Meeting Players Half Way

Using Adaptive Methods to
Prevent Player Frustration

Irrational Games

'HIOSHOCR*

'-_____-_llll.ﬁ T

Accessible

Not Dumbed Down

Adaptive Training

 Don’t train things the players knows
o Teach players when they screw up
* Help you pick up where you left off

Problem: Games are too
complex

Solution: Training Sequences

Now you’ve got two problems.

Things To Train

Gameplay Conventions
Controller Conventions
Gameplay unigue to each game
Strategy unigue to each game

Gameplay Conventions

FPS Controller Conventions

e Jump on face button
e Crouch by clicking movement stick
* Right trigger shoots

Conventions

e Instantly familiar
e Learn once, apply for many games
e Do you train conventions?

Training Sequences

e Too Few
— Player doesn’t know conventions
— Player feels lost
— Player miss depth of the game

 Too Many
— Click through
— Annoyed and fraustraing first experience

Ideally...

e Beginning of the game
« Should be exciting
e Only Introduce the major unigue gameplay

Adaptive Training Goals

Complements linear training sequence
No more, “Here is how to jump, Marine”

Wider range of messages

— Strategy
— Hints

Tool tips for gameplay

Expert Systems

* Designer brain in a box

o Capture expert knowledge in a narrow
domain

 Wide Range of Applications

— Medical Diagnosis
— Accounting (Tax Advisors)

— Tutoring

Bioshock Training Script

 List of Concepts
— List of Conditions - IF-THEN Rules
— Triggers Training Messages

e Conditions only test things in a Fact
Database

 Forward Chaining Inferencing

'y

Evalutate Script

<€

'

Queue Action

Yes

»| Evalutate Concept

Evaluate Condition

End of Conditions

Move To Next
Concept

B \

No

End of Concepts
\/ Yes

Move To Next
Condition

No

Execute Top
Priority Action

P

Infinity Engine Scripting

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

Class (LastAttackerOf Myself), MAGE)
HPGT (Myself, 50)
EN
RESPONSE #80
Atack (LastAttackerOf (Myself), MELEE)
RESPONSE #40
Help()
RunAway ()
ND
F
Exists (LastAttacker Of (ProcectedBy (Myself))
EN
RESPONSE #100
Attack (LastAttackerOf (ProtedtedBy (My self))
, RANGED)

Final Fantasy Xll - Gambits

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

Gambit into psudo-code

IF

dead(allies) and has(pheonix down)
THEN
Use (pheorix down, dead (allies))

IF

paisoned(allies) and can cast(poisona)
THEN
cast (paisona, pasoned (allies))

Structure of an Expert System

e

J=zer
[nterface

A

Explanation

Aodsrize

ata
2 5
\ :
¥

Contoller or
Infere nce Engine

L

-

Knowledge Acquisition

 Gambits are created by an interface by the
User

e Bioshock Training Script created by
designer through a visual scripting system.

Knowledge Base

e |If - Then rules

o Gathered from the experts, either directly
or through a knowledge engineer

 Models processes and heuristics of
experts

Inference Engine

e Backwards Chaining
— Given a goal and reach it by deriving facts

e Forward Chaining
— Reach conclusions given facts

Backwards Chaining

e Goal Driven

e Structured Selection
— Find best diagnosis
— ldentification

e Can gather data as needed

Given list of goals
« Assume Then part
* Try to prove If part

e Try to prove family
IS albatross

How It works

IF
family is albatross and
color is white

THEN
bird is laysan albatross.

IF
family is albatross and
color is dark

THEN

bird is black footed albatross.

il

Forward Chaining

Data driven

Infer new facts based on current data
Keep track of current state of inference
Uses a Fact Database

Example

e Data
— Alice i1s married to Bob
— Bob I1s Ken'’s father

 I[F-THEN Rule

—Ilf Xi1smarriedto Y and Y Is Z's father then X
IS Z's mother

e Now this fact can be used in another rule

Fact Database

State

 Game update facts when needed

* Benefits of separation
— Uniformity of rules

— Optimization (Rete)

— Ease of testing

e Conditions use fact to determine game

What's a Fact?

