
Zero to Millions:
Building an XLSP
for Gears of War 2

Dan Schoenblum
Senior Engine Programmer
Epic Games
dan.schoenblum@epicgames.com

About Me

 Working in online gaming for over 10
years

 At GameSpy from 1999-2008

 “Powered by GameSpy” technology

 Joined Epic Games early in 2008

 Part of the online team

About Epic Games

 Gears of War Franchise

 Unreal Franchise

 Unreal Engine

 100+ games

Gears of War

 Released November 2006

 Multiple Game of the Year awards

 #1 Xbox LIVE game of 2006

 #2 Xbox LIVE game of 2007

Gears of War 2

 Build a better game

 More visually stunning

 More fun

Gears of War 2

 Build a better game

 More visually stunning

 More fun

 “Bigger, better, and more badass”

Gears of War 2

 Great online community

 New online functionality

 Better for gamers

 Better for Epic

 Build our own online backend

 Add features not supported by Xbox LIVE

Gears of War 2
Online Backend

 What features?

 How will it work?

 How will we build it?

 What technologies will we use?

Gears of War 2
Online Backend

 Starting from scratch

 Small team

 3-4 programmers

 Also doing client-side work

 Little backend experience

 (aside from me)

 Lots of data to handle

 Less than a year

 Team at Microsoft working on backup

Unreal MCP

Unreal MCP

Unreal MCP

Unreal MCP

Unreal MCP

Unreal MCP

XLSP

 Xbox LIVE Server Platform

 Used when adding custom online features
to Xbox LIVE games

 Provides a secure and trusted channel of
communication

Getting Started

 XLSP

 Game to backend data

 Backend to game data

Getting Started
Web Server

 Game’s interface to the backend

 HTTP is a simple protocol

 Less work

 Less risk

Getting Started
SQL Database

 Stores incoming data

 Stores outgoing data

Getting Started
Web Server & Database

 Mature

 Well-known

 Quick startup

Service Types

 Bidirectional Service

 Game sends a request

 Game receives data in response

 Example: message of the day

 Asynchronous Service

 Game sends data

 Fire and forget

 Example: game stats reports

Bidirectional Services
Example: MOTD

Bidirectional Services
Example: MOTD

 Game sends request to the web server

Bidirectional Services
Example: MOTD

 Game sends request to the web server

 MOTD is pulled from the database

Bidirectional Services
Example: MOTD

 Game sends request to the web server

 MOTD is pulled from the database

Bidirectional Services
Example: MOTD

 Game sends request to the web server

 MOTD is pulled from the database

 Game receives MOTD via HTTP response

Asynchronous Services
Example: Game Stats

Asynchronous Services
Example: Game Stats

 Game uploads a stats report

Asynchronous Services
Example: Game Stats

 Game uploads a stats report

 Web handler puts it in a queue

Asynchronous Services
Example: Game Stats

 Game uploads a stats report

 Web handler puts it in a queue

 Processing service pulls it

Asynchronous Services
Example: Game Stats

 Game uploads a stats report

 Web handler puts it in a queue

 Processing service pulls it

 Game info is stored in the database

Asynchronous Services
Example: Game Stats

 The data is replicated to two other
databases

 Epic for data analysis

 www.gearsofwar.com

www.gearsofwar.com

Data Analysis
Internal

 Internal uses

 Website

 Custom reports

 Visualizations

 Charts

 Graphs

 Heatmaps

 Numbers

Data Analysis
Internal

 Default Weapon by Experience Level

Data Analysis
Internal

 Weapon Kill Trends

Data Analysis
Internal

 Game Type Trends

Data Analysis
Internal

 Shotgun Kills on Day One

Data Analysis
Post-Processing

 Asynchronous services do minimal
processing in production

 For further analysis, more processing is
needed

 Custom post-processing apps dig further
into the data

 Use the Epic replicated database

 No direct effect on production backend

Data Analysis
Post-Processing

Data Analysis
Post-Processing

 Replicated data arrives

Data Analysis
Post-Processing

 Replicated data arrives

 Apps post-process the data

Data Analysis
Post-Processing

 Replicated data arrives

 Apps post-process the data

 Store details back in the database

