
1 / 31

A massive challenge: The cross-platform
approach of the mobile MMO TibiaME

Benjamin Zuckerer
Product Manager, CipSoft GmbH

2 / 31

What is this session about?

Introduction to CipSoft and TibiaME
TibiaME's cross platform approach

Architecture

Development costs

Tool chain

Technical challenges
UI Design challenges
Payment
Testing
Lessons learnt

3 / 31

Company

CipSoft GmbH
founded 2001
independent developer
4 owners
62 employees
innovative online games

4 / 31

TibiaME

2D fantasy MMORPG for mobile devices
Online since May 2003
Business model

Free2play with optional subscriptions

No microtransactions (yet)

Available for various platforms
J2ME, Symbian Series60

Now also for: iOS, Android and Web

5 / 31

Classic client

Designed for screens with 128x128 or 176x208
20x20 px graphic assests, walking animations
No sound or music
Only keyboard / joystick based controls
Available for J2ME and Symbian Series 60

6 / 31

ExtremeClient

We wanted to
Use the same protocol (for server communication)

Support Touchscreen devices (Symbian & iOS)

Take advantage of the higher screen resolutions

Have the same chance to succeed in the game, no
matter on which device TibiaME is played

 → 2D Retro graphics
 → start from scratch, new client 'ExtremeClient'

7 / 31

Why go cross-platform?

Fast changing market
Be flexible, don't bet on a single Apple
Intense competition – spread your risks
Early bird advantage on new platforms
More platforms more potential customers→
Lower development costs on the long run

Cross-platform approach
Started with Symbian and iOS

 → Added Android client and Web client later on

8 / 31

Architecture

iOS
(Objective C,

C++)

OpenGL (C) / Native graphics (C++)

Extreme Client Core
(C++)

Java Native Interface
(Java)

Android
(Dalvik)

Symbian
(Symbian C++)

● Input
● System dialogs
● Device characteristics

● Graphic output

● Data
● Communication
● Layout

Web
(Java)

9 / 31

Development costs

Core code makes up ~80%
So, there is ~20% specific code per platform

New features and bugfixes available to all platforms

Development time
Core system + iOS + Symbian (2 Programmers,
~1.5 years)

Android + solution for fragmentation, e.g. screen sizes
(1 Programmer, ~4 month)

Web (1 Programmer, ~2 month)

10 / 31

Tool chain

Development:
Mac / XCode: required for iOS

Eclipse (with plugins): all other platforms

We are using the following libraries:
OpenGL ES 1.1

OpenAL

Libpng

RapidXML

11 / 31

Tool chain

Graphic and sound assets
ImageMagick to scale graphics

Our own tools for texture packaging

ffmpeg and lame to convert sound and music

Localisation
'xliff' file format

Pootle
open source translation tool
Web based and easy to use

12 / 31

Technical challenges

Target devices
Does your game require certain hardware specs?

Any features only available for certain OS versions?

Which platforms do you want to support?

 → Make as many features optional as possible

 → Test your assumptions with a prototype

13 / 31

Technical challenges

Fragmentation
CPU speed, GPU speed, available memory

Different OS versions available features→
OpenGL ES 1.1 not mandatory on many Android versions

Requires workarounds for OpenGL ES 1.0

Not even bugs are consistent across devices

Many different screen sizes
QVGA (240x320) up to Retina displays (640x960)
Different aspect ratios
Can't scale the pixel based graphics + need different UIs

14 / 31

Solutions

Precreated assets
Sound & music assets created uncompressed

Then converted to all formats required by the devices
Clients are packaged with the correct format

All graphic assets are drawn in 64x64 px
Then graphic assets are prescaled to each possible size
between 35x35 and 99x99 px
At first launch client will calculate the required size and then
download the best fitting assets and if not packaged, the UI

 → Problem: Download size vs connection speed

15 / 31

Solutions

Flexible UI system
Currently 3 UIs, covering the common aspect ratios

Possibilty to add new UIs (e.g. Tablet UI)

XML description file (using filters)
Defines the layout of the UI-elements in the different UIs

Filters used to:
activate UI-elements, depending on UI or screen orientation
take care of OS specific design differences
consider the device input capability (Touchscreen, Keyboard
or combination)

16 / 31

Solutions

Flexible UI system
Portrait and landscape support

Reuses as many portrait graphics as possible
Requires a few additional graphics for landscape

Using 9-grid and patterns for UI where possible

If not possible the UI element is offered in different sizes
Original size, 125%, 150% and 200%

