N
—r o~
o < [N
Advanced Material Rendéfing

Michat Drobot

Visual Technical Director
Reality Pump

,\’l\

« State of material rendermg . '.‘

Several techniques from the ‘old’ toolb |

« Diffuse + Specular + Normal + Phong "’,

I
= Parallax 'Tﬂ(&U '{
@ Fur [Shell rendering A
» Alpha blending R
@ Cube maps A
\ = 1BL 5

= Reflections / Refractions / Glossy Spe

, -
& Material rendering stucked il ";l
@ Those techniques doesn't work right with current i€rred rendering
architectures
. Deferred shading
 Brings global light-material interaction shaders
+ Requires uniform BRDF across all materials duu;in’ E g pass

@ Really fast
« Requires one geometry pass
= Fat G-Buffer might hurt the bandwidth

@ Lacks material variety
L ® Addlng dlfferent material support :

h

@ Material rendering stucked +
© Light pre-pass

« Requires double geometry pass
« ‘light’ g-buffer
= Normal + Z
« Material pass

) « Use light information gathered in Ilght U ‘&J’ ec rom ‘light’
! g-buffer }
= Allows usage of many different material shaders
@ Unified light interaction i | A

5Uo) (&
e U | DF'C;) ¥

YEAN

= We want a new toolbox 4 il

Compatible with deferred renderers
More advanced techniques

Jittering tricks

p ‘R
« Jittering § 4 [l
- Sampling in a pattern to cover undersamp'l'i"i]
plausible noise |

- Normally done using ‘rotating disk’ of sarr“)r "

distribution "I
@ Uniform
@ Poisson
o o =] e . (¢}
% o Q
o o o ° ® o - °
t - 1
o | o | oo |Jitter|® | o | Warp
e | o | @ ° - ° a4)

Jittering tricks

& Jittering using rotating disk ~ + i
~ Precompute a good offset distribution table |
= N points in normalized space using disk distributio Ll‘

f

- For each shaded pixel ﬁ .
;’ ! x'
« Get random normal vector N in

@ For each sample 1 LS
Nw (i
= Rotate the point from the disk distribution by N ﬁ’

« Sample using the point as the scaled offset™

“Because of non-discrete sampling poi

ampling is important LR

« Jittering using alternatlng pattern ’;‘ i |
~ What if we can't afford additional noise Iook F
sample and linear filtering i ;'

- We need carefull manual sampling patterqi' l

~ We know the exact pixel position from VPO
= With that we can use dithering pattern |
« With different pixels we use different patter
@ Used patterns cover different sample i

ALU per

T e — ——

Jittering tricks . /()

;US (G

@ Jittering using alternating pattern ,.,
- Example it
@ Let's have 2 different sampling patterns ‘ : ,’, |
@ Together they cover the full sampling area wn: dlt
= We use different for even and odd pixels (i
« Cover the whole region with 2 times less samples

= Removes banding by adding controlable noise E ,s--;- T

Jittering tricks

.
@ Jittering using alternating pattern
« Shadowing example
- Dual paraboloid soft shadows |
" 4taps only ,ﬂ .
~ Minimal additional overhead
- Plausible noise
* Bigger softness requires more patterns {f ,,

8 floatd tex2DSHDWPCE (sampler?2D tex, floatd4 UV, float2 vP)
| {
| const float4 gPCFJitterl[2] =

float4 (0.5, 0.0,

float4 (0.5, 0.5,

floatd4d gPCFJitter2[2

float4 (0.0, 0.5, O.

