

QA’s 10 Commandments:
What?! Only 10?

 A review of QA’s best practices and
an examination of potential
additions.

 Chuck McFadden

 Sony Computer Entertainment
America

This lecture is NOT:

 An in-depth examination of SCEA’s
QA practices or of PlayStation
Home.

 A review of console submission
requirements.

 An hour long.

The origin of the 10.

Use the Scientific Method.

 Observe and describe.

 Formulate a hypothesis.

 Experiment.

 Draw a conclusion.

 This Commandment separates the
good testers from the bad.

Playing vs.Testing.

 Know the difference! Spend most
of your time testing.

 Check your ego at the door: Test
“losing” conditions as much as the
“win” conditions.

Be Flexible.

 QA testers/teams are used for a
variety of tasks outside of
traditional “testing.” Encourage
this.

 As a game nears completion,
continually evaluate QA’s bugs and
reprioritize as necessary.

 Recommendation: Use a
prioritization scheme.

Find and Report Bugs as
Early as Possible.

 Review the “save flow” when it’s a
simple design on paper.

 Look at early UI text to spot
incorrect usage of platform naming
conventions.

 See if a tester can “find the fun” in
an early build/prototype.

Think like a Hacker.

 Be creative in finding problems.
Look beyond the surface.

 Examples: Exiting a room through a
door, window, ceiling, or wall.

 Don’t simply test how the game is
“supposed” to be played.

1 . . . 10

Think like a Hacker (cont.)

 1-10 might be tested thusly:

 Test the #1, then the #2, then #3,
and so on until 10.

 What happens when you test #0?

 Or #-1?

 Or #1,002?

 Or #0.356?

Put in as much effort with your
Regression as with the initial
tests.

 Also known as “Halo testing.”

 Check for new bugs that are a
result of the fixed bug.

 Risk is always associated with any
bug fix.

Don’t let QA members test
designs they’ve championed.

 QA testers are only human.

 When a tester’s design input
becomes an in-game reality,
he/she cannot be allowed to test
it.

Don’t write sloppy bugs!

 What is a tester’s most valuable
weapon?

 Awesum gamr skillz?

 Effective communication?

 Spell and grammar check
everything.

 Ensure “steps to repeat” are
clearly and concisely written.

 Any developer who follows the steps
should be able to repeat the bug.

Test everything.*

 Never assume any feature is bug-
free.

 Use test plans to help you test
every feature in every
(reasonable) way.

 Good enough isn’t.

 * Perhaps not such an important
rule any longer. More later.

Assume all bugs can be
consistently reproduced.

 It’s not a question of whether it’s
reproducible, rather an ROI
question.

 Scientific Method helps a lot here.

 If the tester doesn’t have enough
time to consistently reproduce,
make sure the bug details a
percentage.

But, wait! There’s more!

 Possible additions:

 Automate tests.

 User testing.

 The End is the Beginning.

 * Test Everything.

Automate Tests

 Identify tedious QA tasks that can
be handled automatically.

 Hire a QA tools programmer.

 Encourage the dev team to devote
some time to the task.

 Key point: Automated tests are
only helpful if they’re planned for
in advance.

User Testing

 It’s not QA testing!

 But it’s equally important.

 Don’t sour the user tests with your
preconceptions.

 Learn to interpret “usability”
feedback.

 What users want isn’t always what
they need.

The End is the Beginning.

 Increasingly, games see post-
release updates.

 Should your test strategies
change?

 Leverage modern business practices
and technology to streamline your
work.

*Test Everything.

 Food for thought:

 Now that post-release development is
common, is this commandment
necessary?

 Is “good enough,” good enough?

Thank You!

 Questions?

 Comments?

 Performance Art?

