
Advanced Material Rendering

Michał Drobot
Visual Technical Director

Reality Pump

Advanced Materials

 State of material rendering
Several techniques from the ‘old’ toolbox

 Diffuse + Specular + Normal + Phong

 Parallax

 Fur / Shell rendering

 Alpha blending

 Cube maps

 IBL

 Reflections / Refractions / Glossy Specular

Advanced Materials

 Material rendering stucked
 Those techniques doesn’t work right with current deferred rendering

architectures

 Deferred shading
 Brings global light-material interaction shaders

 Requires uniform BRDF across all materials during shading pass

 Really fast

 Requires one geometry pass

 Fat G-Buffer might hurt the bandwidth

 Lacks material variety

 Adding different material support seriously hurts the speed

 Alpha blending must be done in forward pass

Advanced Materials

 Material rendering stucked

 Light pre-pass
 Requires double geometry pass

 ‘light’ g-buffer

 Normal + Z

 Material pass

 Renders invidual meshes with custom material shaders

 Use light information gathered in light buffer, created from ‘light’
g-buffer

 Allows usage of many different material shaders

 Unified light interaction

 Alpha blending must be done in forward pass

Advanced Materials

 We want a new toolbox

 Compatible with deferred renderers

 More advanced techniques

Jittering tricks

 Jittering

 Sampling in a pattern to cover undersampling in more
plausible noise

 Normally done using ‘rotating disk’ of sample offset
distribution
 Uniform

 Poisson

Jittering tricks

 Jittering using rotating disk

 Precompute a good offset distribution table
 N points in normalized space using disk distribution

 For each shaded pixel
 Get random normal vector N

 For each sample

 Rotate the point from the disk distribution by N

 Sample using the point as the scaled offset

 Because of non-discrete sampling point, linear
sampling is important

Jittering tricks

 Jittering using alternating pattern

 What if we can’t afford additional noise lookup, ALU per
sample and linear filtering

 We need carefull manual sampling pattern

 We know the exact pixel position from VPOS
 With that we can use dithering pattern

 With different pixels we use different pattern

 Used patterns cover different samples

Jittering tricks

 Jittering using alternating pattern

 Example
 Let’s have 2 different sampling patterns

 Together they cover the full sampling area with dither

 We use different for even and odd pixels

 Cover the whole region with 2 times less samples

 Removes banding by adding controlable noise pattern

Jittering tricks

 Jittering using alternating pattern

 Shadowing example

 Dual paraboloid soft shadows

 4 taps only

 Minimal additional overhead

 Plausible noise

 Bigger softness requires more patterns

float4 tex2DSHDWPCF(sampler2D tex, float4 UV, float2 vP)

{

const float4 gPCFJitter1[2] = {

float4(0.5, 0.0, -0.5, 0.0),

float4(0.5, 0.5, -0.5, -0.5), };

const float4 gPCFJitter2[2] = {

float4(0.0, 0.5, 0.0, -0.5),

float4(0.5, -0.5, -0.5, 0.5), };

float4 Samples;

float Index = (vP.x + vP.y) % 2;

float JitDis = 0.003 * (1.0 + 2.0 * (frac(dot(UV.xy,

165697.0)) - Index * 0.5));

float4 tC1 = gPCFJitter1[Index] * JitDis;

float4 tC2 = gPCFJitter2[Index] * JitDis;

tC1 += UV.xyxy;

tC2 += UV.xyxy;

/…/

}

Jittering tricks

Jittering tricks

Transparency

 Transparency in deferred architecture is tricky

 Scenarios

 Simple transparency (lit)

 Fully transparent material

 Semi-Transparent material (lit)

 Translucent material (always lit)

Simple transparency

 Simple transparency

 Think of simple fade in, fade out
 Sometimes needed when objects get in our camera view (think

leaves…)

 Grass blend in/blend out

 Objects popping in

 Must be cheap and coherent with lighting

Simple transparency

 Simple transparency

 Use screen door effect
 Compute/lookup dithering patterns

 Use them to ‘kill’ pixels

 Alternate between patterns depending on transparency value

 4 level transparency easy to compute when bandwidth
bound
 Remember to check were the compiler is putting your ‘kills’ – should

do it ASAP

Simple transparency

float jitteredTransparency(float alpha, float2 vP)

