
FIFA Ultimate Team at REST
Dr. Harold Chaput, Technical Director, EA Canada

1Friday, October 8, 2010



Acknowledgements
Server Dev Team

Andrew Tjew

Chris Brown

Mohammed Raihan

Mark Obsniuk

Web Dev Team

Neale Genereux

Andrey Soubbotin

2Friday, October 8, 2010



Overview
FIFA Ultimate Team

What is REST?

REST Benefits and Features

Migrating FUT to REST

Benefits of a RESTful FUT

REST beyond FUT

Advice for becoming RESTful

3Friday, October 8, 2010



FIFA Ultimate Team

4Friday, October 8, 2010



An Unexpected Game

Break some new ground, 
alternative to a licensed 
title

Card trading game mode 
in Champions League 07

Expand the feature set, 
put it online, sell as add-on

New product idea: 
prepared to break even

5Friday, October 8, 2010



Collect, Trade and Play
Purchase packs of players, 
contracts, power-ups

Trade with other players

Build your team
Team chemistry

Play your team against 
another player’s team

Win coins

6Friday, October 8, 2010



An Unexpected Success

Turned a very good 
profit

More than the licensed 
product would have

Made more money w/ 
MTX than selling the 
mode

Followed up w/ FUT2 
and continued success

7Friday, October 8, 2010



Unexpected Problems
FUT1 servers were 
shaky at launch

Server bottlenecks, 
connected to FIFA 
servers

Game logic on client
Hard to update post-
launch

UI info on the server 
(“glow”)

Followed console model 
of server per title

No year-over-year 
support

8Friday, October 8, 2010



A New Client

FUT Web introduced in 
April 2010

FUT servers used 
proprietary format, not 
HTTP

Took advantage of an 
opportunity to start over

...with REST

9Friday, October 8, 2010



What is REST?
The dirty details

10Friday, October 8, 2010



What is REST?
REST stands for “REpresentation State Transfer”

REST is style of software architecture

REST is intended for online services

REST first defined by Roy Fielding

“Architectural Styles and the Design of Network-based Software 
Architectures” (2000)

Fielding is the principle author of HTTP 1.0 and 1.1

Created for “distributed hypermedia” systems

Applications and benefits extend beyond WWW

11Friday, October 8, 2010



REST is a Style, like OOP
OOP is a style of software 
architecture

REST is a convention, not a 
syntax

OOP can be done in many 
languages

Many protocols can be 
RESTful

OOP has several variants and 
flavors

REST is also underdetermined

OOP is open to interpretation
There are many ways to be 
RESTful

OOP won’t solve all your 
problems, introduces new ones

REST is not a complete 
solution

Follow OOP, and gain benefits
...and so it is with REST

12Friday, October 8, 2010



REST Constraints

Client/Server (separation of concerns)

Uniform Interface w/ Hyperlinks

Stateless

Cacheable

Layered

Code on Demand (optional)

13Friday, October 8, 2010



Client and Server

User Interface
Rendering

Current Page
Device Security

Database
File Access
Load Balancing
Fraud Detection

Session State Application State

Client Server

Separation of Concerns

?

!

14Friday, October 8, 2010



Services and Resources

Client ServerServices

Message

Folder

Contact

Mailing List

Appointment

Meeting Room

Resources

Application 
State

Session 
State

?

Resource Representation

Mail

Address 
Book

Calendar

15Friday, October 8, 2010



Changing Application State

Client ServerServices
Message

Folder

Contact

Mailing List

Appointment

Meeting Room

Resources

Application 
State

Session 
State

?

Representational State Transfer

! Mail

Address 
Book

Calendar

16Friday, October 8, 2010



Statelessness

Stateful Stateless

move(direction, speed) set_position(x, y)

u1=owner(i1)
u2=owner(i2) 

assign(i1, u2)
assign(i2, u1)

u1=owner(i1)
u2=owner(i2) 

assign(i1, u1, u2)
assign(i2, u2, u1)

find_user(“Bob”)
send_msg(“Hello!”) send_msg(“Bob”, “Hello!”)

All required state information is in the request.

17Friday, October 8, 2010



Client

Cacheability
Representations are 
cacheable

Counters extra traffic 
caused by statelessness

Representations include 
expiration info

Representations can 
contain references to 
resources

Client-side Cache

Server-side Cache

Server

18Friday, October 8, 2010



Uniform Interface

Resources must be uniformly identified

The same ID results in the same resource

API consists of:

Resource representations

Resource identifiers

Requests and responses

19Friday, October 8, 2010



Env 2

Layered

Env 1Service A Service B Service C Service D

Router

Cache

Authentication

Filter

20Friday, October 8, 2010



REST Constraints

Client/Server (separation of concerns)

Uniform Interface w/ Hyperlinks

Stateless

Cacheable

Layered

If it has all these properties, it is RESTful.

