

DiRT2 DirectX 11
Technology

Gareth Thomas, Codemasters

Jon Story, AMD

Agenda

 DirectX Comparison Video

 Porting to DirectX 11

 Tessellation Features

 DirectCompute HDAO

 Shadows using GatherCmp()

 Free Threaded Resource Loading

 Summary

DirectX Comparison Video

DiRT2_DirectX_Comparison.wmv

Porting to DirectX 11

 Render API already abstracted for
multiple platforms:

 PC, Xbox360, PS3, Wii

 Platform independent APIs for:

 Buffers, Shaders, Textures,

 Render States, Drawing

 Rendering layer automatically
handled:

Vertex Decls, Shader Constants,

Multisampled Render Targets

Getting Started

 Dynamically loaded DX11 DLL, so
we could live with a single EXE

 Windows XP, Vista & Win7

 On start up we attempt creation of
a DX11 device

 If that fails then we fall back to a
DX9 device

 We actually kept our original DX9
device enumeration code – this
worked out fine

The Dumb Port

 Wanted to get 2D and static 3D
objects on screen

 In place creation and destruction
of state objects

 Very slow – but got quick visual

results

 Large constant buffer updates all
over the place

 Again very slow – but got things

working

The State Manager

 Created a State Manager class

 Hash map of state objects

 Check all state objects for
existence with the manager

 Create and store as necessary

 Only a handful of different state
objects ever created

 DX11 divides state objects logically

 Only load time state object
creation, ~10% performance gain

Immutable Objects

 Static VBs & IBs must be flagged
as D3D11_USAGE_IMMUTABLE

 Initially this was missed

 Caused a massive GPU frontend
bottleneck

 Gave rise to ~30% gain in baseline
performance

Tackling the Constant
Buffer Problem

 Unreferenced constants &
samplers are not optimized away
 Different to DX9

 Shader source was organised such
that multiple shader programs
lived in one source file

 Therefore each shader would come
with an enormous globals buffer

 This gave rise to _many_ large
constant buffer updates
 Very slow indeed

Constant Buffers –
Solution (1)

 Sort constants by frequency of
update:
 Per frame constants

 Lighting, Fog, HDR Multipliers, etc.

 Render target constants
Width, Height, etc.

 Camera constants
 View, Projection, Eye, etc.

 This improved the situation
 But still lots of constants getting

dragged into global buffer

Constant Buffers –
Solution (2)

 Wrap shader source & constant
declarations with defines:

 VERTEX_SHADER, PIXEL_SHADER,
DOMAIN_SHADER, HULL_SHADER

 Pass appropriate define in when
compiling shaders off-line

 ~25% performance gain

 Solution is still not perfect – work
in progress on this problem...

Tessellated Animated
Crowd – The Problem (1)

 Crowd meshes skinned on CPU

 Used instancing to render ~100k
crowd models

 Difficult to up the fidelity of these
meshes without incurring a large
cost:

 CPU skinning cost

 Memory footprint & bandwidth

 We’ve wanted to improve quality
here for some time...

Tessellated Animated
Crowd – The Problem (2)

 Current high LOD mesh uses
around 800 triangles

 Silhoutte is pretty angular

 Normal maps used to gain better
lighting

Original Mesh

Original Mesh

Tessellated Animated
Crowd – The Solution (1)

 Used PN-Triangles technique to
smooth out base mesh using the
existing data set
 Curved PN-Triangles by Alex Vlachos, Jörg Peters,

Chas Boyd, and Jason L. Mitchell

 August 09 DirectX SDK Sample: PNTriangles11

 No new artwork required!

 CPU skinning, memory footprint &
bandwidth unchanged

 Silhouettes much improved at
tessellation factor 5

Original Mesh

PN-Triangles

PN-Triangles

Tessellated Animated
Crowd – The Solution (2)

 Used the normal maps as
displacement maps

 Some artwork involved to ensure
no cracks in the displaced meshes

 Wrapped texture coords cause this

 Able to bring out nice details in
hair and clothing

 Good use of the extra triangles
generated

PN-Triangles

PN-Triangles + Displacements

PN-Triangles + Displacements

Original Mesh

PN-Triangles

PN-Triangles + Displacements

Original Mesh

PN-Triangles

PN-Triangles + Displacements

Tessellated Animated
Crowd – The Solution (2)

 For adaptive tessellation factors
we used two metrics:

 1) Patch size in screen space, because
this worked even for camera zooms
2) Distance from camera

 We switched tessellation off for
meshes rendered below the top
LOD

Tessellated Cloth (1)

 CPU based physics simulation

 Lots of flags and border cloth material

 ~35 vertices in base flag mesh

 Also used a scrolling normal map
for high frequency wind ripples

 Used PN-Triangles + Displacement
Mapping

 Smoothed out the low detail mesh
and added ripple details

Tessellated Cloth (2)

