

Dynamic Walking
with

Semi-Procedural Animation

Rune Skovbo Johansen
Creative Programmer, Unity Technologies

Walking

Importance of Walking

» Players often spend most of the
time walking around

» Games have increasingly detailed
environments

» We want to make it look good
when walking through these
environments

Keeping Experts in
Control
» Adaptation to Terrain

with believable walking over any steps
and slopes

» Animators
in full control of style and personality

» Game Programmers
in full control of game logic and
character movements

What is Wanted

Minimum Work
»  Only few animations are needed (as few as 2 per

character)
»  Fully automatic blending of multiple walk cycles

Maximum Flexibility
»  Should work for humans, quadrupeds, bugs,

spiders, ...
»  Walking with any direction and curvature on any

terrain

Demo of
Locomotion System

Clarification

The Locomotion System is not:

» A physics-based system or active
animated ragdoll system

» A behavior-based system
(like NaturalMotion’s euphoria)

» A unified system that can be used
for all animation of a character

Best of Both Worlds

»  Full control over style
» Dynamic movements

Traditional
key-framed
+ blending

Procedurally
generated

motion

Semi-
procedural
animation

Minimal Model

»  Models are based on assumptions

»  Get a highly flexible system
by reducing the assumptions

Character Requirements

»  One or more legs

»  Each leg has two or
more bones from hip to
foot

»  First and last joints are
spherical (ball-and-
socket) joints

»  Middle joints are (at
least) hinge joints

»  No animated scaling /
stretching of leg bones
(in current implementation…)

!

spherical

hinge

hinge

spherical

trailing bone(s) for foot
!

spherical

trailing bone(s)

for foot

spherical

hinge

hinge

Animation Requirements

»  Animations must be cyclic!

»  Animations are in character space
"walking on the spot"

»  Legs (knees) should not over-bend

»  The feet should be at their lowest when in
contact with the ground
(and not penetrate the ground too much)

»  Feet should be moving backwards* when in
contact with the ground, with linear speed

* for a forward walking animation

Automating the Hard
Work
Easy setup
»  List of legs

»  List of animations

Each animation is automatically
analyzed:
»  Speed and direction (velocity)

»  Foot cycle lifting and landing keytimes

The Motion Cycle

!

Motion cycle

Cyclic time 0…1

for whole motion

Leg 1 stance time

0.2 in motion cycle

0.0/1.0 in leg cycle

Leg 2 stance time

0.7 in motion cycle

0.0/1.0 in leg cycle

0.75 0.25

0.00

0.50

Motion cycle

Leg Cycle and Keytimes

!

s
ta

n
c
e
 t

im
e

fo
o
t-

li
ft

fo
o
t-

o
ff

fo
o
t-

s
tr

ik
e

fo
o
t-

la
n
d

s
ta

n
c
e
 t

im
e

p
o
s
t-

fo
o
t-

li
ft

p
re

-f
o
o
t-

la
n
d

1.0 0.0

flight time

stride time

leg cycle time

0.0

0.0

1.0

1.0

foot-roll foot-roll

Leg cycle

Sample Heel and Toe
Trajectories

Movement Axis

Movement Axis
!

a

b

c

average of heel and

toe (for each sample)

projected onto ground

axis b-a

Stance Time

To determine the stance time, a cost value is calculated
for each sample based on:
»  Height of the heel and toe at that sample
»  Position along movement axis

(middle=low cost)

Foot Relative To Ground

How to measure height of foot over the ground?
»  Heel as reference point doesn’t work.
»  Neither does the toe, or the middle.

!

!! !!

foot-strike stance time foot-off

re
fe

re
n
c
e

a
n
im

a
ti
o
n

ru
n
ti
m

e

s
y
n
th

e
s
is

Heel height as

reference

The Footbase

Introducing: The footbase
»  Like a plate under the foot
»  Always perpendicular with the ground underneath

»  Foot touches footbase with heel, toe, or both

The Footbase

How to measure height of foot over the ground?
»  Find the footbase, given position and alignment

of foot, and the slope of the ground
»  Measure the height of the footbase above the

ground

!
foot-strike stance time foot-off

!! !!

re
fe

re
n
c
e

a
n
im

a
ti
o
n

ru
n
ti
m

e

s
y
n
th

e
s
is

Footbase height

as reference

The Footbase
!