{

const float jitterTable[4] =

{

float(0.0),

float(0.26),

float(0.51),

float(0.76),

};

float jitNo = 0.0;

int2 vPI = 0;

vPI.x = vP.x % 2;

vPI.y = vP.y % 2;

int jitterIndex = vPI.x + 2 * vPI.y;

jitNo = jitterTable[jitterIndex];

if (jitNo > alpha)

return -1;

return 1;

}

0% 25% 50% 75% 100%

Simple transparency

 Simple transparency

 Dithered transparency looks bad in 720p
 We would like to blur those nasty dithered pixels

 Can’t afford another pass that would detect them and blur

 We are already doing it in Edge AA pass

Simple transparency

 Custom Edge AA

 Common technique in deferred renderers

 Full screen pass
 Find edges based on depth/normal data

 Blur them

 Can use it to our advantage

 Just hint the Edge AA filter to find edges ‘between’ the killed
pixels
 You get nice blending for free

 Could be done with a flag or more hacky by altering the source of
edge detection (put discontinioutis in depth)

Fully transparent

 Fully transparent

 Doesn’t need lighting
 Just reflects / refracts light

 Usefull for
 Glass

 Water

 Distortion particles

 Treated as post-effect
 Requires backbuffer as a texture

 Handy to have depth information in Alpha channel

Fully transparent

 Refraction

 Use the eye vector

 Refract it physically against surface normal

 Project on backbuffer and read

 Use refraction masking
 Gpu Gems 2

Fully transparent

 Reflection

 Treat the backbuffer as a spherical map

 Reflect the eye vector against surface normal

 Use spherical mapping for outgoing vector
 We spherically map the backbuffer to fake RT reflection

 Sample the backbuffer
 Or some smaller – blured version for glossy relfeciton

 Hacky
 Looks quite convincing

 Use dual-paraboloid enviromental map for quality

Fully transparent

Advanced materials

 Glass
 Fully transparent material

 Rendered in post

 Reflection - Refractions surface
 Follows fresnel law

 Mix reflection with refraction depending on angle beetwen eye vector
and surface normal

 Use fake real time reflection

 Use backbuffer for refraction

 Can use blurred backbuffer for glossiness and translucency
approximation

Semi-Transparent material

 Require lighting

 Correct

 Consistent with the whole scene

 Shadowed

 Therefore we want it in deffered mode

 Preferably with single lighting and shading cost

 Use dither patterns with sample reconstruction

Semi-Transparent material

 2 pass rendering

 1 pass – semi-transparent materials are written into g-buffer
using dithering patten

 2 pass – materials are fully rendered after light accumulation,
using sample reconstruction to get correct lighting values.
Sorting and alpha blending is required.

 Someone actually got the same idea :]

 Inferred Rendering

Semi-Transparent material

 1 pass
 pattern covers the basic rendering quad (i.e. 2x2)

 Pattern choice depends on number of transparent material layers beeing
overlayed

 One 2x2 quad can cover

 2 materials with 75:25 ; 50:50 quality ration

 3 materials with 50:25:25

 4 materials with 25:25:25:25 quality ratio

 Each additional layer leads to quality loss of lighting

O T1

T1 O

O T2

T1 O

T3 O

T1 T2

Semi-Transparent material

 2 pass
 Overlaping semi-transparent materials are sorted back to front (with

solid beeing the first to be rendered)

 For each overlaping material
 Lightbuffer is sampled with correct pattern to acquire original lighting values

 Material is rendered with full resolution textures and reconstructed lighting

 Transparency is handled by alphablending with the backbuffer

Semi-Transparent material

 Lighting reconstruction

 Taking one sample only leads to heavy aliasing

 Must take multiple samples for reconstruction
 Check if the pixel beeing shaded is the original one

 If false, sample the neighbourhood for valid samples, weight them and
average for sample reconstruction

 If true, leave unaltered

 Leads to less aliasing and more stability during movement

 Using 2x2 quad for more than 2 materials=heavy texture cache trashing
and aliasing

Semi-Transparent material

 Pros
 Method suits light pre pass architecture

 Same with hybrid deferred renderers

 Flexible

 Predictable, linear quality loss

 Cons
 Taxing ROPs because of alpha blending

 Especially frustrating when high precision blend operations are slow

 Requires the second pass for solid and opaque geometry

 Not a problem if doin light pre pass anyway

 Sometimes problematic to flag the right objects to use dither

 Mostly doing too much, thus losing quality and performance

Semi-Transparent material

 We couldn’t take the High Precision blending hit and additional
geometry passes
 Hybrid deferred renderer