-0.

float4 (0.5, -0.5,

[
=)
=0 .
[

]
5
5
]

0)
5
float4d Samples;

float Index = (vP.x + vP.y)

float JitDis = 0.003 * (1.0 + 2.0 * (frac (dot (UV
165697.0)) - Index * 0.5));

floatd4d tCl = gPCFJitterl[Index] * JitDis;
floatd4d tC2 = gPCFJitter2[Index] * JitDis;

tCl += UV.xyxVy;
tC2 += UV.xyxVy;

b N~).
A £ 28T -

clo[e
10

Transparency

4 \ $ 7l P

,\’l\

h ;

& Transparency in deferred architecture is
& Scenarios i

e

- Simple transparency (lit)
~ Fully transparent material ﬂ . |
~ Semi-Transparent material (lit) |
- Translucent material (always lit)

Slmple transparency

o

,\’l\

h

« Simple transparency >,

~ Think of simple fade in, fade out

“ Sometimes needed when objects get in our camg
leaves...)

@ @Grass blend in/blend out
“ Objects popping in

- Must be cheap and coherent with Ilghtln y

w (think

Simple transparency
~ %

« Simple transparency i
© Use screen door effect
« Compute/lookup dithering patterns |
& Use them to ‘kill’ pixels ,ﬂ :.9 |
+ Alternate between patterns depending on transpat value
* 4 level transparency easy to compute when idth

bound I
= Remember to check were the compiler is putt
do it ASAP .

float jitteredTransparency(float alpha, floatZ2 vP)

{
const float jitterTable[4] =

{
float (
float (
float (
float (

~

O O O O

< 01 N O

o)y = O

e N S N
~

~

) 7

o O

float jitNo
int2 vPI =
vPI.x
vPI.y

O
e

P.x
vVP.y

I
<
N N

o® o\°

int jitterIndex vPI.x + 2 * vPI.y;

JitNo = jitterTable[jitterIndex];
1f (JitNo > alpha)

return -1;

e U s

Slmple transparency

o

,\’l\
b, IR

« Simple transparency >,

~ Dithered transparency looks bad in 720p
“ We would like to blur those nasty dithered plxels
@ Can't afford another pass that would detect the

~ We are already doing it in Edge AA pass

W

« Custom Edge AA S
- Common technique in deferred renderers

- Full screen pass
@ Find edges based on depth/normal data

@ Blur them ._

- Can use it to our advantage ’j L
* Just hint the Edge AA filter to find edges. Y
pixels .,
@ You get nice blending for free j[

)

¢ o & Could be done with a flag or mor
' ion (put discontinioutis if

-

« Fully transparent * £

- Doesn't need lighting
@ Just reflects / refracts light

. Usefull for
“ Glass
@ Water
« Distortion particles

+~ Treated as post-effect
@ Requires backbuffer as a texture e'
| @ Handy to have depth mformatlor}uﬁ A

y . NN e \
o‘.’ P . P - A
. &4 -
" x 1. -

e

" 3 ™ -
o ! P4y) -] S \
. y o~
i B \ : » - _ .
{f‘ 3 - 2 -y
" g . - . E - - ’ p
A - . b - . PR N - . T L
B / AT
- < < . >
o -y « S
» . ¥
{ A
- Y

Fully transparent

|
; |
‘ / 7
A
A \
i

N,

& Refraction < =

~ Use the eye vector N , |
‘ ‘ ‘ j!

- Refract it physically against surface normal

- Project on backbuffer and read f} L |

AN\
~ Use refraction masking ‘
© Gpu Gems 2

« Reflection - ¥
© Treat the backbuffer as a sphericalmap 1
- Reflect the eye vector against surface normal L|

- Use spherical mapping for outgoing vectd;'ﬂ 8

@ We spherically map the backbuffer to fake RT ref ec
~ Sample the backbuffer
@ Or some smaller — blured version for gloss A i
~ Hacky |
@ Looks quite convincing ‘

-
4

R

.

) g "
A

.

.)
&7 A .

