of 16 bytes

• Mixing of float and VMX bad with GCC – use scalar class

• Do float -> integer conversions straight to memory

• Use “supervectors” to absorb latency
– Groups of four or more vmx registers
– Provides work to be done between register dependencies
– Works over function calls

Multithreading effects on PS3Multithreading effects on PS3

• Instructions are executed alternately: effective latency is halved

• Cache misses are covered by other thread

• Use SPUs for any available task

• Synchronization intrinsics have high latency

• Any second thread is better than the default.

lwz fadd stfs

lwz fadd stfs

Thread 0

Thread 1

Actual latency 2 + 9 + 1

Effective latency (2 + 9 + 1)/2

Virtual function calls and switchesVirtual function calls and switches

• Virtual function calls are incredibly useful
– For high level control, AI and menus

• Virtual function calls are evil!
– Very slow 50+ cycles
– Only use for 100+ instruction functions

• Group values when using switches
switch(a) // good: jump table
{
case 1: ...
case 2: ...

}
switch(a) // bad: branch tree
{
case 100: ...
case 200: ...

}

– Consider using look-up table before switch to cluster values

Console vs. PC programmingConsole vs. PC programming

• PCs
– have extra hardware to minimize the effects of latency
– have fewer CPUs
– cannot use precompiled display lists
– designed to run legacy code
– load from hard drives

• Consoles
– are sensitive to latency
– have many CPUs of different kinds
– use precompiled display lists
– run new code
– load from DVD/Blu-ray

Console vs. PC programmingConsole vs. PC programming

• Avoid using malloc - use pools instead and pre-allocate

• Pre-build display lists - CPU resource is precious, do not use it for rendering

• Design data structures to be spooled from DVD - do not use “serialize”
methods or class factories

• Do not use global variables -global variable access is inefficient and uses
data cache badly

• Avoid virtual functions / indirect calls

• Use fewer, larger modules for better interprocedural optimization – about
ten to twenty modules is optimal for distributed builds.

Using SN Systems tools to examine your codeUsing SN Systems tools to examine your code

• Debugger
– Pipeline analyzer
– Randomly stopping execution can reveal hotspots

• Binary Utilities
– Pipeline analyzer
– Symbols

• Tuner
– Look for hotspots – the instruction before the hotspot is the bad one!
– PC sampling
– Auto instrumentation of functions
– User labels

Using SN Systems tools to examine your codeUsing SN Systems tools to examine your code

Sample tuner PC sampling

Instruction causing delay delay LHS within 1 cycle.
(requires 20 for safety)

Most common hotspots:
• on branch targets (icache miss)
• on loads (dcache miss)
• on loads (Load-Hit-Store)

volatile char mem;
for(int j = 0; j != 10000; ++j)
{

mem = (mem - 1 >> 1) + 1;
mem = (mem - 2 >> 1) + 2;

}

New SNC optimizationsNew SNC optimizations

• SSA analysis

– Constant propagation

– Memory optimizations

– Use of VMX to replace int and float operations

– Auto vectorization

– Conversion of floating point compares to integer

– Removal of fixed and zero iteration loops

SnMathLibSnMathLib

• Worked example of a complete math class for PSP®
(PlayStation®Portable), PS3 and PC

• Shows correct construction of math libraries

• Scalar classes for mixed operation

• Includes “Supervector” class “quadquad” for better scheduling
– Four vector operations of same kind at a time
– Fills in gaps between instruction issues

• Extensive test suite
– Performance
– Accuracy (especially trig functions)

Essential readingEssential reading

• Engineering a compiler (Cooper & Torczon)

• Wikipedia
– http://en.wikipedia.org/wiki/Category:Compilers

• GCC internal documentation
– http://gcc.gnu.org/onlinedocs/gccint/

• An interesting case study
– http://www.flounder.com/optimization.htm