 Settled with one layer transparency
 Better performance, quality and stability

 More flexible

Semi-Transparent material

 Deferred renderer with single transparency
 Semi-transparent geometry is rendered to g-buffer with checkboard

pattern

 Albedo is set to 1
 1 – pass is feather weight – normals and specular only

 After deferred shading
 Acumulation buffer is containing alternating pixels of semi-

transparent geometry lighting information and underlaying shaded
geometry

 2 – pass is reconstructing both

 Lighting data

 Shaded background

 Material is rendered with full quality

 Alpha blending is done manually

Semi-Transparent material

 Deferred renderer with single transparency
 Reconstruction

 Sample a cross a pattern

0 1 2 3

0

1

3

2

For even pixel
Corners – light buffer
Middle – background

For odd pixels
Corners – background
Middle – light buffer

Semi-Transparent material

 Deferred rendering with single transparency
 Really fast

 Only the semi-transparent geometry is using pixel ‘kill’

 Sample reconstruction is simple and coherent

 No branching needed

 High quality
 Background and lighting data is ¼ resolution, bilaterally upscaled

 Stable during movement

Semi-Transparent material

Semi-Transparent material

Semi-Transparent material

Semi-Transparent material

Semi-Transparent material

Translucent material

 Translucent materials

 Only allows light to pass through diffusely

 Transparent materials are clear, while translucent ones
cannot be seen through clearly.

 Because of light diffusion inside material volume
 Material is lit additionally by Sub Surface Scaterring

 Visible background is diffused (blurred) – refraction

 SSS amount is dependant on material parameters and
thickness
 Thicks materials, requiring global SSS are unpractical for

performance reasons

 We can efficiently simulate local SSS (like in skin rendering)

Translucent material

 Translucent materials

 For simplicity assume translucency with minimal local SSS

 We need to simulate refracted light diffusion
 Take the backbuffer

 Perform hierarchical downscale with blurring

 Sample original and blurred background

 Lerp depending on translucency factor

 Use for refracted light

 Can use the same for fake real time glossy reflections

Skin rendering

 Skin rendering

 Important for believable characters

 Exhibits complex light interactions
 Diffuse

 Specular

Skin rendering

 Skin is multilayered

 Oily layer

 Epidermis

 Dermis

 Know material

 We see it everyday

 Therefore

 Complex

 Hard
 Research

 Tweaking

OMG!

Skin rendering

 Oily layer

 Responsible for specular reflectance
 Fresnel reflectance

 Dielectric
 Reflects unaltered light

 White light reflected as white light

 Fine scale roughness
 Requires advanced BRDF

Skin rendering

 Oily layer

 Simulate using
 Finescale detail normal map

 Specular intensity and roughness maps

 BRDF

 Cook-Torrance

 Shirmay-Kallos

 Preferable for consoles due to easy factorization and performace
optimizations

Skin rendering

 Oily layer

 BRDF
 Blinn-Phong with several lobes and fresnel reflectance

 Optimal for consoles

 We are using two lobes tweaked by artists

Specular = pow(dot(N,H),smallLobe)

Specular+= pow(dot(N,H),bigLobe)

OK!

Skin rendering

 Oily layer

 Human face reflectance parameters varies depending on face
region
 Acquisition of Human Faces Using A Measurement-Based Skin

Reflectance Model. Weyrich 2006

 Several Cook-Torrance parameter maps exists based on
empirical testing

 Let your artists factor it into their specular maps

Skin rendering

 Ps – specular intensity

 M – specular roughness

Skin rendering

 Oily, Epidermis, Dermis

 Responsible for diffuse light scattering

 Light waves travel different distance because of scattering
between layers
 Aproximate with diffusion profile

 Gpu Gems3 – Skin rendering

 Measured empirically by light scattering study

 Laser pointer in your: skin, wax, milk etc.