-

- .“ .‘ |
= “llUse dual-paraboloid envirome

L
¢

Advanced materials,
¢ '.'

b, O
« Glass 24 &
~ Fully transparent material
@ Rendered in post LR
- Reflection - Refractions surface i
@ Follows fresnel law

and surface normal
N @ Use fake real time reflection

@ Use backbuffer for refraction

= Can use blurred backbuffer for g 05
approximation

s
=

&) &L
(el

Semi-Transparent material

« Require lighting
Correct
Consistent with the whole scene
Shadowed

@ Therefore we want it in deffered mode

Preferably with single lighting and shadlng cos$
& Use dither patterns with sample recons tr *

Semi-Transparent rial
ot - N~
| 7
“ 2 pass rendering . 'f"}‘l | '
© 1 pass — semi-transparent materials are writt p ninto g-buffer
using dithering patten 4

4

- 2 pass — materials are fully rendered after: g!,'l |
using sample reconstruction to get correct lic]
Sorting and alpha blending is required. | ©

& Someone actually got the same idea :]
Inferred Rendering /

umulation,
9 values.

RS 1

-

P

@ 1pass
. pattern covers the basic rendering quad (i.e. 2x2)

Pattern choice depends on number of transparent mate

overlayed
< One 2x2 quad can cover
< 2 materials with 75:25 ; 50:50 quality ration
< 3 materials with 50:25:25
< 4 materials with 25:25:25:25 quality ratio
@ Each additional layer leads to quality loss of lighti

SW@ :
ngrj‘a})Jt*’ Semi-Transparent ma |

b
>

al layers beeing

I
A

S
Semi-Transparent material
¢ -
—f”
o it A ’
@ 2 pass -6 . i | =
- Qverlaping semi-transparent materials are sorted bq to front (with
solid beeing the first to be rendered) |
. For each overlaping material il
@ Lightbuffer is sampled with correct pattern to acquire ori 3 élh ' j values
« Material is rendered with full resolution textures and recoirist hting

@ Transparency is handled by alphablending with the backb? l

Semi-Transparent material
W I~
-
« Lighting reconstruction = '}k " ,

- Taking one sample only leads to heavy aliasi J , |
- Must take multiple samples for reconstructiol ';ll
@ Check if the pixel beeing shaded is the originalﬂnﬁ ° :
« If false, sample the neighbourhood for valid samples |

, Weight them and
average for sample reconstruction -

@ If true, leave unaltered m i
@ Leads to less aliasing and more stability during movement

& Using 2x2 quad for more than 2 materials=he
and aliasing S

J..'

g

@ Pros '

© Method suits light pre pass architecture

« Same with hybrid deferred renderers
. Flexible

. Predictable, linear quality loss
@ Cons

- Taxing ROPs because of alpha blending Lt
= Especially frustrating when high precision blend operations are ¢
- Requires the second pass for solid and opaque geometr
% Not a problem if doin light pre pass anywa

b

J|C

. @ Mostly doing too much, thus losing quality .

- - (h(-

c ara cl
y -
.
: — -
— 1
X

s \.
A . ¥
 / \

/4 \

‘ :

'f‘!\

o

,\’l\

« We couldn't take the ngh Precnsnorlglendmg 4 additional’
geometry passes

* Hybrid deferred renderer

@ Settled with one layer transparency
. Better performance, quality and stability
. More flexible

Semi-Transparent ial

-

NG

& Deferred renderer with single transpgrency ‘,“.' § |

- Semi-transparent geometry is rendered to g-buffer v
pattern

. Albedois setto1
@ 1-—pass is feather weight — normals and specular only ﬁ(? l

- After deferred shading I

@ Acumulation buffer is containing alternating p‘x
transparent geometry lighting mformatlon anc gﬁ"‘ ¢
geometry T

® 2 —pass is reconstructing both | .