Data Analysis
Post-Processing

 Replicated data arrives

 Apps post-process the data

 Store details back in the database

 Post-processed data used for analysis

Data Analysis
SQL Trouble

 Initially used SQL for analysis

 Trouble after Gears 2 release

 Queries were very slow

 Huge table of weapon data

 SQL-based analysis was impractical

 Internal website was unusable

Data Analysis
SQL Trouble

 Initially used SQL for analysis

 Trouble after Gears 2 release

 Queries were very slow

 Huge table of weapon data

 SQL-based analysis was impractical

 Internal website was unusable

Data Analysis
OLAP to the Rescue

 SQL

 Relational database

 Great for storage

 Bad for analysis

 OLAP (OnLine Analytical Processing)

 Complements SQL

 Aggregates data in “cubes”

 Great for analysis

Data Analysis
OLAP to the Rescue

 SQL

 Relational database

 Great for storage

 Bad for analysis

 OLAP (OnLine Analytical Processing)

 Complements SQL

 Aggregates data in “cubes”

 Great for analysis

Scalability & Performance

 Estimates

 100s of transactions per second

 Gigabytes of data per day

Scalability & Performance

 Game clients

 First line of defense

Scalability & Performance

 Load balancer

 Second line of defense

Gears 2

Clients

Load

Balancer

Server

Server

Server

Scalability & Performance
Application Servers

 Horizontally scalable machines

 Each application server has:

 Web server

 For each Asynchronous Service

One queue

One processing service

 Self-contained

 Only talk to the database

 Add servers to add capacity

Scalability & Performance
Multi-threaded Apps

 Multi-core servers

 Web server (IIS)

 Queues (MSMQ)

 Database (MS SQL Server)

 Processing services (custom C#)

Scalability & Performance
Asynchronous Services

 Local queues

 Each web server has a queue

 Minimize processing

 Example: game stats upload

 Originally XML

 Too large

 Then compressed XML

 Too slow

 Finally, custom binary

 Small and fast

Scalability & Performance
Bidirectional Services

 Cache when possible

 Reduces DB load

 Reduces turnaround time

 Example: MOTD caching

Scalability & Performance
Bidirectional Services

 Cache when possible

 Reduces DB load

 Reduces turnaround time

 Example: MOTD caching

Scalability & Performance
Bidirectional Services

 Cache when possible

 Reduces DB load

 Reduces turnaround time

 Example: MOTD caching

Scalability & Performance
Bidirectional Services

 Cache when possible

 Reduces DB load

 Reduces turnaround time

 Example: MOTD caching

Scalability & Performance
Database

 Multiple application servers

 Single database is a bottleneck

Scalability & Performance
Database - Replication

 Production database

 Replicated to:

 www.gearsofwar.com

 Epic internal

 Expensive queries don’t run on production

Scalability & Performance
Database – Profile Caching

 Matches a player to a profile ID

 Performance bottleneck

 Cache profiles when possible

 Web handlers

 Asynchronous processing services

 Post-processing services

 Pro: Increased performance

 Con: Cache management

Scalability & Performance
Database – Profile Caching

GetOrAddProfile(Player)

{

if(PlayerInLocalCache)

return ProfileID from Cache

if(PlayerInProfilesTable)

return ProfileID from Table

AddPlayerToProfilesTable(Player)

return ProfileID from Table

}

Scalability & Performance
Database – Profile Caching

BeginTransaction()

ProfileID = GetOrAddProfile(Player)

AddProfileIDToLocalCache(ProfileID)

DoOtherDatabaseOperations()

CommitTransaction()

Scalability & Performance
Database – Profile Caching

BeginTransaction()

ProfileID = GetOrAddProfile(Player)

AddProfileIDToLocalCache(ProfileID)

DoOtherDatabaseOperations()

CommitTransaction()

Scalability & Performance
Database – Profile Caching

BeginTransaction()

ProfileID = GetOrAddProfile(Player)

AddProfileIDToLocalCache(ProfileID)

DoOtherDatabaseOperations()

CommitTransaction()

if(TransactionSucceeded)

AddProfileIDToLocalCache(ProfileID)

Stress Testing

 Stress test client

 Simulates game operations

 MOTD requests

 Game stats uploads

 etc.