Motion analysis of

reference animation

Motion synthesis at

runtime

foot position at

runtime

runtime footbase

position

reference footbase

position

foot position in

reference animation

Finding the Keytimes

!

s
ta

n
c
e
 t

im
e

fo
o
t-

li
ft

fo
o
t-

o
ff

fo
o
t-

s
tr

ik
e

fo
o
t-

la
n
d

s
ta

n
c
e
 t

im
e

p
o
s
t-

fo
o
t-

li
ft

p
re

-f
o
o
t-

la
n
d

1.0 0.0

flight time

stride time

leg cycle time

0.0

0.0

1.0

1.0

foot-roll foot-roll

Leg cycle

Finding the Keytimes

»  Keytimes need to be set for each leg, for
each animation.

»  Animators can annotate these.

»  In the implemented system, an
automatic heuristic was used as part of
the motion analysis.

!

s
ta

n
c
e
 t

im
e

fo
o
t-

li
ft

fo
o
t-

o
ff

fo
o
t-

s
tr

ik
e

fo
o
t-

la
n
d

s
ta

n
c
e
 t

im
e

p
o
s
t-

fo
o
t-

li
ft

p
re

-f
o
o
t-

la
n
d

1.0 0.0

flight time

stride time

leg cycle time

0.0

0.0

1.0

1.0

foot-roll foot-roll

Leg cycle

Finding the Velocity

» Measure the distance that footbase
has moved from foot-land time to
foot-lift time.

» Divide by time-span between
those two times.

» Do the above for each foot, then
use the average as the velocity for
the motion.

Normalized Footbase
Trajectories

»  With the velocity known, we know the
footbase trajectory relative to the
ground (i.e. in world space).

Normalized Footbase
Trajectories
Normalize the trajectory and store it:

»  Trajectory starts at (0,0,0)

»  Ends at (0,0,1):

  Aligned with z-axis

  Scaled to have step length of 1

»  Keep vertical and sideways
components un-scaled

Analysis done!
(repeat for each motion)

Automatic Blending

»  The velocity of each sample animation is known.
»  Based on current velocity, assign weights to

neighboring samples.
»  A problem of scattered data interpolation.

(Plenty of research on the subject.)

Automatic Blending

»  Only few animations are needed. (As few as 2)
»  Forward animations can double as backwards.
»  Walking sideways may not always be needed but

always make turning look better.

Blending the Data Too

Blending weights are used to blend
animations and:

»  Normalized footbase trajectories

»  Keytimes

»  Stance position
(Position of foot relative to body at stance time)

»  Basically all data analyzed for each
animation!

Leg Movements

Inverse kinematics
(IK) can be used at
runtime to move a
leg around by
specifying the hip and
ankle positions

Leg Movements

...but how should the feet be
moved around?

Leg Movements

»  We determine spots on the ground
where the feet land – the “footprints”

»  The foot takes a step from one
footprint to the next

Footprint Prediction

At the stance time (the start/end of the leg
cycle) the foot is at its stance position (the
“resting” position of the foot in character space).

»  Predict where the character is (the transform) at
the next stance time.

»  Multiply the stance position with the predicted
character transform.

»  Result: The next footprint
(The next place where the foot lands on the ground)

»  Keep updating the footprint prediction until the
foot is planted

Footprint Prediction

»  For each foot, the next footprint is predicted
according to current velocity and rotational velocity.

»  The prediction is updated until the foot is planted.
»  Raycasts are used to place the footprints

on the ground.

Footprint Prediction

»  Prediction is individual for each leg.
»  Works for any number of legs.
»  Everything derived from sample animations.

Foot Flight Between
Footprints
The foot must move from the prev to next
footprint with a proper trajectory.

»  Proper horizontal curve that follows character…

»  Vertical lift that fits the (uneven) terrain…

»  If supporting leg is higher than lifted, lift to
that height…

»  Preserve trajectory movements from original
motion…

Proper Horizontal Curve?

Need trajectories from prev to next footprint that
work great no matter if adjusted velocity and
curvature is completely different than in blended
sample animations.

!

A simple figure repre-

senting a character. Fo-

cus here is on the left

leg.

In a forward walking

example motion, the

stride is going from the

previous footprint behind

the character to the next

one in front. At runtime the character

may be turning…

…or even walking sideways.

Proper Horizontal Curve?