@ Lighting data

8 Sbaded background

th eheckboard
| U
|

- i_
aying shaded
s

@ Deferred renderer with single transparency ' ©
- Reconstruction e
@ Sample a cross a pattern

1 2 3

Semi-Transparent ial

-

—~
o A
& Deferred rendering with single transparency ;|
~ Really fast | i
= Only the semi-transparent geometry is using pixel 'k
& Sample reconstruction is simple and coherent r‘ b
= No branching needed "

- High quality d 1k
« Background and lighting data is % resolutlon bilate
@ Stable during movement w '

|

!
o

pscaled
1 pr «
~ i

~
. .-
55

7 ‘,.;)v
[4
l

¢

@ Translucent materials 4

- Only allows light to pass through diffusely ¢
» Transparent materials are clear, while translu ent ones

cannot be seen through clearly. %‘ | ‘g
- Because of light diffusion inside material volt . l
@ Material is lit additionally by Sub Surface Scater |
@ Visible background is diffused (blurred) — refrac }_ '
- S5S amount is dependant on material pa ’
“thickness L b

=
. @ Thicks materials, requiring globa 5& %
| erfan‘fjaa‘hce reasons

-

& Translucent materials .
- For simplicity assume translucency with m rh

~ We need to simulate refracted light dlfoSlO !
® Take the backbuffer ﬁ(? K '
@ Perform hierarchical downscale with blurring ™
« Sample original and blurred background
« Lerp depending on translucency factor
@ Use for refracted light _
« Can use the same for fake real tirrn 2 gl ossy refl

local SSS

T —— ——

Skin rendering

S

.
/s'\

« Skin rendering- >,
~ Important for believable characters

~ Exhibits complex light interactions
@ Diffuse
« Specular

;""‘Qo"?'

B
-

G . . o
:me Skin rendering /(|)\

PR

« Skin is multilayered

- Qily layer

. Epidermis

- Dermis
@ Know material

~ We see it everyday
g Therefore

,L:; Complex

Skin rendering

,ﬂ\

« Qily layer £ v
~ Responsible for specular reflectance
= Fresnel reflectance

. Dielectric

@ Reflects unaltered light
= White light reflected as white light

= ~ Fine scale roughness
: @ Requires advanced BRDF

"!'\

« Qily layer < >,
© Simulate using
@ Finescale detail normal map

@ Specular intensity and roughness maps 7{’
I .
]

@ BRDF
@ Cook-Torrance
« Shirmay-Kallos

+ Preferable for consoles due to easy fagte
optimizations '

AW G
Skin rendering

S

.
/s'\

« Qily layer < 4
- BRDF

+ Blinn-Phong with several lobes and fresnel reflects
= Optimal for consoles ;{? i
« We are using two lobes tweaked by artists LU

Specular = pow(dot(N,H),smallLobe{Li“'
Specular+= pow(dot(N,H),bigLobe);. .

L P~
—~
NS
« Qily layer < . |
~ Human face reflectance parameters varies d ¢ ding on face
region o “'
« Acquisition of Human Faces Using A MeasuremeqT " ed S kin

Reflectance Model. Weyrich 2006 L ‘ \’

. Several Cook-Torrance parameter maps e;(sed on

empirical testing 3
~ Let your artists factor it into their speculagmaj

T e — ——

Skin rendering

s

N

« Ps —specular intensity >,
« M —specular roughness

0.34r

0.32f

HO8 ;
0.28f 4
™ ZRZQ

0.2 Q‘l 0

B 18 1 1 L L 1 1 1 1 J
023 024 025 026 027 028 0.29 0.3 0.31 0.32
m

0

Skin rendering .

o~ P & & a ”
- i
= Oily, Epidermis, Dermis @ il
» Responsible for diffuse light scattering i 1
- Light waves travel different distance because of scattering

)
between layers f 3 :
@ Aproximate with diffusion profile \

= Gpu Gems3 - Skin rendering . f \ |
@ Measured empirically by light scattering study g
@ Laser pointer in your: skin, wax, milk etc. #**

Reflectance

\ \
0.035 -] ‘\
0.03 - {
0,025 - \
T 0.02- \
= \
0.015 - \
0.01 \ \
0.005 - s ———
1 \ 1 1 1 1

Ve . - 4 ol

Y o e . ‘ o dh
EUrope Skin rendering LD
P~ ut L ‘_“:'-‘" b ”
@ Sub Surface Scattering . 1

- We can aproximate diffusion profiles by sum @ L eightened

gaussians 8

- Each material requires individual weight t@ble\f

i

- Example weights from Nvidia skin shader ' «
"7

Variance Blur Weights

N ore ‘ .
e Skin rendsrlng\“

\ o

« Sub Surface Scattering . |
~ Correct SSS lighting using texture space d| .