(X, on, V)
Three Slots

Represents relations, or objects
String facts for more slots

(vector, 1, 2, 3) = (vector, 1, vectorl23),
(vectorl23, 2, 3)

Pattern Matching

 Wild cards

— ?X named variable

—IF (?X, on, ?x) THEN assert(?x can’t be on
itself)

— ? unnamed wild card, if you don’t need the
value

Using wild cards

 Inference
— (Alice, Married, Bob)
— (Bob, Father, Ken)
—if (?Xx, Married, ?y) and (?y, Father, ?z) then
assert (?x, Mother, ?z)
e String facts
— If (vector, ?x, ?link) and (?link, ?y, ?z)

Gameplay Example

e Security Systems
— Cameras can see you
— After they spot you they will trigger alarm

— You can evade them or shoot them to stop
triggering of alarm

— You can stop alarm by finding a security
station

Concepts

Represents a particular aspect of
gameplay

— How to use weapons effectively

— What to do next in a quest

— You can turn off alarms

 Knowledge level

— Models if player understands the concept
-1 is player doesn't understand the concept

1 is player understands the concept

Conditions

* A If-Then rule that can affect the
understanding of concepts

 Example:

— If player has triggered alarm then change
Knowledge of Security Alarm by -.1

f player has shutdown security then change
Knowledge of Security Alarm by .5

il

Fact Design

e Balance of designer and programmer
— logic In condition vs when to assert facts

e Need clear communication of assert vs
retract
e Avoid testing if fact is not true

— AlarmOn
— AlarmOft

Message Triggers

Display a training message
e Triggered by knowledge level changes
« Can have different levels of training

 Example

— When knowledge level is -.3, show message
telling you to avoid cameras

— When knowledge level is -.6, show modal
tutorial screen with detalls about the system.

il

Knowledge Updates

e Bayesian

— Used In tutoring systems, each problem can
be wrong due to multiple failure conditions

e Linear

— Easier to understand and reason with
— Few updating rules,

— unambiguous failures

Implementation

Modified Unreal 3 Engine

Uses a visual scripting system based In
UnrealED

Designer already knows the system
Design Pattern : Interpreter
Only need to provided Facts in game code

=l Concepts
= [0]

ConceptManme

Knowledgelevel
Conditions
MeszageTriggers

enabled

bIsGameCritical
El[1]

ConceptMarnne

Krnowledgel evel
Conditions
MessageTriggers

enabled

bIsGameCritical
B [2]

ConceptMarnne

Krnowledgelevel
Bl Conditions

[0]

[1]
MessageTriggers

enabled

bIsGameCritical
[3]

Sample Script

Concept SecuribyCameraCryerall wikh initial knowledge of 0,0000
SecurityCameraOverall
0.00a000

True

False

Concept SecuribyCamerasdyoid with initial knowledge of 0,0000
SecurityCamerasfAvoid

0.000000

True

False

Concept SecurityStations with initial knowledge of 0.0000
SecurityStations

0.000000

If Is Fact (alarmCancelled) true Then modify weight by 0,2000
If Is Fact {alarmExpired]) true Then modify weight by -0,0500

True
False
Concept SecurityTimers with initial knowledge of Q,0000

Training Script
— Array of Concepts

— Agenda: prioritized list of activated
conditions

e Concept

— Knowledge level

— An array of conditions

— An array of message triggers

E Conditions
=1 [a] I Is Fact {AlarmCancelled) true Then modify weight by 02000

= testsind

[0] I= Fact (AlarmCancelled) true
ThenAckion

Weight 0.200000

TickDelay 17

Pricrity 0

bIsGameCritical False

= [1] If Is Fact (AlarmExpired) true Then modify weight by -0,0500

= tesksand

[0] Is Fact (AlarmExpired) true
= Thendckion

Wieight -0.050000

TickDelay 30

Prioriky 0

. bIsGameCritical False

Condition

— Array of Action with results anded

— Array of Array of actions to perform if true
— Weight: How much to modify knowledge

— Priority: position in Agenda

TickDelay: A hack to improve performance

P

Bl [1] If Is Fact (AlarmExpired) krue Then modify weight by -0,0500
Bl testsind

=) [0] |Is Fack [alarmExpired) true
Slok1 + Facts
Slokz Tesk if a Fact is true
Slaks + Loagic
h 5 ical and Skakement
_ Isaametritica Boolean Staternent
=l ThenAction Mok Staterment
Weight 2 Skaternent
TickDelay Truth Skaterment