»  Use normalized footbase trajectory to move
foot from prev to next footprint.

»  Doesn't work in a straight line though!

Proper Horizontal Curve?

»  We also can't simply lerp into the original foot
motion midway through the flight.

»  Gives wrong deltas if velocity at runtime is very
different than velocity of blended sample
animations.

»  (Footbase path from a forward walking animation
applied to a sideways walking character will
result in strange foot curves, even when only
applied in mid-flight.)

Proper Horizontal Curve!

»  Use straight line trajectory as a basis.
»  Add offset based on current stance position

relative to lerped position between
prev and next footprint.

!

The stride is only a sub-

set of the leg cycle.

When the foot lifts off,

the leg cycle time may

already typically be at

around 0.25. The cor-

responding offset is ap-

plied.

The offset is added to

the straight line interpo-

lated footbase position

with full weight at the

middle of the stride and

zero weight at the begi-

ning and end.

At any time in the leg

cycle, the offset vector

from the linearly interpo-

lated footprint positions

to the current stance po-

sition in world space is

calculated.

0.25

0.5

0.75

0

1

Throughout the leg

cycle, from stance time

to the next stance time,

the stance position fol-

lows the character and is

always the ”neutral

resting place” for the

foot relative to the body.

stance time

stance time

0.25

0.75

0.5

Proper Horizontal Curve!

»  Nice smooth curve for any adjusted movement.
»  Acceleration ("ease in / ease out") is still based

on normalized footbase trajectory.

Adjusted to New
Velocities

»  Flexibility of foot trajectories make it possible to
adjust animations to work for completely new
directions.

»  (May not always look natural)

»  But highly useful for turning.

Vertical Lift Fitting the
Terrain
»  The foot should follow the terrain roughly, but in

a smooth way.
»  Look at tangents of ground at prev and next

footprint.
  Can be derived from ground normals at the

footprint positions.

!

prev

next

mid

up
nprev

nnext
hprev

hnext

Vertical Lift Fitting the
Terrain
»  Find the intersection of tangent and vertical axis

above mid-point between prev and next.
»  Use the intersection point with the highest

altitude of the two.

!

hprev

nprev

a

b

up

Vertical Lift Fitting the
Terrain
»  Use the height of the intersection point relative

to the mid-point to determine the magnitude of
an arc that is added to the footbase trajectory.

»  The arc follow the “highest” tangent.

!

prev

next

mid

Vertical Lift Fitting the
Terrain

!

prev

next

mid

!

prev

next

mid

!

prev

next

mid

!

prev

next

mid

(This is the base trajectory. The original
lifting is later added on top.)

Lift to Height of
Supporting Leg(s)

!

Lift to Height of
Supported Leg(s)
»  Calculate “basis height” of character:
»  For each foot, create a smooth curve going

through the footprints.
  Minus offset of stance position.

»  Make weighted average of those curves:
  Grounded feet have full weight.
  Feet in mid-flight have almost zero weight.

»  Measure the height at the current position on the
curve.
!

Lift to Height of
Supported Leg(s)
For each foot:

»  If the basis height is higher than this foot while
in flight, lift the foot up:

»  From foot-off, lerp the lifting in until it has full
influence at mid-flight, then back to zero
influence at foot-strike.

!

Lift to Height of
Supporting Leg(s)

» Advantage:
Does not assume specific number
of legs

Preserve Original
Trajectories
»  All the trajectory calculations so far were

just to take uneven terrain and non-
constant velocity / turning into account.

»  (When walking on plain horizontal
surface, they result in just a straight
line trajectory for the footbase.)

»  Now, add the normalized footbase
trajectories (from the motion analysis)
as additional offset.

»  The style is preserved!

Foot Alignment

» Now the footbase trajectories are
calculated, but we still need to find
good foot alignments

»  Feet move differently on a flat
surface than they do on e.g. stairs

» So alignment of feet cannot be
used directly from animation data

Foot Alignment

When the foot is flat on the ground:

»  Keep original alignment relative to
ground.

When the foot is lifted in the air:

»  Keep original ankle joint rotation.

Transition smoothly between these
two states.

Foot Alignment
Pose in original
motion

!

Adjusted pose at
runtime

!

Need to have proper foot-roll on uneven
terrain.

Foot Alignment
Pose in original
motion

!

Adjusted pose at
runtime

!