& Unwrap the object ! .U
@ Create object light buffer in texture space ﬂ’ '
Nl

@ Perform sum of gaussian convolutions over th
buffer

« Take care for stretching
@ Wrap it back onto the model and use in shadin

Skin rendering

¢

Linear
Combination

Texture|Mapping

) stretchU stretchV

Skin rendering

,\’l\

h

@ SSS by texture space diffusion «

~ Accurate

- Costly

@ Unwraping jﬂ
» Additional memory |
® Relighting 4 :
A ~ In deferred architecture we have got eve
*' screen space light buffer |

~Y
h . ,
e
wA r -
’ 4
’

Skin renderlng

« Screen Space Sub Subsurface Sgatternn

~ Use during material pass ! (|
‘ g
- Material shader samples the lightbuffer =
= Sample sum of gaussians {L o
= Take careful samples with diffusion profile weight tal

~ Compute ddx and ddy for sampling radius'con:
K’ \

~ Use masking to sample only from skin rec ‘i{* R .

T —— ——

Skin rendering

A L g
g

& Screen Space Sub Subsurface Seattering ™
- Sampling My

= We take g taps with dynamic radius (good comp 0 _‘u
« Jittered sampling , ';.
@ Linear filtering (where possible and reasonableﬁ \ ...:
= Weight table and distance tweaked manually, Pa ac

papers
\ & Sampling distance altered by current texel mij
: = Prevents SSS stretching J

for consoles)

! ‘.
M

research

el
€

Skin rendering

& Screen Space Sub Subsurface Scattering |
- Jittering i f |

@ Use variable sampling pattern trick
« Change sampling pattern depending on curen

ol
v
@ Cheap with great effect Ul 1
~ Ignore samples from outside the object , | &

:!
POS
|

“ Mask encoded in one bit (LSB) of light buffer; - my

_'(-— « i L.

.

—

*T K -—,Q‘ -z t‘

) T o)
\. < W } - 5

IGOGE . ‘ oy
EUrope Skin rendering

ﬁ*
& Screen Space Sub Subsurface ip:atterln. ﬁ _

Skin rendde/rlng__ T

,ﬂ\
b, IR

« Backside translucency >, il
- Operating in SS and in deferred mode | j
@ No light information regarding light transmnssnon

@ Important tranlucency effect ﬂ t
« Red light through ears, hands (bone structure)"

behind

Skin rendering

,ﬂ\

p

« Backside translucency o

.~ Do in forward mode

« Quick and dirty P
« Calculate backface lighting for n strongest Iighg’f ' |

= Attenuate by thickness map i A

+ Baked (xNormal) or done by artists

= Works best for thin, non deformable, surfaces leave

= Backside translucency . “
- Accurate
@ For each light render the depth map (use the on¢ T ; shadow
mapping) |

. ';‘ {

@ During shading, project the depth map and calﬁ e the distance
between the point beeing shaded and the pomt 0 l pther side’
along light vector '

A @ Calculate light value and attenuate it by calc J|;

.'
JOARN

C Sl

1

g

@ Hair s >
- Use alpha tested quads with simple transparency i f "i
& Based on pixel ‘kill' - therefore no need forsorting =
@ Jittering and blending takes care for plausible blendlng i
- For lively apperiance advanced anizotropic speculﬂ '% '
@ Kajiya-Kai
@ Ward Anisotropic
. Anizotropy direction easily controlable
@ Painted per vertex
@ Direction texture map

.~ @& Orsimply follow geometry tangent
; @ A;;gsts control the direction by Uvs rota

e A

1 !