21Friday, October 8, 2010



Why REST?
What’s in it for me?

22Friday, October 8, 2010



REST Benefits
Simplicity

Issues stay where they belong

Information is localized

Developers know what to build, 
can work in parallel

Performance
Caching decreases response 
time, reduces DB hits

Can distribute across multiple 
servers

Scalability
Services interact through 
references only

Can easily introduce new 
hardware as required

Visibility
Clients know what resources 
are available

Clients are informed of the new 
state

23Friday, October 8, 2010



REST Benefits
Portability

All clients use the uniform interface

New clients can be added post hoc

Prepare us for a multi-platform online world

Reliability

Transactions continued on new hardware if overloaded or crashed

Layered routers can direct traffic as needed

24Friday, October 8, 2010



REST Best Practices

HTTP
Conceptually compatible

Use four verbs: GET, PUT, 
POST, DELETE

XML / JSON
Structured, easy to construct 
& parse, allows refs

Java / C# / Ruby / Python
Can be deployed on arbitrary 
hardware

Built for reliability (not speed)

REST vs. SOAP
SOAP can be RESTful (and C 
can be OO)

SOAP is more than you need 
for REST

25Friday, October 8, 2010



Twitter

Facebook

Picasa

YouTube

Flickr

Google

OpenSocial

JIRA

Gowalla

Amazon

Spore

...hundreds more

RESTful Examples

26Friday, October 8, 2010



Migrating FUT to REST
Getting &om here to there

27Friday, October 8, 2010



FUT Console Servers

Step 1: A RESTful API

FUT REST API

Warehouse

Trading

Store

Tournament
s

28Friday, October 8, 2010



Step 2: RESTful Proxy

FUT Console Servers

Warehouse

FUT REST API
FUT Application Server

Trading

Store

Tournament
s

29Friday, October 8, 2010



Step 3: Componentization

FUT Console Servers

Warehouse

FUT REST API
FUT Application Server

Trading

Store

Tournaments

30Friday, October 8, 2010



Step 4: Application Servers

FUT Console Servers FUT REST API
FUT Application Server

Warehouse TradingStore Tournaments

31Friday, October 8, 2010



Step 5: All Clients on REST

FUT REST API
FUT Application Server

Warehouse TradingStore Tournaments

32Friday, October 8, 2010



How REST Benefits FUT
The Big Wins

33Friday, October 8, 2010



REST for Good Design
REST can guide good 
design decisions

Example: transactions as 
resources

Enforces stateless 
transactions

Removed serious 
transaction problems 
and increased robustness

34Friday, October 8, 2010



Modular Services

FUT built from 
components

Scaling components 
independently based on 
use

Updating 
implementation one 
step at a time

35Friday, October 8, 2010



Services are Shared

FUT components used 
by other products

FUT uses other shared 
components

Components managed 
independently

36Friday, October 8, 2010



Enforces Organization
Each service has a well-
defined function

Dramatically fewer server 
bugs

Problems are isolated and 
easy to find

Clients better understand 
how to implement (web 
client took four months)

37Friday, October 8, 2010



Promotes Live Updating

Client gets state 
from server

Easy to update 
functionality

Even for data 
we didn’t 
expect to 
update: item 
types

38Friday, October 8, 2010



Support New Clients

No client assumptions 
in the server

New clients can be 
supported quickly

No need for server 
team support

39Friday, October 8, 2010



REST beyond FUT
What else can we do?

40Friday, October 8, 2010



Games as Products

41Friday, October 8, 2010



Games as Services

42Friday, October 8, 2010



Games as Services

43Friday, October 8, 2010



Advice for Getting Rest
Lessons Learned

44Friday, October 8, 2010



Think Resources
Define your services in 
terms of resources

Determine how they will 
be identified, represented, 
manipulated

Organize them 
hierarchically

Opposite of OOP

Not data hiding,
data exposing

45Friday, October 8, 2010



API Before Code

Document your API before 
you write your server

Get API vetted by client 
teams

Development can start on 
client & server together

Can test out API with 
working client & dummy 
data

46Friday, October 8, 2010



Plan to Hand Off
Build your service to be 
handed off to your ops 
team

Don’t assume you have 
any control of the server

Clients can go though 
unexpected layers

May not talk to the same 
server instance twice

47Friday, October 8, 2010



Version through API
Expand existing APIs

Build clients to ignore 
extra information

When API meaning 
changes, make new 
resource

Sunset old resources 
when clients stop using 
them

48Friday, October 8, 2010



Good Reference

Richardson & Ruby

Understandable 
explanations

Several good examples

Transaction resource

49Friday, October 8, 2010



The End
hchaput@ea.com

50Friday, October 8, 2010

mailto:hchaput@ea.com
mailto:hchaput@ea.com