 Filter actions based on return type
e Logic expression actions

General Actions

= ThenAction
=] (0]
Weight
TickDelay
Priority
bIszameCritical
|
=l testsAnd
= [0]
YWalue
blsGameCritical
=l Thendckion
= [0]
Weight
TickDelay
Priority
bIsGameCritical
ageTriggers
ed
imelritical

ExecutedPerFact

+ Scripk
Blocking Execute Scripk
Exit Loop
Exit Scripk
Far Statement
Get Message value
If Skakement
Loop Statement
Mon-blocking Execute Scripk
Send Trigger Message
Skart Tirner
Skop Timer
Wait n seconds
+ Facts
Aszert a Fack
Fact assertion count since lask retract
Fetract a Fact
Test if a Fack is true
Time since the Fact was last asserked
Total duration that a Fact has been asserted
+ Training
Disable or enable a concept
knowledge level of a concepk
Modify knowledge level of a concept
Set knowledge level of a concept
Set Tip Prioriby
Show Eraining message

Fact Actions

o Operations

— Assert : Allows for forward chaining
— Retract

* Properties

— Number of times of assert since last retract
— Time since last retract
— Time since last assert

=[]
ConceptMame
knowledoeLevel
B Conditions
[o]
[1]
= [2]
E testsand
[o]
[1]
[2]
E Thenaction
[o]
[1]
[2]
[3]
W' eight
TickDelaw
Priarity
bIsGameCritical
[=]

[P Telm e m

More Complex Example

Concept CorrectAmmoType with initial knowledge of 0,0000
CorrectAmmoType
0, 00aoon

If Is Factk (GoodAmmollsed) true Then modify weight by 0,2000
If Is Fack (COKAMmmMalsed) true AND MOT(Is Fack (GoodAmmosyailable) true) Then modify weight by 0,0500
If Is Factk (Badammollsed) troe AMD Is Fact (OKAmmodyvailable) troe AMD NOT(Is Fack (Goodammodyvailable) true) Then do 4 ackions

Is fact (Badammollsed) true
Is Fact (QkAmmodwvailable) true
MOTiIs Fack (Goodammodyailable) true)

Retrack Fact (BadAmmollsed)

This is so every instance of using Bad ammo will resulk in a decrement

Maodify knowledge level of CorreckAmmoTypeExtended by -0,0500

But because we retracted the Fack, we need to manually modify the related concept
-0.050000

10

o

False

If Is Fack (Badammollsed) troe AMD Is Fact (Gooddmmodyvailable) true Then do 4 actions

Expert System Advantages

e System independent of game

* Expert System Shells
—Java : Jesse
— C : Clips
— Python : Pychinko
 Lots of existing literature and research

Rete Algorithm

Avoids linear increase In performance as
rules grow

Latin for ‘Network’

Converts IF conditions into a data flow
network.

Presents simplified algorithm

Example

e Two rules

—Iifxandy Then p

—Iif xand y and z Then g
 Evaluates x and y twice

— Operations could be expensive
— (?x, Married, ?z) could match a lot of items

Convert to nodes

The Rete Algorithm

é? @ Q? @ /@ ek

| Retels

@ Latm for net

&Yy =>P & nodes
X &y & 2 =>g

A

"Tom
network”

Optimize Network

The Rete Algorithm

Optimization 2: @
Sharing 1n join network /

x&y=>P 5 nodes
X &V & 2 =>g

A

Alpha/Beta Memory

5%

* Alpha Memory
— Store all facts that matched pattern

 Beta Memory
— Stores pairs matched by join nodes

* Only Incur cost when facts change
— Insert or remove from alpha/beta memory

Does Adaptive Training Work?

e Don't Know Yet
— Focus testers have found them useful

* Play Bioshock and get back to me.

Future Improvements

 Integration with difficulty system
o Give player situations to faclilitate learning.

References

e Rete Paper : Production Matching for Large
Learning Systems

 Expert System Shell : CLIPS
 Infinity Script Unofficial Guide