= Hair <), il =
- Use polygon soup with simple transparency I
= Based on pixel ‘kill' — therefore no need for sorting

f‘" ling
i

@ Jittering and post smart blurring takes care for plausi

A
i
i A

.J
{

'

Hair rendering
o

Y o
-
h
- Advanced anizotropic specular is required for lively apperiance
@ Kajiya-Kai |

@ Ward Anisotropic
~ Anizotropy direction easily controlable
% Painted per vertex
@ Direction texture map
@ Or simply follow geometry tangent

Hair rendering
o

,ﬂ\

h
< Hair x w,
2 pass rendering
@ 1—render the polygon soup B
@ 2 —render after deferred shading i s |
« Backbuffer contains Blinn-Phong lit hair ;ﬂ < i
= Add ward anizotropic specular from 2 most influenci
« Treat the camera as additional light
« Photography trick
« Hair look healthier and more alive

————

T

— —— —8), (| y 1

N
Mg P~
-
@ Water < >, il B

- Complex material I
© Geometry

& Wave creation, propagation and interaction =

& Optics ?’} n

= Surface rendering
@ LODing scheme

= 4 P~
N
~ Geometry < v, |
© Render as tessaleted mesh
« Adaptive Tesselation in screenspace
« Nearer —more triangles
- Use vertex shader for wave creation and p opagation

@ Gerstner wave equation
« Position and normal = fast computation
« Can control choppiness
« Verticies closer for wave cre
= See Gpu Gems 1 : Effective Water Sim

L @ Generate several waves

Y - -~ » 4 A
’ -y ._.LA.’
‘ﬁl &

- / ' .) .
X+ L |Q; A x D,.x x cos(w,D; - (x,y) + ¢;t)
y + Z'/Q,/l XD,y X cos(wD. -(x,y)+ \‘.t)..
Z ': A sin (wD, - (x,y ! + ;!))

J

ey f’ . - - _
A% _y . . —

fo

b
e s
~
NS A
= Geometry < v, Ul |
- Wave amplitude is attenuated with vertex di tance to sea

bottow ! I
@ Wave fadeout on beaches I

‘ i
~ Can generate foam particles on wave cresﬁ
A

“ We do it in pixel shader
« Splash foam texture where needed

- For physics

@ Evaluate the wave function per p "i’ t

l

g |
q
1

< Optics <

- Surface normal

- Reflection

- Refraction

- Light scattering
~ Light extinction
~. Caustics

- Solid surface decals

@ http://www.seafriends.org.nz/phgraph/water.ht ' L
Water surface effects |

incident light reflected light

penetrating
light

L blue
Talight

diffusion

http://www.seafriends.org.nz/phgraph/water.htm

b
,'/ /\!\
-t
e e
< Optics X . =
- Surface normal
= Per vertex tangent basis from gerstner wave si
« Per pixel normal blend o
® FFT ;ﬂ

+ Computed real time

+ Blend of artist created, moving textures
= Dynamic normal map using Navier Stokes
& 256%x256 i
« Fluid splashes for each phy:

< Optics X >,
- Reflection

@ Render the reflection buffer _
= Use planar mirror matrix v IR
= Low res buffer (512x512)

« LOD models, lights and shaders
@ Blur (stronger horizontal)
A “ Must be HDR
+ RGBMS8

< Optics A >,
- Refraction
« Refract the eye vector by surface normal

“ Project on backbuffer
@ Sample the backbuffer

- Sample = light
@ Scatter
@ Extinct

—r -~
t
< Optics £ P, ’
© Light extinction 3
@ Light coming from the sky is beeing attenuated by wav length
« Colour grading s
« Depends on D —ray length from surface to point bee’ng
% Must be attenuated per channel .
« Use research data ' f
How colour cnsfn es with depth/distance

light absorption by wa'-.-'elerr;leqth
re

Accurate light absomption in % per In clear water

The bars give the distance to which 10% light remains,
equivalent to a light loss of over 3 f-stops.

