


Direct3D 11 Performance 
Tips & Tricks

Holger Gruen AMD ISV Relations

Cem Cebenoyan NVIDIA ISV Relations



Agenda

 Introduction

 Shader Model 5

 Resources and Resource Views

 Multithreading

 Miscellaneous

 Q&A



Introduction

 Direct3D 11 has numerous new 
features

 However these new features need 
to be used wisely for good 
performance

 For generic optimization advice 
please refer to last year‘s talk 
http://developer.amd.com/gpu_as
sets/The A to Z of DX10 
Performance.pps

http://developer.amd.com/gpu_assets/The A to Z of DX10 Performance.pps
http://developer.amd.com/gpu_assets/The A to Z of DX10 Performance.pps
http://developer.amd.com/gpu_assets/The A to Z of DX10 Performance.pps


Shader Model 5 (1)

 Use Gather*/GatherCmp*() for 
fast multi-channel texture fetches

 Use smaller number of RTs while still 
fetching efficiently

 Store depth to FP16 alpha for SSAO

 Use Gather*() for region fetch of 
alpha/depth

 Fetch 4 RGB values in just three ops

 Image post processing



Fetch 4 RGB values in 
just three texture ops

SampleOp0

red0

blue0
alpha0

red1
green1
blue1
alpha1

red2
green2
blue2
alpha2

red3
green3
blue3
alpha3

green0

red0 green0 blue0 alpha0

SampleOp1 red1 green1 blue1 alpha1

SampleOp2 red2 green2 blue2 alpha2

SampleOp3 red3 green3 blue3 alpha3

GatherRed

GatherGreen

GatherBlue

red2 red3 red1 red0

green2 green3 green1

blue3 blue1 blue0blue2

green0



Shader Model 5 (2)

 Use ‘Conservative Depth’ to keep 
early depth rejection active for fast 
depth sprites

 Output SV_DepthGreater/LessEqual 
instead of SV_Depth from your PS

 Keeps early depth rejection active even 
with shader-modified Z

 The hardware/driver will enforce legal 
behavior

 If you write an invalid depth value it will 
be clamped to the rasterized value



Depth Sprites under 
Direct3D 11

Scene
Geometry

drawn first

Depth sprite 
for a sphere

Direct3D 11 can fully cull this depth sprite if 
SV_DepthGreaterEqual is output by the PS



Shader Model 5 (3)

 Use EvaluateAttribute*() for fast 
shader AA without super sampling
 Call EvaluateAttribute*() at subpixel positions

 Simpler shader AA for procedural materials

 Input SV_COVERAGE to compute a color for 
each covered subsample and write average 
color

 Slightly better image quality than pure MSAA

 Output SV_Coverage for MSAA alpha-test

 This feature has been around since 10.1

 EvaluateAttribute*() makes implementation 
simpler 

 But check if alpha to coverage gives you what 
you need already, as it should be faster.



Shader Model 5 (4)

 A quick Refresher on UAVs and 
Atomics

 Use PS scattering and UAVs wisely

 Use Interlocked*() Operations wisely

 See DirectCompute performance 
presentation!



Shader Model 5 (5)

 Reduce stream out passes
 Addressable stream output 

Output to up to 4 streams in one pass

 All streams can have multiple elements 

 Write simpler code using Geometry 
shader instancing

 Use SV_SInstanceID instead of loop index





Shader Model 5 (6)

 Force early depth-stencil testing 
for your PS using [earlydepthstencil]

 Can introduce significant speedup 
specifically if writing to UAVs or 
AppendBuffers

 AMD‘s OIT demo uses this

 Put ‘[earlydepthstencil]’ above your 
pixel shader function declaration to 
enable it



Early Depth Stencil and 
OIT

Opaque Geometry
drawn first

Transparent Geometry
Drawn after all 

opaque Geometry

A ‘[earlydepthstencil]’ pixel shader that 
writes OIT color layers to a UAV only will 
cull all pixels outside the purple area!

Projection Plane



Shader Model 5 (7)

 Use the numerous new intrinsics 
for faster shaders

 Fast bitops – countbits(), 
reversebits() (needed in FFTs), etc.

 Conversion instructions - fp16 to fp32 
and vice versa (f16to32() and f32to16())

 Faster packing/unpacking

 Fast coarse deriatives (ddx/y_coarse)

 ...





Shader Model 5 (8)

 Use Dynamic shader linkage of 
subroutines wisely

 Subroutines are not free

 No cross function boundary optimizations

 Only use dynamic linkage for large 
subroutines

 Avoid using a lot of small subroutines







Resources and Resource 
Views (1)

 Reduce memory size and 
bandwidth for more performance

 BC6 and BC7 provide new capabilities

 Very high quality, and HDR support

 All static textures should now be 
compressible



BC7 image quality

BC7 
Compressed

BC1 
Compressed

Original 
Image

BC7 
Compressed

BC1 
Compressed

Original 
Image



Resources and Resource 
Views (2)

 Use Read-Only depth buffers to 
avoid copying the depth buffer

 Direct3D 11 allows the sampling of a 
depth buffer still bound for depth 
testing

 Useful for deferred lighting if depth is part 
of the g-buffer

 Useful for soft particles

 AMD: Using a depth buffer as a SRV 
may trigger a decompression step

Do it as late in the frame as possible



Free Threaded Resource 
Creation

 Use fast Direct3D 11 asynchronous 
resource creation

 In general it should just be faster and 
more parallel

 Do not destroy a resource in a 
frame in which it’s used

 Destroying resources would most 
likely cause synchronizing events

 Avoid create-render-destroy 
sequences



Display Lists (aka command lists 

created from a deferred context)

 First make sure your app is multi-
threaded well

 Only use display lists if command 
construction is a large enough 
bottleneck

 Now consider display lists to express 
parallelism in GPU command 
construction

 Avoid fine grained command lists

 Drivers are already multi-threaded



Deferred Contexts

 On deferred contexts Map() and 
UpdateSubResource() will use extra 
memory

 Remember, all initial Maps need to use the 
DISCARD semantic

 Note that on a single core system a 
deferred context will be slower than just 
using the immediate context

 For dual core, it is also probably best to just 
use the immediate context

 Don’t use Deferred Contexts unless 
there is significant parallelism



Miscellaneous

 Use DrawIndirect to further lower 
your CPU overhead

 Kick off instanced draw calls/dispatch 
using args from a GPU written buffer
 Could use the GPU for limited scene traversal 

and culling

 Use Append/Consume Buffers for 
fast ’stream out‘

 Faster than GS as there are no input ordering 
constraints

 One pass SO with ’unlimited‘ data amplification



Questions?

holger.gruen@amd.com

cem@nvidia.com


