

Improving Programming Estimates

Adriana Lopez Development Director

Why Are We Here?

Individual Estimate Improvement

A Question

- Have you ever been asked to provide an estimate for a task...
 - only to be proven horribly wrong (>2x)?
- What were some of the consequences you experienced as a result?

What Were the Consequences?

- Lower quality games
- Poor coordination with other groups
- Loss of credibility with your managers or peers

Oh, and Crunch Time

Lots and lots of crunch time

Overview

The Basics

- What is an estimate?
- Why is estimating hard?
- How do we make estimating easier?
- Summary
- Questions?

What is an Estimate?

An Estimate...

- Is a prediction of effort or complexity for a task.
 - A task should result in a concrete deliverable.
- Should reflect inherent uncertainty:
 "I think this task will take between 3 and 8 days."
- Should be provided by the people doing the work.
 - We are responsible for improving our ability to estimate our work accurately and precisely.

An Estimate...

- Has both accuracy and precision.
 - An *accurate* estimate is one where the actual value falls within the range of the estimate.
 - Avoid ranges that are too big to be of value.
 - A *precise* estimate is one with a narrow range.
 Avoid misleading precision not supported by data.

An Estimate...

- Allows the project to plan and organize its resources.
 - Accurate and precise estimates allow the project to be completed on time and predictably.

Why is Estimating Hard?

Under- vs. Over-Estimation

- Studies show that programmers typically underestimate the work required to complete a task.
- "If you want a high-quality product OUT OF QA, you need to put a high-quality product INTO QA" -Humphreys

Incomplete Requirements

- It's too early in the project.
 - Estimating how long "it" will take before anyone knows what "it" is.
- User doesn't know what they want.
 - I'll know "it" when I see "it".
- We haven't asked the right questions.
 - Remember to get both *functional* and *non-functional* requirements.
- Differentiate between Incomplete vs. Unstable Requirements

Cone of Uncertainty

Project Management term used to describe the level of uncertainty existing at different stages of a project.

Term popularized by Steve McConnell.

Estimate Variability -

Individual Estimation Practices

Pressure to Provide Low Estimates

- Management needs to meet a target.
- Peer pressure.
- Remember:
 - Lower Estimate != Better Programmer
 - Avoid "Off-the-Cuff" Estimates

Individual Estimation Practices

- Omitted Activities
 - Programming Activities
 - Non-Programming Activities

Unfounded Optimism

- A justification to support an estimate that is not based on data.
- "We're smarter now"
- "It can't be that bad"

Individual Estimation Practices

- Subjectivity / Bias
 - A desire (conscious or unconscious) to achieve a particular outcome.
- Unfamiliar Problem Domain
 - Lack of experience.
- Lack of Historical Data
 - Base your estimates on past performance.

Project Chaos

- Differentiate between targets and estimates
 - Determine whether you are being asked for a realistic estimate or for a way of meeting a target.
- Do not provide "off-the-cuff" estimates
 "Off-the-cuff" estimates can become targets / commitments.
- Learn to negotiate the requirements

How do we make it easier?

Planning

What are you getting yourself into?

What are you getting yourself into?

- The project leads are concerned about the total workload required to complete the agreed upon scope.
- Total workload is the sum of individual tasks and is based on how complex / how big you think the work is.
- Use estimation techniques to figure that out.

Technique 1: Establish a baseline

- Complexity Estimates:
 - XP (Experience Points)
 - Complexity Points
 - Headaches
 - Beers

- Time Based Estimates:
 - Effort Hours
 - Ideal days

- Allow ranges: 1,2,3,5,8,13,20...
- Actual work is measured in real time (e.g. hours).

Technique 2: Collaboration

- Lowers personal bias.
- Without collaboration:
 - The estimate will depend upon who is / when asked.
 - Do not assume that the most reliable estimates come from the people with the most powerful vocal chords.

Technique 3: Triangulation

- Compare New Work with Known Past Work.
- Requires Historical Data.
- Be Consistent !

Technique 4: Decomposition

- Breakdown large tasks / user stories into smaller tasks / user stories that:
 - You're more familiar with
 - Are no bigger than a few days of work

Planning

- Use these techniques to arrive at an estimate that minimizes the impact of:
 - Omitted Activities
 - Unfounded Optimism
 - Subjectivity
 - Bias
 - Unfamiliar Problem Domain

Planning

- Remember to record your estimate!
 - To have data from previous tasks, you need to start writing your estimates down.

Use it as a tool to help you monitor and improve your own performance during execution.

Execution

80% of the time is spent doing 20% of the work

Record Actual Time Spent

 The most effective way to deal with many of the Individual Estimation problems.

Depends upon having a clear and unambiguous task.

 A clear task allows you to differentiate between defects and changes.

Where is your time going?

Exercise: Try tracking your time for your next userstory or Task. Observe where you spend your time.

Review

How did I do?

How did I do?

Ask questions:

- How fast are you working?
- How close was your estimate to the actual result?
- Did I forget to anticipate anything that would be useful to know when estimating my next task?

Analyze the Results

- Useful Calculations
 - Velocity
 - How fast are you working?
 - Magnitude of Relative Error (MRE)
 How close was your estimate to the actual result?

Example – Part 3a, Velocity

Velocity is Work / Unit Time

- Points: 7 XP / 3 calendar days
- Effort: 9.5 hrs / 3 calendar days

= 2.3 XP / day

= 3.2 hrs / day

Date	Task	Original Estimate	Total calendar days	Total Velocity
4/7/2008	A	3 XP	5	
4/8/2008	В	2 XP	2	
4/9/2008	С	5 XP	8	0.66 XP /day

Example – Part 3b, MRE

MRE is ABS (Actual – Expected) / Actual ABS (9.5 – 7) / 9.5 = 0.26

Task	Best	Expected	Worst	Actual	MRE
А				1	
В				5	
С				10	
D	5	7	10	9.5	26%

Update Future Estimates

Don't update the original estimate when the task is complete just to get a better result!

It is to be expected that estimates change over time.

- Requirements are refined or change altogether as the project moves forward.
- Remember the "Cone of Uncertainty"

Summary

- It is our INDIVIDUAL responsibility to improve the accuracy and precision of our estimates.
 - Watch for Bad Individual Estimation Practices
 - Use Collaboration Techniques
 - Collect and Analyze Data
 - Use Analysis to Improve Your Future Estimates

Summary

- Find a method that works for you.
 - (Make sure it will still work with your project).

¿Questions?

"It is very difficult to make a vigorous, plausible, and job-risking defense of an estimate that is derived by no quantitative method, supported by little data, and is certified chiefly by the hunches of the managers."

Fred Brooks

References

- 10x Software Engineering course offered by Construx Software (<u>http://www.construx.com</u>)
- Software Estimation by Steve McConnell
- Mountain Goat Software (<u>http://www.mountaingoatsoftware.com/</u>) 39