%) polluted
oceanic '
clear ;
\ a+b Ilght path

N
~ P~
-
h
@ Optics v), L
Light scattering i
@ Reflected light (incoming to camera) is scattered and dif
+ Reyleigh — contrast loss g |
igi ckbuffer)

= Tindall - bluring (can lerp between blured and 4’

How colour changes with depth/distance || ? _,l

In clear water e 1%

The bars give the distance to which 10% light remains, ‘
equivalent to a light loss of over 3 f-stops.

20 I a+b Ilght path

< Optics X W,
~ Final light - simplified
@ Incoming light to camera
« sL = extinct(L, distanceToSurface,waveLengthExi
@ finalL = scatter(sL,distanceToCamera, attackA@l?
« Proper evaluation requires |
@ Precalcualted cube textures with calculated ray ﬂ
= Must recalculate with water parameter ch >
“ Found a good aproximattion to given functic '
Assume the camera is above water surface
. @ Every distance easy to compute ¢

%
8 Beconstruct Camera and World s L‘
1d point being sampled from . ' '

\!

and extinction

Accumulate
with distance

until fully, scattered

N A
@ Approximate with a function) T8

- Dependant on
@ Attack angle
< Distance from sampled point to surface .
@ Distance from shaded point to sampled point Tﬂ i I
© Water parameters (extinction table, tint) LU\

- See appendix

« Causitcs X 4 '!- " |
* Project several caustic patterns on sea botton

@ Project on backbuffer ;
« Use reconstructed world position for Uvs and Dﬂd‘])

|

.€1 A

« Smartly animate |

- Attenuate using extinction

« Surface decals - >
© Textures blended with water
- On top of water
- Lit per-vertex

~ Foam
@ Foam texture

@ Blended where
® Wave height > threshold

“ Specular L .

© Use true reflection vector
« Better specular shape for sun

- Average several lobes for area light specuw’

- Take care for precise normals

@ Specular values are high
« All precision artifacts will be visible

N
¢ o
'_.(
« Soft edge x 4 k)
- Get distance from point shaded to the pom ‘ pled from
backbuffer il
- Use it to blend with backbuffer ﬂ“ A

ts)

- Soft transition between water and shore (’6,‘

< Swamp water - Y,

o
o”

P

Special Water Types/ |

N

» Compute blurred backbuffer (Bé) |

@ 1/32 of original buffer o
- Refraction = Ierp(original,qur,rayLengtth n
~ BB holds sun shadow mask in Alpha "R

+ Used for specular and light relfection attenuatic ‘
* Using BB simulates volumetric lighting = .
- Simplified scattering equation i A"
@ No extinction (assumed too dens f

M

S

“ Muddy water - v,

|
T —

Pl

Special Water Types/ |

N,

.

. Mix of ocean water and swampy water

~ Uses Navier Stokes velocity vectors to mix
and blured backbuffer JI’
@ Simulates water dusting due to movement " '
@ Can do the same using artist created textures | “ l
- Use skyBox Cube for reflection |
@ Speed up

23 S
o o
& River water o), o
~ Mix of everything

~ Moving surface textures
@ Blending normals

~ Rivers layed down as paths (roads) of poly’g it
@ Direction

@ Speed

@ Foam amount
@ Curvature

) o

¥
i

’,\!\

Special Water Types|

,ﬂ\

-

= Presentation and code sm‘ppetﬁ vailable at

]
! 1

i
3
1
Uy
B

@ www.DROBOT.org;”l !1
{ .|

1 i

Y

: © Ormail me hello@drob:

T

http://www.drobot.org/

WWW.DROBOT.ORG
e L g

4.3

\
\
B]
I.

'\ ‘ (}1

iy

