

15M registered players

4M monthly active players

1.4M daily unique players

500k peak concurrent players

We have a pretty fun game! But no platform

August 2008: First line of code is checked in.

January 2009 – 1000 CCU Scale Test

April 2009 – Public Beta Begins

October 2009 – Launch!

7 core team members

A small army of contractors

Backend

– XMPP standard http://xmpp.org/

– EjabberD – Open Source Chat Implementation
http://www.ejabberd.im/

– Erlang – Language EjabberD is written in

– MySQL - database

http://xmpp.org/
http://www.ejabberd.im/
http://www.ejabberd.im/
http://www.ejabberd.im/
http://www.ejabberd.im/

Frontend

– Adobe AIR -- Standalone Flash runtime

– Adobe Flex – Open-source application framework

– Adobe LCDS – communication layer with server.

– Xiff – open-source xmpp actionscript implementation
http://www.igniterealtime.org/projects/xiff/

EjabberD Nodes

Only One Year to Build this!

Many systems to build!

Proven. Scalable. It Works.

XMPP standard used EVERYWHERE.

Get Service Functional Quickly!

1) UI

2) Whole Service Instability

3) Did Not Scale

4) Security

(Bonus: Some cool things that worked out!)

Initial Naïve Chat Implementation

Separate Floating Windows.

Like a “real” chat client!

Why?

Chat Client: Passive, in the Background.

Game Chat: Highly Focused, Highly Active.

Looked to Social Media for Inspiration.

Integrated Solution

Tightly tied to game loop.

No Major Art Commitment yet

Adobe Flex Framework

Model View Controller design pattern.

What Didn’t Work:

• Early Complaint: Hard to Make Friends.

• Early Complaint: Service Feels “Empty”

“Traditional” Chat rooms never took off.

Its OK to be WRONG!
(Your users sometimes are smarter than you are)

Its OK to use Placeholder Art.

Make it very easy to add friends.

Try Usability Testing. We should have!

But How Is this Possible?

Users reacted to chat outages in a surprising way.

Putting big spikes of load on our main service.

Over communicate to users

Give users a call to action.

Added reconnect to chat button!

Ticker System – Gave players a next step for help.

Helped avoid cascading forum failure.

For when your service fails. Not if.

Watch and understand how your users actually
use your product.

Better yet – BE A USER!

Empathy is a
powerful force

We Have training classes for our developers!

Over Communicate to users what is going on.

No programmer error messages

Up to 2 Chat Service Crashes Per Day.

XMPP is used at much larger concurrencies.

Why are we any different?

AGAIN: Look at your specific usage pattern!

More Frequent Presence changes

More Frequent Chat Room Usage (80k+/hour)

Chat Rooms exacerbate presence issue.

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8

P
re

se
n

ce
 M

e
ss

ag
e

s
Se

n
t

Players

Linear VS Quadratic Growth

N^2

Linear

We released patch after patch for months.

But, as scale grew we continued to fall over.

Why couldn’t we fix it?

Effort != Results

Treated XMPP as a black box

NOTHING is fire and forget!

Erlang is BLACK MAGIC WIZARDRY!!

Relied purely external support

We were guessing what the problem was.

But, we didn’t really know the true issue.

Live is very different from test environments.

We used our players as Guinea pigs!

Temporarily halted feature
development

Began to pay back our Technical
Debt

Under “Release Early, Release Often”, long term
issues sometimes get left in the dust.

Longterm Code quality and process suffers.

Why Not Just do it Right the first time?

“Just as a business incurs some debt to take
advantage of a market opportunity developers
may incur technical debt to hit an important
deadline” – Martin Fowler

Spin-up thousands of client bots to simulate load

Smack Api -- XMPP client library by Ignite.
http://www.igniterealtime.org/projects/smack/

Amazon “Elastic Compute Cloud” (Ec2) to host
fake clients. http://aws.amazon.com/ec2/

http://www.igniterealtime.org/projects/smack/
http://www.igniterealtime.org/projects/smack/
http://aws.amazon.com/ec2/

Run about 5-9k fake clients per Ec2 node

Fire up dozens of ec2 nodes at once to simulate
load.

Lots of dials/knobs to tune expected behavior.

Hey this is pretty cool!

Unfortunately, Useless without proper modeling.

Make sure client guys are on board as well.

Underestimated Chat Room usage drastically

Made results way too optimistic.

Spent 2 weeks to write our own data gathering
modules for ejabberD

Leveraged SNMP
(http://sourceforge.net/projects/snapp/)

Used Cacti (http://www.cacti.net/) for
visualization.

http://sourceforge.net/projects/snapp/
http://sourceforge.net/projects/snapp/
http://www.cacti.net/
http://www.cacti.net/

CPU load

Network Load

IO

Chat Room creation

Presence changes

Connections

Began to cultivate internal expertise.

Looked for external partners that had experience
with our level of scale.

Problems are completely different at Different
Levels of scale!

Great language for the chat problemspace

Extremely efficient at message throughput

Can do a lot with less, terser code.

Facebook and Erlang: Eugene Letuchy

Erlang Java

Only about 2 weeks to implement most
important scaling solutions!

Simple, focused solutions targeted at our specific
use case.

Biggest gains: Targeted Chat Room optimizations

– Simplified Chat Rooms

– Replicate Chat Rooms Table to Local Only

Removed Second Game Chat Connection

Identify your non-linear bottleneck

Understand your technology

Understand your use-cases

Gather real data

Be Prepared to pay back Technical Debt

Chat is Compromised!

With Open Source and Open Standards comes
Great Responsibility.

Name Changes

Employee Spoofing

Room ownership

Word Filtering

Spam

Character Limits

Game Security != Chat Client Security

Nicknames are client trusted in XMPP!

Mostly configuration changes

Custom Code: EjabberD authenticate with
platform and enforce the true summoner name

Don’t trust the client!

Even in non-competitive games, Chat needs to be
secure .

So why are chat rooms and presence so damn
important anyways?

And now that we are stable…

How can we use these to actually OFFLOAD major
work from the main game service?

Naïve Implementation is N^2 again!

Presence information already does this for you!

XML stanzas

Stats

Level

GameState

Very little scale impact on main service

Chat rooms already built into all screens: They
have Presence information!

Immense social gain

Bragging rights

Game Invites

Trades

And More…!

Hacking concerns?

Remember: Don’t trust the client!
– Final lightweight verification passes with the server.

– Client Sanity Checking

– Lazy Updating From server

– Etc

It’s worth the scale gains.

It was a long hard road but……

Chat is stable and functional
now!

99%

1) UI

2) Cascade Failures

3) Scaling

4) Security

?

Be Player Focused

Nathan Beemer

Scott Delap

Chris Yunker

Scott Gelb

Christopher McArthur

 @christopurr
cmcarthur@riotgames.com

All of the links and tech from this presentation:
christophermcarthur.com/gdco2011

We’re hiring - riotgames.com/careers