17 / 31

Different UIs: Portrait

Grid: 7 wide, 9 high
Keyboard & Joystick

(240x320)

Grid: 7 wide 10 high
Touchscreen

(320x480)
Grid: 7 wide, 11 high

Touchscreen & Keyboard
(360x640)

18 / 31

Different UIs: Landscape

19 / 31

UI Design challenges

Classic game is really old
Designed around the phone's numberpad and joystick

Dialogs also optimized for these controls

Screen only used to show information

Touchscreen support
Completely new controls for movement

Virtual keyboard requires space, covers a lot of screen

Dialog structure needs to work with Key & Touch

 → Prototype to get the controls right

20 / 31

UI Design challenges

Different screen types
Capacitive & resistive screens

 → Don't use fancy touch gestures (e.g. Drag & Drop)

 → Get the details right, e.g. size of the scroll bar

Variety of input
Touchscreen, Keyboard or combination of both

 → Plan for different controls:
Touch (simple touch, long touch,..)
Virtual joystick
Keyboard, Xperia Play

21 / 31

UI Design challenges

OS specific design guides
Symbian

switched 'OK' and 'CANCEL' buttons
needs to work with a stylus

iOS Human Interface Guidelines
size of tappable UI elements is 44 x 44 points

Android Menu Design Guidelines

 → Try to keep the look and feel across platforms
 → Solved via filters in XML description

22 / 31

Payment

Payment on different platforms
Apple will not allow links or other payment options in the
game – Only Apple InApp purchase!

Google doesn't care! Here you can offer other payment
methods along with InApp purchase

Payment server
More secure - prevents most hacking scenarios

Checks if customer purchases really are valid

Allows us to offer multiple payments methods to our
customers, depending on country and used device

23 / 31

Testing

Going cross-platform also means more testing
Bugs in the core can effect all platforms

Changes in the UI can also have unwanted effects

Fragmentation requires even more testing
 → Buy devices for testing on all platforms

24 / 31

Distribution channels

Many different application stores
AppStore (iOS)

MarketPlace (Android)

Ovi (Symbian, J2ME)

GetJar (Symbian, J2ME, Android, ...)

Difficult to update all clients at a fixed date
 → Plan for long review times or even rejections

 → Update mentality differs across platforms

 → Support older client versions

25 / 31

Lessons learnt

You need to make compromises for cross-platform
Depending on your target devices

Depending on the type of controls you want to support

3D would have solved most scaling problems
Easier to create a tablet optimized version of the game

UI scaling and layout still a challenge

26 / 31

Lessons learnt

Review process
Apple's review process takes long, especially when you
have a bug that needs fixing!

No Beta testing possible with iOS, but great on Android

Iterate on Android and then submit to iOS

Client update problem: How can Apple test a new
version, if the productive system is not updated yet?

 → Redirect newer clients to a special test enviroment

27 / 31

Lessons learnt: iOS

Pushing the App into the background causes problems
with online games (network traffic)

 → Close the connection – open a new one on start

Test with the newest available iOS version

Don't trust the simulator – always test on a real device

Check if you really need to support older iOS versions,
as upgrade mentality is good

28 / 31

Lessons learnt: Android

Pushing the App into the background causes problems
with network traffic and OpenGL context is lost

 → Close the complete client, offer a quickstart option

'.nomedia' file for Android (or your pics and music turn
up in the media player app on some devices)

OpenGL implementations vary (driver)

NDK makes debugging difficult

Android 1.6 and 2.1: InApp purchases buggy

Plan for extra testing time

29 / 31

Lessons learnt: Android

Support for older versions a lot of work!→
Android OS distribution in TibiaME

Android 3.01 0.2 %
Android 2.3.3 19.4 %
Android 2.3 2.8 %
Android 2.2 52.0 %
Android 2.1 18.2 %
Android 1.6 3.6 %

30 / 31

Conclusions

Plan on a project basis
Choose your platforms

Symbian has been discontinued

Make as many features optional as possible
Solve the screen size problem
Prototype and test

Required performance

If your controls work

Plan for extra testing time
Use the different distribution channels

31 / 31

Thanks!

zuckerer@cipsoft.com
www.cipsoft.com

We're hiring!
at gamescom:

"Jobs & Karriere"
hall 8 booth B40

http://www.cipsoft.com/jobs

Inside Tibia -
The Technical Infrastructure of an MMORPG

Wednesday 12:40- 1:30
 Offenbachsaal, 1st Level

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31