Skin rendering

 Sub Surface Scattering

 We can aproximate diffusion profiles by sum of weightened
gaussians

 Each material requires individual weight table

 Example weights from Nvidia skin shader

Skin rendering

 Sub Surface Scattering

 Correct SSS lighting using texture space diffusion
 Unwrap the object

 Create object light buffer in texture space

 Perform sum of gaussian convolutions over the unwraped boject light
buffer

 Take care for stretching

 Wrap it back onto the model and use in shading

Skin rendering

Skin rendering

 SSS by texture space diffusion

 Accurate

 Costly
 Unwraping

 Additional memory

 Relighting

 In deferred architecture we have got everything we need in
screen space light buffer

Skin rendering

 Screen Space Sub Subsurface Scattering

 Use during material pass

 Material shader samples the lightbuffer
 Sample sum of gaussians

 Take careful samples with diffusion profile weight table

 Compute ddx and ddy for sampling radius control

 Use masking to sample only from skin regions

Skin rendering

 Screen Space Sub Subsurface Scattering

 Sampling
 We take 9 taps with dynamic radius (good compromise for consoles)

 Jittered sampling

 Linear filtering (where possible and reasonable)

 Weight table and distance tweaked manually, based on research
papers

 Sampling distance altered by current texel mip level

 Prevents SSS stretching

Skin rendering

 Screen Space Sub Subsurface Scattering

 Jittering
 Use variable sampling pattern trick

 Change sampling pattern depending on curent pixel VPOS

 Cheap with great effect

 Ignore samples from outside the object
 Mask encoded in one bit (LSB) of light buffer

Skin rendering

 Screen Space Sub Subsurface Scatterin

Skin rendering

 Screen Space Sub Subsurface Scatterin

Skin rendering

 Screen Space Sub Subsurface Scatterin

Skin rendering

 Backside translucency

 Operating in SS and in deferred mode
 No light information regarding light transmission from behind

 Important tranlucency effect

 Red light through ears, hands (bone structure)

Skin rendering

 Backside translucency

 Do in forward mode
 Quick and dirty

 Calculate backface lighting for n strongest lights

 Attenuate by thickness map

 Baked (xNormal) or done by artists

 Works best for thin, non deformable, surfaces (leaves, ears)

Skin rendering

 Backside translucency

 Accurate
 For each light render the depth map (use the one from shadow

mapping)

 During shading, project the depth map and calculate the distance
between the point beeing shaded and the point ‘on the other side’
along light vector

 Calculate light value and attenuate it by calculated distance

Skin rendering

Hair rendering

 Hair
 Use alpha tested quads with simple transparency

 Based on pixel ‘kill’ – therefore no need for sorting

 Jittering and blending takes care for plausible blending

 For lively apperiance advanced anizotropic specular is required

 Kajiya-Kai

 Ward Anisotropic

 Anizotropy direction easily controlable

 Painted per vertex

 Direction texture map

 Or simply follow geometry tangent

 Artists control the direction by Uvs rotation in texture space

Hair rendering

 Hair
 Use polygon soup with simple transparency

 Based on pixel ‘kill’ – therefore no need for sorting

 Jittering and post smart blurring takes care for plausible blending

Hair rendering

 Hair
 Advanced anizotropic specular is required for lively apperiance

 Kajiya-Kai

 Ward Anisotropic

 Anizotropy direction easily controlable

 Painted per vertex

 Direction texture map

 Or simply follow geometry tangent

 Artists control the direction by Uvs rotation in texture space

Hair rendering

 Hair
 2 pass rendering

 1 – render the polygon soup

 2 – render after deferred shading

 Backbuffer contains Blinn-Phong lit hair

 Add ward anizotropic specular from 2 most influencial

 Treat the camera as additional light

 Photography trick

 Hair look healthier and more alive

Water

 Water

 Complex material
 Geometry

 Wave creation, propagation and interaction

 Optics

 Surface rendering

 LODing scheme

Water

 Geometry

 Render as tessaleted mesh
 Adaptive Tesselation in screenspace

 Nearer – more triangles

 Use vertex shader for wave creation and propagation
 Gerstner wave equation

 Position and normal = fast computation

 Can control choppiness

 Verticies closer for wave crest

 See Gpu Gems 1 : Effective Water Simulation from Physical Models

 Generate several waves

 Differ amplitude, frequency, direction, roughness

Water

Water

 Geometry

 Wave amplitude is attenuated with vertex distance to sea
bottow
 Wave fadeout on beaches