At runtime, move the foot to its footbase.

Foot Alignment
Pose in original
motion

!

Adjusted pose at
runtime

!

Use IK to get bone alignments between hip
and ankle.

Foot Alignment
Pose in original
motion

!

Adjusted pose at
runtime

!

Apply the local rotation from the original
motion at the ankle joint.

Foot Alignment
Pose in original
motion

Adjusted pose at
runtime

!

Apply the local rotation from the original
motion at the ankle joint.�
(0% when grounded, 100% when in flight.)

!

s
ta

n
c
e
 t

im
e

fo
o
t-

li
ft

fo
o
t-

o
ff

fo
o
t-

s
tr

ik
e

fo
o
t-

la
n
d

s
ta

n
c
e
 t

im
e

p
o
s
t-

fo
o
t-

li
ft

p
re

-f
o
o
t-

la
n
d

1.0 0.0

flight time

stride time

leg cycle time

0.0

0.0

1.0

1.0

foot-roll foot-roll

Leg cycle

Foot Alignment
Pose in original
motion

!

Adjusted pose at
runtime

!

Apply the local rotation from the original
motion at the ankle joint.�
(0% when grounded, 100% when in flight.)

Foot Alignment
Pose in original
motion

!

Adjusted pose at
runtime

!

Move the foot to its footbase again.

Foot Alignment
Pose in original
motion

!

Adjusted pose at
runtime

!

Use IK to get bone alignments between hip
and ankle again.

Done. (Perform all steps in each frame.)

Demo:
Adapted Foot-Rolls

Starting and Stopping
Walking
»  Character may start or stop walking at

any time

»  Fixed key-framed transitions are not
flexible

»  Automatic transitions are desired

Starting and Stopping
Walking
» Walking and running is a

continuous cycle where the feet
touch the ground one at a time

»  In idle animations both feet are
grounded at the same time

» How to transition?

Starting and Stopping
Walking
» Each leg has its own leg cycle.

» Normally the leg cycles all turn
around together with the overall
motion cycle.

» But they can independently “stop
turning” one at a time (or start).

Starting and Stopping
Walking
For each leg:

»  If length of next step is below given threshold:
  “Park” the leg cycle next time it reaches its

stance time.

»  If the leg is parked, and the next step is above
given threshold:

  “Unpark” the leg cycle the next time the “would
be” leg cycle value passes the stance time.

»  Maybe allow “catching up” to make mechanism
less rigid.

Demo: Automated
Transitions

Interface and Integration

How to integrate the system
with other animation systems used

in the game?

Controlling Styles

» Blending of idle, walking, running
animations is automatic

» But how to control style?

Styles Through Animation
Groups
»  Animation Groups are collections of

animations for locomotion.

»  Each group contains up to several
animations with the same style but with
different velocities.

»  Example:

  Group “normal” - normal idle + walk + run

  Group “sneaky” - sneaky idle + walk

Animation Groups

» Each animation group can be
controlled as if it was a single
animation

animation["normal"].weight = 0.8f;
animation["sneaky"].weight = 0.2f;

animation.CrossFade("sneaky",0.5f);

Current Limitation in
Motion Types
3 types of motions
»  Walk / run cycles

  Walking / running with feet adjusted to uneven
terrain

»  Grounded animations (feet are not moving)
  Feet still adjusted to uneven terrain below

»  Everything else
  Not directly supported at this point / feet not

adjusted

  But adjustments are gracefully (gradually) turned off

  E.g. jumping: Adjustments turned off while in air

Performance

Reference machine: 2.4 GHz Intel Core 2 Duo

Biped: 0.25 ms per frame

1 biped: 100 -> 98 fps 50 -> 49 fps
10 bipeds: 100 -> 80 fps 50 -> 44 fps

Quadruped: 0.55 ms per frame

1 quadruped: 100 -> 95 fps 50 -> 49 fps
10 quadrupeds: 100 -> 65 fps 50 -> 39 fps

Many Characters

Many Characters

Quadrupled animal models
(coyote, grizzly bear, wolf)

courtesy of WolfQuest.org

Thank you!

Questions…?
»  …

»  Email: rune@unity3d.com

Resources
»  Locomotion System for Unity

unity3d.com/support/resources/

»  Unity Game Engine
unity3d.com

»  The Master Thesis behind the system is coming soon…
runevision.com/multimedia/

