
MMO Code and Complexity
Managing EVE’s Expanding Universe

Berglind Rós Guðmundsdóttir



EVE Online



EVE Online

Development Development Development

ART CONTENT CODE

Release

Testing Testing Testing



EVE Online

• 330,000 subscribers

• 56,817 concurrent users (Jan 24th 2010) 

– single shard (everyone in the same virtual world)

• Up to 1400 users in most popular solar system

• 1000+ users in fleet fights• 1000+ users in fleet fights

• 1,100,000 lines of code

• 4,000 database objects

• 200 server nodes

• 1 database



SQL Server 2008

• Mostly stored procedures (T-SQL)

• Code developed by all, reviewed by DB specialists

• One database

– Largest table 1,962,000,000 rows– Largest table 1,962,000,000 rows

– 200 million requests/day

– 2500 transactions/second



Cluster topology



C++

• Performance critical modules

– Graphics engine

– Sound engine

– Solar system physics simulation

– ...

• Longer development time

• Heavier development and build environment



Stackless Python

• Rapid development

• Easily learned

• Flexible

• Light-weight environment• Light-weight environment

– TextPad or other text editor of choice



Python development tool



Stackless Python

• Not as efficient as a compiled language

• Dependencies may be hard to track

• Compiles ≠ correct

• An error may not surface easily• An error may not surface easily

• Rarely crashes to your desktop!

• Reviews and testing throughout the development 

cycle



Shared environment

• One single development code base

• One Perforce depot

• Shared core technologies

• Logical separation into modules

core

eve

wod
char

srv

mail

EVE-STAGING

EVE-DEV

MAIN

WOD-DEV
mailMgr.mailMgr.

py

mailListmailList
Mgr.py



Branching using staging streams model

EVE-RELEASE

EVE-STAGING

Expansion

EVE-HOTFIX
Point 

release

EVE-DEV

EVE-STAGING

Code 

freeze



Branched database updates

• Content

– Agents

– Missions

– Spaceship blueprints

– ...– ...

• Inhouse DB implementation of the staging streams model

• Content developers can continue working after content freeze



Non-branched database updates

• Static data (solar systems, character races...)

• DB code (procedures, tables, views)

• Must be

– backwards compatible

– released at the correct time– released at the correct time

– deployed in the correct order

• Sequentially numbered updates

• Linked to code changes with markers

• List of database updates is generated from markers

• As automated as possible



Building

• < 1 minute to build a server

• < 10 minutes to build a client

• < 30 minutes to rebuild all binaries

– Relevant binaries are automatically rebuilt when C++ code changes

– Highly optimized build process using Visual Studio– Highly optimized build process using Visual Studio

– Caretaking of the code with regards to build time

• < 4 hours to build all installers and patchers

– 2 full installers (Windows & Mac)

– 40 patchers (from 20 versions, Windows & Mac)



Release build == development build

• In Python:



Release build == development build

• In C++:



Continuous releases

• 2 expansions per year

– Working on the 13th

• Point releases in-between

– Some optional, some required

• Server hotfixes when needed• Server hotfixes when needed



Nurture the code

• Think ahead – simple, clear and clean

• Follow a coding standard

– The question "why do it that way?", while valid to initiate a 

philosophical discussion, can easily be answered "because the 

guidelines say so". 

• Think big – optimize

• Think carefully

• Balance features vs. technical debt



Nurture the developers

• Knowledge of the code base is very valuable

• Encourage knowledge transfer

• Manage requirements

• Sustainable pace



Success story - Mail



Mail

• Completely replaced existing system

– And 3 others

• Migrated 150 million rows of data

• Strong emphasis on focus and scope

• Followup, improved design based on feedback• Followup, improved design based on feedback

• Performance measurements



Mail



Node-deaths after Trinity expansion



Node-deaths after Trinity expansion

• Random over a run, sometimes none, sometimes several

• Lots of log reading and code comparison

• Suspicious entries were spotted in logs 

• Attached a debugger to a dying node on the live cluster

• Issue discovered to be a "wide" endless loop, i.e. in spawned • Issue discovered to be a "wide" endless loop, i.e. in spawned 

tasklets

• Fixed logic in state machine:
BAD:

and not (self.enterDroneBay and self.activityState in [STATE_PURSUIT, STATE_DEPARTING])

GOOD:

and not self.enterDroneBay and not self.activityState in [STATE_PURSUIT, STATE_DEPARTING]



Performance issues after Apocrypha expansion



Performance issues after Apocrypha expansion

• Popular solar system could only handle a few hundred players

• Investigated from several angles at once

– Start with an unaffected build and step through changes

– Trace a particularly slow feature

– Attach a debugger on a severely affected node on the live cluster– Attach a debugger on a severely affected node on the live cluster

• The culprit turned out to be a sort in a critical location

• Removed one line:

– dyingObjects.sort()



Questions

CCP Games
CP #2502

www.eveonline.com
berglind@ccpgames.com