 Can generate foam particles on wave crest
 We do it in pixel shader

 Splash foam texture where needed

 For physics
 Evaluate the wave function per point when needed

Water

 Optics
 Surface normal

 Reflection

 Refraction

 Light scattering

 Light extinction

 Caustics

 Solid surface decals

 Specular

Water

 Optics

 Excellent references for underwater photography
 http://www.seafriends.org.nz/phgraph/water.htm

http://www.seafriends.org.nz/phgraph/water.htm

Water

 Optics

 Surface normal
 Per vertex tangent basis from gerstner wave simulation

 Per pixel normal blend

 FFT

 Computed real time

 Blend of artist created, moving textures

 Dynamic normal map using Navier Stokes

 256x256

 Fluid splashes for each physical object

 Centered at the camera position

 Blends away from camera

Water

Water

 Optics

 Reflection
 Render the reflection buffer

 Use planar mirror matrix

 Low res buffer (512x512)

 LOD models, lights and shaders

 Blur (stronger horizontal)

 Must be HDR

 RGBM8

 Reflect the eye vector by surface normal

 Project on reflection buffer and sample

Water

 Optics

 Refraction
 Refract the eye vector by surface normal

 Project on backbuffer

 Sample the backbuffer

 Can take 3 samples with offset – chromatic abberations

 Sample = light
 Scatter

 Extinct

Water

 Optics

 Light extinction

 Light coming from the sky is beeing attenuated by wavelength

 Colour grading

 Depends on D – ray length from surface to point beeing shaded

 Must be attenuated per channel

 Use research data

Water

 Optics

 Light scattering

 Reflected light (incoming to camera) is scattered and diffused

 Reyleigh – contrast loss

 Tindall – bluring (can lerp between blured and original backbuffer)

Water

 Optics

 Final light – simplified

 Incoming light to camera

 sL = extinct(L,distanceToSurface,waveLengthExtTable)

 finalL = scatter(sL,distanceToCamera, attackAngle)

 Proper evaluation requires

 Precalcualted cube textures with calculated ray scattering and extinction

 Must recalculate with water parameter change

 Found a good aproximattion to given functions

 Assume the camera is above water surface

 Every distance easy to compute

 Reconstruct Camera and World space position of point being shaded
and point being sampled from backbuffer

Water

Water

Water

Accumulate
with distance
until fully scattered

Water

 Approximate with a function
 Dependant on

 Attack angle

 Distance from sampled point to surface

 Distance from shaded point to sampled point

 Water parameters (extinction table, tint)

 See appendix

 Mix relfection and refraction using fresnel function

Water

 Causitcs

 Project several caustic patterns on sea bottom
 Project on backbuffer

 Use reconstructed world position for Uvs and projection

 Smartly animate

 Attenuate using extinction

Water

 Surface decals

 Textures blended with water

 On top of water

 Lit per-vertex

Foam
 Foam texture

 Blended where

 Wave height > threshold

 Distance from surface to bottom < threshold

 Distance from surface to point sampled from backbuffer < threshold

 Allows dynamic foam around objects – tricky to get right

Water

 Specular

 Use true reflection vector
 Better specular shape for sun

 Average several lobes for area light specular

 Take care for precise normals
 Specular values are high

 All precision artifacts will be visible

Water

 Soft edge

 Get distance from point shaded to the point sampled from
backbuffer

 Use it to blend with backbuffer

 Soft transition between water and shore (or objects)

Special Water Types

 Swamp water

 Compute blurred backbuffer (BB)
 1/32 of original buffer

 Refraction = lerp(original,blur,rayLengthFunction)

 BB holds sun shadow mask in Alpha
 Used for specular and light relfection attenuation

 Using BB simulates volumetric lighting

 Simplified scattering equation
 No extinction (assumed too dense = solid color)

 Different surface normals

Special Water Types

Special Water Types

Special Water Types

 Muddy water

 Mix of ocean water and swampy water

 Uses Navier Stokes velocity vectors to mix between original
and blured backbuffer
 Simulates water dusting due to movement

 Can do the same using artist created textures

 Use skyBox Cube for reflection
 Speed up

Special Water Types

 River water

 Mix of everything

 Moving surface textures
 Blending normals

 Rivers layed down as paths (roads) of polygons
 Direction

 Speed

 Foam amount

 Curvature

Special Water Types

 Presentation and code snippets available at

www.DROBOT.org

Or mail me hello@drobot.org

http://www.drobot.org/

WWW.DROBOT.ORG