 Adding real geometry also meant
improved self shadowing

 We employed the same adaptive
tessellation algorithm as used for
the crowd

Original Mesh

Original Mesh

PN-Triangles + Displacements

PN-Triangles + Displacements

Tessellated Water (1)

 Wake simulated on CPU

 Normals uploaded to a texture

 Combined with scrolling ripple
texture

 In DX9 we only rendered 2
triangles and used per-pixel
lighting

 Worked quite well – but for many
view positions the illusion was
broken

Tessellated Water (2)

 In DX11 we used the DS to
displace the water surface

 Sampled from the normals texture

 Typically a 512 x 512 map

 Resulted in a more physically
accurate surface

Displacement Mapped Surface

Displacement Mapping: OFF

Displacement Mapping: ON

DirectCompute HDAO

 HDAO adds dynamic high quality
AO over and above our pre-baked
solution

 HDAO is very texture heavy

 Refer to this link for an
explanation on how it works:
 http://developer.amd.com/gpu_assets/

 We used the CS to accelerate this
technique...

http://developer.amd.com/gpu_assets/

HDAO: OFF

HDAO: ON

Post Processing the PS
Way...

 There can be a great deal of over
sampling

 The area the samples cover is the
kernel size

 A whole bunch of texels around
the central pixel are then sampled

 The pixel shader is executed once
for each screen pixel

Overlapping Tiles (1)

 Use the LDS to drastically reduce
the texture sampling cost

 Divide the screen up in to tiles for
thread groups to process

nX Groups

n
Y

G
r
o
u
p
s

Overlapping Tiles (2)

 Kernel size determines level of
overlap nX Groups

n
Y

G
r
o
u
p
s

// Region stored in LDS

uTexelDim = 56;

uTexelOverlap = 12;

uTexelDimAfterOverlap = uTexelDim – (2 * uTexelOverlap);

// Compute thread groups from screen res

iGroupsX = ceil(fScreenWidth / uTexelDimAfterOverlap);

iGroupsY = ceil(fScreenHeight / uTexelDimAfterOverlap);

// Dispatch thread groups

pd3dImmediateContext->Dispatch(iGroupsX, iGroupsY, 1);

Overlapping Tiles (3)

ALU PP compute
area,

LDS reads/writes

kernel size

Texel sampling area,
written to LDS

Overlapping Tiles (4)

// Outline code...

// CS result texture

RWTexture2D<float> g_ResultTexture : register(u0);

// LDS

groupshared float g_LDS[TEXELS_Y][TEXELS_X];

[numthreads(THREADS_X, THREADS_Y, 1)]

void CS_PPEffect(uint3 Gid : SV_GroupID, uint3 GTid : SV_GroupThreadID)

{

// Sample texel area based on group thread ID – store in LDS

g_LDS[GTid.y][GTid.x] = fSample;

// Enforce barrier to ensure all threads have written their

// samples to the LDS

GroupMemoryBarrierWithGroupSync();

// Perform PP ALU on LDS data and write data out

g_ResultTexture[u2ScreenPos.xy] = ComputePPEffect();

}

HDAO Performance

 Windows 7 64-bit, AMD Phenom II 3.0 GHz, 2 GB RAM, ATi
HD5870, Catalyst 10.2

354

128

466 461

0

50

100

150

200

250

300

350

400

450

500

Depth Depth + Normals

F
P

S
HDAO CS vs. PS: 1280x1024x1

Pixel Shader

Compute Shader

3.6x1.3x

Shadows using
GatherCmp()

 DX9 renderer implemented several
solutions:

 Fetch 4 (older AMD HW)

 PCF sampling

 Cascaded shadow maps using D16
surfaces

 DX11 lookups performed using
GatherCmp() instruction

 Simpler to implement

 Only one solution

Free Threaded Resource
Loading (1)

 DiRT2 uses a background loading
thread

 Resources placed in a queue

 In DX9 mode resources are
created on the main thread

Render Create Render

Loading

Create

Free Threaded Resource
Loading (2)

 In DX11 mode resources are
created on the loading thread

 Simpler and faster implementation

 Noticeably faster loading times,
~50% faster

Render Render Render

Loading / Creation

Render

Summary

 A naive port to DX11 will not be
fast

 Tessellation greatly improves
image quality and saves memory

 DirectCompute can significantly
improve post processing
performance

 Use free threaded resource loading
to reduce loading times

 DirectX 11 Rocks!

Questions?

jon.story@amd.com

gareth.thomas@codemasters.com

mailto:Jon.story@amd.com
mailto:gareth.thomas@codemasters.com