 Configurable

 Operations per second

 Number of threads

 Length of run

 etc.

Stress Testing

 Find bottlenecks

 Test optimizations

 Example: game stats uploads

 Identify problem area

 Test alternatives

 Measure performance change

Stress Testing

 Find bugs

 Test fixes

 Example: database deadlock

 Identify and fix bug

 Verify fix

Administration

 Web-based

 No direct access to production

 Did not know who would be administering
MCP

 Already using web server

 Web browser as admin client

Administration
Features

 Message of the day

Administration
Features

 Custom game settings

Administration
Features

 Edit MCP configuration

Administration
Special Events

 Schedule custom game settings

 Schedule MOTDs

 Valentine’s Day Event

 Old School Weekend

 Fourth of July Weekend

Administration
Special Events

 12 Days of Gearsmas

 Different MOTDs and game settings each day

 150+ MOTDs scheduled in multiple languages

Administration

 Can be cumbersome for common uses

 Setting up MOTD can be time consuming

 Post-release updates helped

 Uses cases are important

Hosting

Hosting

 Microsoft hosts Gears 2 MCP

 We do not have direct access

 Only web admin access

 Changes can take weeks

 Update checklist

Hosting
Update Checklist

 Database Scripts

 Functional Tests

 Stress Tests

 Front End

 Web Backend

 Upgrade Doc

 Health Model

 Nightly MOM Data

 Perf Counters

 Error Handler

 Replication

 Data Aging

 Post Processing

 Reporting/Charting

Hosting
MCP Front End

 Deployment and
verification tool

 Helps with MCP
installation

 Also used for local
development

What could possibly go wrong?

Data Center Problems

 Failed cooling system

 Machines overheating

 Multiple day downtime

 Luckily, not production

Data Center Problems

 Failed cooling system

 Machines overheating

 Multiple day downtime

 Luckily, not production

 Failed power supply

 Redundant backup failed

 Outage and lost data

 Unfortunately, production

Monitoring

 MOM (SCOM)

 Health model

 Performance counters

 Event logs

 Lots of iteration

 Warning thresholds

 Error thresholds

 Hard to predict real world

Monitoring
Problems

 Thresholds were set too low

 We did not want to miss any issues

 But we ended up with false alarms

 Event log was not cleared before release

 Simulation had filled the event log

 Alerting was turned on

 Flood of false alerts

 We crashed a phone

 SMS charges $$$

Monitoring
Ongoing…

 Problems can always happen

 Need to continue monitoring

 For the life of the game

 Or as long as online is supported

Monitoring
Ongoing…

 Problems can always happen

 Need to continue monitoring

 For the life of the game

 Or as long as online is supported

Launch

 Testing had been done

 Local, PartnerNet, Production

 But Production testing was done from
inside the network

 External connections had not been tested
– and did not work

 We could only sit and wait

 Was fixed less than 2 minutes before our
midnight release

Success!

 Great for Gears 2

 New features

 Gameplay feedback

 Special events

 Held up under load

 Platform for future products

 Using with the UDK (Unreal Development Kit)

 Available to Unreal Engine licensees

Q&A

 Dan Schoenblum

 dan.schoenblum@epicgames.com

 Epic Games

 Booth BS200, South Hall

www.epicgames.com

 Unreal Technology

www.unrealtechnology.com

Copyright © 2010, Epic Games, Inc. All Rights Reserved. Epic, Epic Games, the Epic Games logo, Gears of War, Unreal
Tournament, Unreal Engine, Unreal MCP and the Circle-U logo, are trademarks or registered trademarks of Epic Games, Inc. in
the United States of America and elsewhere. Other brands or product names are the trademarks of their respective owners.

mailto:dan.schoenblum@epicgames.com
http://www.epicgames.com/

